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In this paper we compare two different approaches to analyse the second-order behaviour of a convex
function. The first one is classical, we call 1t the horizontal approach; the second one is more recent,
it is the wertical approach. We prove equivalences between horizontal and vertical growth conditions.
Then we derive well-known directional results. Finally we show that the vertical approach is particularly
interesting to get more than a first-order (and more than directional) analysis of the maximum eigenvalue

function.
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1. Introduction

Let f be a finite-valued convex function from the m-dimensional Euclidean subspace [R™
to IR, The behaviour of the e-subdifferential of f at a point z € R™, as a multifunction
of the real nonnegative parameter ¢, is commonly known “to give information” on the
second-order behaviour of f at x. In order to examine to what extent this idea is relevant,
we clarify and generalize, some results given in [12], [4], [6], [18]. We show that f satisfies
a second-order growth condition if and only if fl(x;d), the approximate derivative of f at
z in the direction d € R™, satisfies a half-order growth condition uniformly with respect
to d. Our main motivation is to identify some bridges between

o the classical “horizontal” approach, which consists in studying the limiting behaviour
of the quotient

[z +h) = J(z) = ['(z; )

sIAl”

when || 2| is small,
o the “vertical” approach, which consists in studying the limiting behaviour of the
quotient

[fl(z;d) — ['(z;d)]?
e ’

(1.2)

when ¢ is small.
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The horizontal/vertical terminology is due to C. Lemaréchal and J. Zowe [12].

Our main contribution is to bound the difference quotients (1.1) and (1.2) uniformly with
respect to the direction. We intend to keep the same point of view as in [3] where the limits

of the first-order difference quotient w are studied uniformly in d € R™, ||d|| = 1
when ¢ | 0. We shall see that this approach can be applied to the second-order difference
quotient (1.1) when ||A]| — 0 or equivalently for (1.2) uniformly in d € R™, ||d|| = 1 when
¢ 1 0. Geometrically, this amounts to studying the quotient

An(0:f(x),0f())
oz ,

when ¢ | 0 and where Ag(-,-) is the Hausdorff distance.

Let us note here that this geometrical view can be compared with the geometrical inter-
pretation of the second-order epi-derivative relatively to a sugradient g € df(z) in terms
of the Dupin indicatrix of the conjugate function f* at (g,x) which are in turn connected
to the difference quotient

asf(‘T) )

V2e

when ¢ | 0 (see [6] and [13]). This approach considers vertical developments replacing in
(1.2) the sublinear function f’(z;-) by a particular linear one (g,-). In the present paper
we do deal with the sublinear function f'(z;-).

The paper is organized as follows. After some preliminary results in §2, we show in
§3 that f satisfies an upper (resp. lower) horizontal growth condition if and only if it
satisfies an upper (resp. lower) vertical growth condition. This section considers two
types of results: “uniform” ones in which the convergence in (1.2) is uniform with respect
to d, and “directional” ones, in which d is fixed while b = td in (1.1). In §4, we take a
directional point of view: we show that the lim sup (resp. liminf) of (1.1) and the lim sup
(resp. liminf) of (1.2), when ¢ and ¢ respectively tend to zero, are the same (possibly
+00). Finally we illustrate an advantage of the vertical approach: in some situations, such
as for the maximum eigenvalue function, it enables us to obtain more than a first-order
(and more than a directional) sensivity analysis.

Our notation follows closely that of [4].

- R™ m-dimensional Euclidean space

- {w,y) scalar product of z,y € R™

- |z|| := v/(z, z) Euclidean norm of z € R™

- S is the unit sphere of R™

- B(z,¢) is the ball centered at z € R™ with radius ¢ > 0

- R">dw—og(d) = sup,ec(g, d) is the support function of the nonempty set G C R»

- Ap(G1,Gy) is the HausdorfT distance between two nonempty compact sets Gy, Gy C
Rm: if in addition G4 and (5 are convex, it can be characterized by [8, Theorem

V.3.3.8):

