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An operator T: R* — R" is paramonotone iff it is monotone and (T'(z) — T'(y),z — y) = 0 implies
T(z) = T(y). This definition can be extended to operators defined in a convex set whose values are
subsets of R”. The notion of paramonotonicity is required to ensure convergence of several interior
point methods for variational inequalities. In this paper we establish several properties of paramonotone
operators. In particular, we give sufficient conditions for paramonotonicity in the differentiable case. We
prove that if the symmetric part of the Jacobian matrix is positive semidefinite and its rank is greater
than or equal to the rank of the Jacobian matrix at all points then the operator is paramonotone.
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1. Introduction

The notion of paramonotocity of operators, which is in between monotonicity and strict
monotonicity, was first presented in [2], where it was not given a name. The term
paramonotonicity was introduced in [5]. We remind that an operator 7: R* — R"
is monotone iff (T'(z) — T(y),x — y) > 0 for all z,y, and is strictly monotone if ad-
ditionally (T'(x) — T'(y),z — y) = 0 implies x = y. Paramonotonicity requires that
(T(x) —T(y),x —y) = 0 imply only T'(z) = T(y) (later on we will extend this defi-
nition to point-to-set operators). The main motivation behind the introduction of this
class of operators lies in the analysis of interior point methods for variational inequalities,
so we recall briefly some facts on this type of problems, which appear in many areas of
application (see e.g. [7]).

Given a monotone operator 7: R* — R"” and a closed convex set C' C R", the variational
inequality problem, which we denote by VIP (T, C), consists of finding z € C such that
(T(2),x—z) >0forall x € C.

When T'(z) = V f(x) for some f: R* — R, VIP(T,C) is equivalent to min f(x) s.t. z € C.
When C = {z € R" : £ > 0} then VIP(T,C) reduces to the nonlinear complementarity
problem, which consists of finding z > 0 such that 7'(z) > 0 and (z,7(z)) = 0.

The relevance of paramonotonicity stems from the following fact. Consider a property
P(z,y) defined on pairs of elements of some set S, and suppose that the problem to be
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solved consists of finding z € S such that P(z,z) holds for all z € S. A convenient
feature of such a problem is the following: if a point y is such that P(y, z) holds for some
solution z of the problem, then y is also a solution of the problem. In other words, given
a solution z, it can be verified whether another point y is also a solution by looking only
at y and z, rather than at y and all points z € S. This happens for instance in the case
of minimization of a function f on S, in which case P(z,y) is just f(z) < f(y), because if
z is a minimizer and f(y) < f(z) then y is also a minimizer. This feature is useful in the
analysis of algorithms which generate a sequence {z*} expected to converge to a solution
of the problem; in many cases one is able to prove only that the limit (or a cluster point)
7 of {z*} satisfies P(Z,z) for a solution z. When this feature is present one can then
conclude that 7 is also a solution.

Unfortunately, VIP(T, C) does not have this property for a general monotone operator
T, as we show next. For VIP(T,C), P(z,y) is (T'(z),y —x) > 0. Observe that when
C = R", z solves VIP(T,C) iff z is a zero of T, i.e. T(z) = 0. Consider the case
of C = R? and T(z1,79) = (w9, —x1). It is easy to check that 7" is monotone (in fact
(T(x)—T(y),x—y) = 0for all z,y € R") and that its only zero is z = (0, 0). However, for
y = (1,0) we have (T'(y), z—y) = 0 (i.e. P(y, z) holds) but nevertheless y is not a solution.
The idea is to impose further conditions on 7', beyond monotonicity, so that VIP(T, C') has
this feature, i.e. we want that whenever (T'(y), z—y) > 0 with y € C and z in the solution
set S* of VIP(T, C), it holds that y also belongs to S*. Strict monotonicity does the job,
because if 0 < (T'(y), z—y) and z € S* then we have 0 < (T'(y), z—y) < (T'(z),z—y) < 0so
that (T'(z) —T(y), z—y) = 0 and therefore z = y, i.e. y is a solution, but the computation
just performed also shows that for a strictly monotone operator 7', VIP(T, C') has at most
one solution, which is a quite restrictive situation.