AH(G1)G2> = Imnax |UG1 (d> - O-GQ<d>|?
ld]|<1
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which can also be written, using sublinearity of R™ 5 d s |og, (d) — 0, (d)],
A (G, G) = max o6, (d) — o6, (d)|
- 9f(x) is the subdifferential of f at
Of(x):={s € R": f(y) = f(2) = (s,y — ) for all y € R"}
- f'(z;d) is the directional derivative of f at 2 € R™ in the direction d € R™

f(z;d) :==inf f(z+1d) - f(2)

t>0 t

or equivalently (see [8, § VI.1]), f’(z;-) is the support function of df(z)
F(as) =09 p(2)()
- 0.f(z) is the e-subdifferential of f at = € R™
Ocf(x) :={s € R": f(y) — f(x) > (s,y — 2) — e for all y € R}
- fUYx;d), the e-directional derivative of f at z € Rin the direction d € R, is the
support function of 0. f(z):

fil@s) =09 ()0

0 ifzeG . - : :
- g(z) = ! s the indicator function of the nonempty set G’ C R™; it
400  otherwise

is convex if and only if GG is convex.
- Ng.(z):={seRm":(s,y—z) <e, for all y € G} enormal set to the closed convex
set G at z € G and Ng(z) = Ngo(z) is the usual normal cone.

2. Preliminary results

First we recall the following fundamental relation.

Theorem 2.1 ([8, Th. XI.2.1.1]). For z € R™ and ¢ > 0, the e-directional derivative

is the infimum over t > 0 of the e-approximate difference quotient:

fi(z;h) =inf fletth) —f(z) +e for all h € R™. (2.1)

t>0 t

Another significant property of finite valued convex functions : they are locally Lipschitz
(see e.g., [8, Theorem 1V.3.1.2]), i.e., for every = € R™,

A L>0: [f(y) = f(2)| < Llly — 2| forall y,z € B(z,l). (2.2)

From this Lipschitz property C. Lemaréchal and J. Zowe derive in [12] the following
Lemma.
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Lemma 2.2 ([12, Lemma 1.1]). For cach = and h in R™, one has
[l +h) = f(z) = max{fi(z;h) —e : e = 0}.
Set E(h) :={e 2 0: f(z + h) = f(z) = fi(x;h) —e}. Then
Eh) = {f(z) = f(x+h) + (s,h) : s € f(x + h)}.
Suppose ||h|| < L where | is defined in (2.2). Then

e <2L||R|| for all e € E(R).

Finally we observe that, when ¢ | 0, 0. f(z) decreases to df(z); equivalently the function
f[’_](w; d) is continuous at ¢ = 0 uniformly for d € S:

Theorem 2.3. When e |0,
liirolfs'(x; d) = f'(z;d),
uniformly with respect to d € S.

Proof. The pointwise convergence is [16, Theorem 23.6]. Because fl(z;-) is finite-valued
for all e > 0, the convergence is uniform with respect to d € S ([8, Theorem 1V.3.1.5]). O

3. Vertical and horizontal growth conditions

In this section we consider the second-order horizontal difference quotient at x € R™ in
the direction h € R™

[z +h) = [(2) = ['(w; )
2

H(z,h):= , (3.1)

and for ¢ > 0, the half-order vertical difference quotient at x € R™ in the direction d € S:

Ji(wid) = [ d)
2e

Ve, d,e) = | (3.2)

According to the terminology of [12], & will be called the horizontal decrement and ¢ the
vertical decrement. The analysis of V(z,d,¢) when ¢ is small will lead us to developments
of fl(z;d) in ¢'/2. This motivates the half-order terminology. In this section we take
first a uniform point of view with respect to h € R™: we study uniform upper and lower
growth conditions. Then, concerning lower growth conditions we take a directional point
of view to obtain sharper results.

3.1. Uniform upper growth conditions

We prove here that it is equivalent to bound, from above and uniformly with respect to
the direction, the second-order horizontal or the half-order vertical difference quotients.
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Theorem 3.1. Let 2 € R™. The following statements are equivalent:

3p,C>0:||h|| <p= H(z,h) <C, (3.3)

3e,C >0:e<ée=V(x,d,e) < C forall d€ S, (3.4)
The constant C is the same in (3.3) and (3.4).

Proof. [(3.3) = (3.4)]. For a given d € S, we have from (3.3)
: C
flz+td) < f(z) + tf(z;d) + 51? for all ¢ € (0, p].