We want a condition on 7" which encompasses at least the convex optimization case (i.e.
T = Vf for a convex f) and such that VIP(T,C) has the feature discussed above. As
we will prove in Proposition 2.3, paramonotonicity is appropriate in this sense. Thus,
paramonotonicity is the condition imposed upon 7" in order to ensure convergence of
several interior point methods for VIP(T,C) which use generalized distances, e.g. a
Korpelevich-type method with Bregman distances [5], a perturbation method for saddle
point problems [6], and also proximal point methods with either Bregman distances [3]
or op-divergences ([1] and [4]). We remark that though monotonicity is enough for the
convergence analysis of other interior point methods for variational inequalities (e.g. [8],
[9]), the algorithms mentioned above, in which the constraint set appears in the algorithm
only through an interior barrier function whose gradient diverges at its boundary, are
such that paramonotonicity seems an essential feature in their convergence analysis, in
the sense that no convergence proof is known for monotone operators which fail to be
paramonotone.

In this paper we bring together several results on paramonotone operators. In Section 2 we
show that paramonotonicity enjoys the two properties just considered: subdifferentials of
convex functions are paramonotone and VIP(T, C') with paramonotone T has the feature
discussed above. This result was proved in [5] for point-to-point operators and we extend
it here to the case of point-to-set ones.

In Section 3 we discuss monotonicity, paramonotonicity and strict monotonicity of affine
operators (i.e. of the form T'(x) = Ax +b) in terms of properties of the symmetric part
A of A (A is defined as £(A4 + A")).
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The results in Section 3 are rather elementary, but are needed in the study of continuously
differentiable operators, presented in Section 4. If T is of class C! in C, and we denote by
Jr(z) the Jacobian matrix of T at z, then we can consider the linear approximation of 7’
at z, i.e. the operator Ly, defined as Lr,(y) = Jr(z)(y — ).

It is easy to check that monotonicity of T" in C is equivalent to monotonicity of Ly, for
all x € C, but this is not true for either paramonotonicity or strict monotonicity: the
“para” or “strict” properties may be due to higher order terms of 7', beyond the linear
approximation. On the other hand, if the linear approximations Ly, are all paramonotone
or strictly monotone, then the same properties hold for the operator 7.

Our main result is the following: If 7" is a differentiable operator such that the symmetric
part of its Jacobian at any point z is positive semidefinite (which is equivalent to mono-
tonicity) and its rank equals the rank of the Jacobian at z itself, then 7" is paramonotone.
This sufficient condition is as easily checkable as monotonicity in terms of matrix analysis
in the differentiable case; it says in fact that in order to check that a monotone and dif-
ferentiable operator is paramonotone it suffices to verify that its Jacobian does not lose
rank when it is symmetrized.

Throughout the paper (-, -) denotes the Euclidean inner product in R*, V is the gradient
and V2 the Hessian of a function, and superindex ¢ indicates transpose.

2. Paramonotone operators

Let C' C R™ be a convex set with nonempty interior and 7" an operator defined on R”
whose values are subsets of R (i.e. elements of P(R™)).

Definition 2.1. T is said to be

(i) monotone in C iff (u — v,z —y) > 0forall z,y € C and all u € T(z

(ii) paramonotone in C iff it is monotone in C' and (u — v,z —y) =0
u € T(x), v € T(y) implies u € T(y) and v € T'(x),

(iii) strictly monotone in C' iff it is monotone in C and (v — v,z —y = 0) with z,y € C,
u € T(z), v € T(y) implies x = y.

), v e T(y),
with z,y € C,

It follows from Definition 2.1 that strict monotonicity in C' implies paramonotonicity in
C which in turn implies monotonicity in C.

The result of the next proposition was stated without proof in [2]. For the sake of
completeness, we present a proof, taken from [5]. df(z) will denote the subdifferential of
f at x.

Proposition 2.2. If T is the subdifferential of a convex function f on C (i.e. T(x) is
the set of subgradients of f at x) then T is paramonotone in C.

Proof. Monotonicity of 7" is well known. Assume that (v — v,z — y) = 0 with = € C,
y € C,u € T(x), v e T(y), and define f: C — R as f(z) = f(z) + (u,z — z). Then
f is convex and Of(z) = 0f(2) —u = {w—u : w € 0f(z)}. Taking w = u, we
get that 0 € df(x) and so = is an unrestricted minimizer of f. By hypothesis and
definition of subgradients, f(z) — f(y) < (u,z —y) = (v,x — y) < f(z) — f(y), implying

f(z) = f(y) + (u,z —y) = f(y). Since f(x) = f(z) by definition of f, we conclude that

f(x) = f(y), so that y is also an unrestricted minimizer of f, i.e. 0 € df(y). Therefore
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0 = w — u for some w € df(y), which is equivalent to u € df(y) = T'(y). Reversing the
roles of (x,u), (y,v) the same argument proves that v € T'(z) and the result is established
in view of Definition 2.1(ii). O

Next we show that if 7" is paramonotone in C', then we can decide whether a point y € C
solves VIP(T, C) just by looking at y and a given solution z of VIP(T, C).

We recall that for a point-to-set operator 7', a vector z € C is a solution of VIP(T, C) iff
there exists u € T'(z) such that (u,z — 2z) > 0 for all z € C.

Proposition 2.3. Assume that T is paramonotone in C and let z be a solution of
VIP(T,C). Then y € C is a solution of VIP(T,C) if and only if there exists v € T(y)
such that {(v,z —y) > 0.

Proof. The “only if” part is immediate. We prove the “if” part. Assume that (v, z—y) >
0 for some v € T'(y) and some solution z of VIP(T, C). Since z is a solution of VIP (T, C)
there exists u € T'(z) such that

(u,x —2) >0 (2.1)
for all z € C. Then by monotonicity of 7,0 < (v, z — y) < (u,z — y) < 0, implying that
(v,z—vy) =(u,z —y) =0. (2.2)
From (2.2), (v — u,z — y) = 0 and by paramonotonicity of 7" we get
u € T(y). (2.3)
Then, for all x € C
(v, —y) = (u,z —2) + (U, z —y) = (u,z — 2) > 0 (2.4)

using (2.2) in the second equation and (2.1) in the inequality. It follows from (2.3) and
(2.4) that y is a solution of VIP(T, C). O

3. The case of affine operators

In this section we consider operators of the form T'(z) = Az + b with A € R™" b € R".
For a matrix A € R™" we will denote by A its symmetric part, i.e. A= 1(A4+ A"). It

is immediate that 2' Az = 2' Az for all z € R* and all A € R**". We will use repeatedly
the following well known fact: if A is symmetric positive semidefinite and z*Az = 0 then
Az = 0. This follows from the fact that A can be written as A = B!B for some B € R™*"
(e.g. the Cholesky factorization) and then 0 = z'Az implies 0 = z'B'Bx = ||Bz||?, so
that 0 = Bz and therefore 0 = B*Bx = Az. We will also need the following elementary
result.

Proposition 3.1. If A is positive semidefinite then the following statements are equiva-
lent.

(i)  ker(A4) C ker(A). )
(ii)  There exists V € R™" such that A =V A.
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(i) If U € R™™ is such that UU' = I and UtAU is in Jordan normal form, i.e.

o [1 o M 0
t —
UAU_[OO 0 0

(iv) rank(A) < rank(A).

} with I € RP*P, then U'AU = [ } with M € RP*P,

Proof. The fact that (i) implies (ii) is immediate. For (ii) = (iii), note that A = VA

implies U'AU = UV AU = (U'VU)(U'AU) = (U'VU) [é 8} = [Ag 8] where M is
the upper left p x p submatrix of U*VU. (iii) implies (iv) because rank(A) = p and
rank(A) = rank(M) < p. We prove that (iv) implies (i). We claim that for A positive
semidefinite it always holds that ker(4) C ker(A): if 0 = Az then 0 = 2*Az = 2'Az
implying 0 = Az i.e. z € ker(4). As a consequence, rank(A) > rank(A). If (iv) holds,
then rank(A) = rank(A). Since ker(A4) C ker(A), it follows that ker(A4) = ker(A), which
clearly implies (i). O

Before establishing the next result, we remark that for point-to-point operators Definition
2.1 reduces to the notions stated in the first paragraph of Section 1.

Proposition 3.2. Let C C R" be a convex set with nonempty interior and take T(x) =
Az +b. Then

(i) T is monotone in C iff A is positive semidefinite,
(ii) T is paramonotone in C iff A is positive semidefinite and ker(A) C ker(A),

(iii) T is strictly monotone in C iff A is positive semidefinite and ker(A) = {0} (i.e. A
is positive definite).

Proof. Note first that for T(x) = Az+b it holds that (T'(z)—T(y), z—vy) = (r—y) A(z—
y). We prove now the three items.

(i)  The “if” part follows from the observation just made. For the “only if” part, given
z € R* take any = € int(C) and let y = x — Az with A > 0 and small enough so
that y € C. Then 2'Az = A\ 2(z — y)!A(z — y) = X 2(T(z) — T(y),z —y) > 0 by
the monotonicity of T in C. Since z is arbitrary, A is positive semidefinite.

(i) =) By (i) 4 is positive semidefinite. Take z € ker(A), z € int(C) and y, \ as
in (i). Since z € ker(A), Az = 0 implying 0 = 2!Az = A\ 2(z — y)!A(z — y) =
A2(T(x) — T(y),x — y). Since x,y € C, the paramonotonicity of T in C implies
that 0 = T'(z) — T(y) = Mz, i.e. z € ker(A).
<) Assume that 0 = (T'(z) — T(y),z —y) with 2,y € C. Then 0 = (z —y)!A(z —y)
and by the positive semidefiniteness of A we get A(z—vy) =0, i.e. z—y € ker(A) C
ker(A), so that A(z —y) = 0 implying T'(z) = Az +b = Ay + b =T(y). So T is
paramonotone in C'.

(iii) =) A is positive semidefinite by (i). Take z € ker(A) and z,y as in (ii). Then, with
the same argument, we get 0 = (T'(z) — T'(y),x — y). By strict monotonicity of T’
in C, x = y so that z = A(z — y) = 0, proving that ker(fl) = 0.
<) I (T(x) — T(y),z —y) = 0 for 2,y € C then 0 = (z — y)*A(z — y). Since A is
positive definite we get x = y, establishing strict monotonicity of 7" in C.

O
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Proposition 3.2 enables us to construct easily paramonotone operators that are not strictly

monotone and monotone operators which are not paramonotone; for instance T'(z) = Az
2 20

with A = |1 2 0f is paramonotone but not strictly monotone and 7'(z) = Az with
0 00

1] .
A= [_01 0} is monotone but not paramonotone.

4. The case of continuously differentiable operators

In this section we assume that 7' is continuously differentiable in C, i.e. the Jacobian
matrix of 7', which we denote by Jr(x), is well defined for all z € C' and Jp(-) is continuous
in C. For each z € C, consider the operator Ly ,: R* — R" defined as Lr,(y) =
Jr(z)(y — x), which is the linear approximation of 7" at . The next proposition shows
that monotonicity of T"in C' is equivalent to monotonicity of Ly, for all z € C.

Proposition 4.1. Let C C R" be conver with nonempty interior and take T € C'(C).
Then the following statements are equivalent:

(i) T is monotone in C,
(ii) Lry is monotone for all x € C,
(iii) Jr(x) is positive semidefinite for all z € C.

Proof. (ii) and (iii) are equivalent by Proposition 3.2(i). We prove next that (i) implies
(iii). Take any z € R™, fix 2 € int(C) and take y and A € (0,1) as in Proposition 3.2(i).
Let we = x 4+ a(y — z) with a € (0,) C (0,1), so that w, € C, by convexity of C. By
monotonicity of T’

0 < (T(wy) —T(x),ws —x) = a{T(wy) — T(x),y — ). (4.1)

Dividing (4.1) by o, we get 0 < (L[T(wa) — T(2)],y — z) and taking limits as « goes
to 0, we obtain 0 < (z — y)'Jr(z)(z — y) = (z — y)!Jr(z)(z — y) = A2t Jr(2)z, implying
0 < 2'Jp(x)z. Since z is arbitrary, Jr(z) is positive semidefinite for all z € int(C) and
therefore for all z € C, by the continuity of Jp(-).

Finally we prove that (iii) implies (i). Take z,y € C and let ¢: [0,1] — R be defined as
pla) = (T(x+aly — z)),z —y). Then (T'(x) = T(y),x —y) = ¢(0) — ¢(1) = ¢'(a) for
some a € [0,1]. Let w = 2 + oy — z). Then ¢'(a) = (z — y)"Jr(w)(z — y) with w € C.
So (T'(z) = T(y),z —y) = (x — y)*Jr(w)(z — y) > 0 by the positive semidefiniteness of

One could expect to obtain similar results for paramonotonicity and strict monotonicity,
stating that such properties hold for 7" if and only if they hold for Ly, for all z € C, but,
as we already mentioned in the introduction, this is not true. These properties are not
inherited by their linear approximations, as the following examples show.

Take C = R, T(x) = 2. T is strictly monotone because it is the derivative of the strictly
convex function f(z) = fz*, but Jr(0) = 0, so that Lyg is not strictly monotone, by
Proposition 3.2(iii). Now consider C' = R?> and T = T} + Ty, with Ty (x, 13) = (—2,71)
and Ty(z1,72) = (23,23). T; is monotone, as mentioned in Section 1, and T is strictly
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monotone, being the gradient of the strictly convex function f(z1,z2) = +(z} + 23). So

0

. . -1
T is strictly monotone and therefore paramonotone. However, Jr(0) = [1 0 } and

Jr(0) = [8 8] , 50 that ker(Jp(0)) = R2, which is not contained in ker(J7(0)) = {0}, and

therefore Ly is not paramonotone, by Proposition 3.2(ii).

On the other hand, paramonotonicity or strict monotonicity of the linear approximations
are enough to ensure that such properties hold for the original operator. We start with
paramonotonicity. In the next three propositions it is assumed that 7' € C'(C) and that
C is convex with nonempty interior.

Proposition 4.2. If jT(:E) s positive semidefinite for all x € C and any of the following
statements hold

(i)  ker(Jr(z)) C ker(Jr(z)) for all z € C,

(i) rank(Jp(x)) < rank(Jp(z)) for all z € C,

(iil) there exists V(z) € R*™™ such that Jp(x) = V(z)Jp(x) for all z € C,
(iv) Lry is paramonotone for all x € C,

then T is paramonotone in C.

Proof. First observe that (i), (ii) and (iii) are equivalent by Proposition 3.1 and that (i)
and (iv) are equivalent by Proposition 3.2(ii), so that it suffices to establish the result
under e.g. (i). We proceed to do so. By Proposition 4.1 T is monotone in C. Assume
that 0 = (T'(z) — T(y),z — y) with z,y € C. For a € (0, 1), let w, = y + a(x —y). Then
wy € C for all a € (0,1) by convexity of C' and

0=(T(z) — T(wq),r — y) + {T(wa) — T(y),x — y)

4.2
(T (w) = T(wa), 2 = wa) + (T wa) = T(y), w0 = ). 42

Y

Both terms in the rightmost expression of (4.2) are nonnegative by the monotonicity of
T in C, and therefore both vanish. In particular

1

0= —(T(wa) = T(y), wa —y) = {T(wa) = T(y),z ~y) (4.3)

for all @ € (0,1). Take now § € (0,1) and v € (0,1 — f3), so that 5+ v < 1. By (4.3),

0= (T(wg)=T(y),z—y) = (T (wp4y) =T (y), r—y) implying 0 = (T (wp1,) =T (wg), z—y),
so that, for all v € (0,1 — f)

- <§[T(wﬂﬂ> — T(wg)),z - v). (4.4)

Taking limits in (4.4) as y goes to 0, we get 0 = (z—y)"Jr(wg)(x—y) = (x—y)"Jr(ws)(z—
y) for all B € (0,1), and therefore for all 3 € [0,1], by the continuity of Jr(-). Since
wg € C, Jr(wg) is positive semidefinite, and we can conclude that 2 —y € ker(Jr(wg)) C
ker(Jr(wg)), i.e. that

Jr(ws) (@ —y) = 0 (4.5)
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for all § € [0,1]. Let now 7} (1 < j < n) denote the components of T (i.e. Tj(z) = T'(x);).
Then

Tj(y) = T;(z) + VTj(wg,) (y — ) (4.6)
for some 3; € [0, 1]. Note that VTj(wg,) is the j-th row of Jp(wg,) so that VT}(wg,)"(x —
y) = 0 by (4.5) and then T;(y) = T;(z) by (4.6). It follows that T'(z) = T (y). O

Before establishing a similar proposition for strict monotonicity, we present an interme-
diate result, which is of some interest on its own.

Proposition 4.3. If T' is paramonotone in C' and Jr(zx) is nonsingular for all z € C
then T is strictly monotone in C.

Proof. Assume that (T'(z)—T(y),z—y) = 0 with z,y € C. Asin the proof of Proposition
4.2, we get that 0 = (T'(wa) — T(y), ws — y) for all a € (0,1). Since w, € C, it follows,
by the paramonotonicity of T in C, that T(w,) = T'(y), i.e.

0= [T(wa) - T(y)] (@7

for all @ € (0,1). Taking limits in (4.7) as « goes to 0, we get 0 = Jr(y)(xz — y), so that
x = y by nonsingularity of Jr(y). O

Note that Proposition 4.3 does not hold if we assume that 7 is just monotone; the operator

1
1 0] for all x, but
it is not strictly monotone. In order to ensure strict monotonicity we need in general

nonsingularity of Jy(z), rather than of Jp(x), as the next proposition shows.

T(x1,z3) = (z9, —z1) has nonsingular Jacobian matrix equal to [

Proposition 4.4. If jT(:r) is positive definite for all x € C then T 1is strictly monotone
in C.

Proof. Since ker(Jr(z)) = {0}, we have ker(Jr(z)) C ker(Jr(z)) and we are within
the hypotheses of Proposition 4.2, so that T is paramonotone in C. Since ker(Jr(z)) C
ker(Jr(x)), as shown in the proof of Proposition 3.1, we have that ker(Jr(z)) = {0}, i.e.
Jr(z) is nonsingular. By Proposition 4.3, T is strictly monotone. O

We present now the specific form of Proposition 4.2 for an important family of mono-
tone operators, namely those which arise from constrained saddle point problems. Given
K:R" xR" — R, convex in its first argument and concave in the second one, and closed
convex sets X C R" Y C R™, the constrained saddle point problem CSP(K,X,Y)
consists of finding (Z,7) € X x Y such that K(z,y) < K(7,y) < K(z,y) for all
(r,y) e X xY. If K € C*(X x Y) then CSP(K, X,Y) is equivalent to VIP(T,C) with
T(z,y) = (VsK(z,y),-V,K(z,y)) and C = X xY (VK and V,K denote the gradient
of K with respect to its first and second argument respectively). It is easy to check that
this T' is monotone, and we will establish sufficient conditions for paramonotonicity for
the case in which 7 € C'(C), i.e. K € C}(X xY).

Let V2, K € R, V2 K € R™™ and V2 K € R**™ be the matrices of second deriva-

tives of K (e.g (V2,K(z,y))y = az‘jzyiK(x, y)). Then Proposition 4.2(iii) takes the fol-

lowing form.
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Proposition 4.5. If for all (z,y) € X XY there exist matrices G(z,y), H(z,y) € R*™*™
such that

VK (2,y) = Vi K(2,9)G(z,y) = H(z,y)Vy, K (,7) (4.8)
then T = (V,K, -V K) is paramonotone in X X Y.

D B| = D 0 .
Proof. For T' = (V,K, -V, K) we have Jp(z,y) = {—Bt E]’ Jr(z,y) = [0 E:| with
D =V. K(z,y), E=-V, K(z,y), B=V;K(z,y). By (48), B= DG = HE. Take
V(z,y) = [_gt lﬂ, so that Jr(z,y) = V(z,y)Jr(z,y) and apply Proposition 4.2 under

hypothesis (iii). O

Note that nonsingularity of V2 K (z,y) (respectively VZyK (z,y)) implies existence of
G(z,y) (respectively H(z,y)). The result of Proposition 4.5 can be slightly improved:
if K(-,y) is strictly convex for all y € Y (respectively —K (z,-) is strictly convex for
all z € X) then the existence of H(x,y) (respectively G(z,y)) as in Proposition 4.5 is
enough to ensure paramonotonicity of 7. This can be proved by reworking the proof of
Proposition 4.2 for the case of T = (V,K, -V, K).

Finally, we mention that an important class of monotone operators fail to be paramono-
tone. Consider the convex optimization problem min f(z) s.t. g;(z) <0 (1 <14 < m) with
convex f,g;: R* — R. If f, g; are of class C' then under standard regularity conditions
(e.g. [10]), this problem is equivalent to CSP(K,R*, RT) where R = {y € R™ : y; >
0 (1 <i<m)} and K is the Lagrangian function, i.e. K(z,y) = f(z) + Y v, vigi(z),
so that T(z,y) = (Vf(z) + Jy(z)'y, —g(x)), where g(z) = (g1(2), ..., gm(z)) and Jy(z)
is the Jacobian matrix of g at . Take x € R" such that Jy(z) # 0 and v € R™ such
that Jy(z)'v # 0 and write v = y — ¢ with y,¢' € R?. If 2 = (z,y), 2’ = (z,v)
then (T'(z) — T'(2'),2z — 2') = (Jy(2)'(y — ¥'),z — 2) — (9(2) — g(),y — ¢') = 0 while
T(z) = T(2') = (Jy(x)"(y — v'),0) = (Jy(z)'v,0) # (0,0), i.e. T is not paramonotone in
R* x RP (unless Jy(z) = 0 for all z, in which case the convex optimization problem is
indeed unconstrained). In term of the conditions of Proposition 4.5, assuming that f, g
are of class C*, we have V2 K(z,y) = V*f(z) + > 12, 4:V?gi(z), Vi, K(x,y) = Jy(z)" and
szK(x,y) = 0, so that (4.8) becomes J,(z) = 0, i.e. the hypothesis of Proposition 4.5
does not hold in the constrained case.

5. Final remarks

Our most relevant result, namely Proposition 4.2, means that in the differentiable case
we can detect paramonotonicity by checking properties of some matrices, namely Jr(z),
as in the case of convexity for twice differentiable functions.

In connection with convexity, we point out first that if Jr(x) is symmetric for all z € C
then the conditions in Proposition 4.2 are trivially satisfied, because Jr(z) = Jr(z).
However, symmetry of Jr(z) in the open set int(C') implies that 7" is indeed the gradient
of a function f defined in C, so that Jr(z) = V?f(z) and Proposition 4.1 reduces to the
well known result that positive semidefiniteness of the Hessian matrix ensures convexity
of the function.
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The really interesting monotone operators are those which are not gradients of convex
functions, i.e. those whose Jacobian matrices fail to be symmetric at some points. In
this case the conditions in Proposition 4.2 turn out to be the key properties for para-
monotonicity, which is itself essential in the analysis of several interior point methods for
variational inequalities, as mentioned in Section 1.
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