Adding ¢ and dividing by ¢, we obtain

flxttd) = f(z)+e
t

fl(;d) <t +

~ | ™

for all t € (0,p],

so Theorem 2.1 gives
, , ¢ ¢
fiz;d) — fi(z;d) < t; + n for all ¢t € (0,p]. (3.5)

Now, the function R\ {0} > ¢ t%—l—% is strictly convex; its unique minimum is attained

for { = \/% which is smaller than p when

1
<ég:=-Cp*.
e<é& 20p
Writing (3.5) for ¢ = 1, we get

fiz;d) — f'(z;d) < V2eC for all e €[0,¢].

which leads directly to (3.4).

[(3.4)=(3.3)]. Conversely suppose (3.4). Then consider & € R™\ {0} and set d = ﬁ and
t = ||h||. Taking the square root in (3.4), multipliying by ¢y/2¢ and subtracting ¢ we get

fiz;h) = f'(z;h) —e 1\/2eC — ¢ for all ¢ € [0,¢]

<
< maxcpo{[hV2C — ¢} = FC|AIP

Now let ¢ € £(h); from Lemma 2.2 and (2.2), we have ¢ < & when

(3.6)

e 1

I < p = mind 7, 5

}.
Hence, using the last inequality of (3.6) and the definition of E(h), for ||h|| < p, we have
1
@+ h) = f(z) = ['(z:h) < SCYAI7,

which gives directly (3.3). O
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The inequalities (3.3) and (3.4) will be called respectively the second-order horizontal up-
per growth condition and the half-order vertical upper growth condition. These conditions
have a geometric counterpart.

Theorem 3.2. The statements (3.3) and (3.4) of Theorem 3.1 are also equivalent to

35,0 > 0:e < 5= 0,f(x) C Of(x) + B(0,V2:C), (3.7)
36,0 > 0:c < &= Ap(0f(2),0.f(z)) < V2eC, (3.8)
36,D > 0: ||h|| < 6= af(x+ h) C df(x)+ B0, D||h]). (3.9)

Proof. Clearly, (3.4) means
flz;d) — fl(2;d) < V2eC forall de S, (3.10)

which is (3.7) formulated with support functions. Noting that df(z) and 0.f(z) are
nonempty compact convex sets (see e.g., [8, Theorem XI.1.1.4]) the equivalence with (3.8)
is obtained by taking the maximum over d € S in (3.10). In [11, Corollary 3.5], it is
proved that the second-order horizontal upper growth condition (3.3) at = is equivalent

to (3.9). 0

Note that (3.9) can be written analytically
36,D > 0: ||| <d= fl(x+ h;d) < f'(x;d) + D||h|| forall d€S.

The equivalence of this relation with (3.3) can be compared to the equivalence between
the Dini and de la Vallée-Poussin second derivatives, presented in [4, § 3] or more recently
in [2]. Furthermore (3.9) can be connected to a property of strong convexity of f*, the
conjugate function of f:

R™ > s — f*(s) :=sup{f(z) — (s,z) : . € R"}. (3.11)

Proposition 3.3 ([11, Cor. 3.3], [1, Th. 3.4]—). Assume f satisfies the horizontal
upper growth condition (3.3) at = € R™ with C,p > 0 and take g € 0f(x). Then f*

satisfies the following horizontal lower growth condition:

F(s) > f*(g) + (2,5 — g) + %[d(s,af(x))]Q for all s € B(g, g),

where d(s,df(z)) := mins,eaf(x) s — s]|.

Yet we only have here one implication; to get the converse, additional assumption is
needed on f: if df(z) is “not too big” (for example a singleton) [1, Theorem 3.5] gives us
the converse to Proposition 3.3.
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3.2. Uniform lower growth conditions

In this section we show that a (uniform) vertical lower growth condition holds if and only
if an horizontal lower growth condition is satisfied. We start with the “easy” part.

Proposition 3.4. Assume f satisfies al x € R™
Je,e>0:e<e= forallde S, c<V(x,d,e). (3.12)
Then we have for the same constant ¢ > 0
Sp: bl < p = ¢ < H(a.h). (3.13)
Proof. Suppose (3.12) holds. Take h € R\ {0}, d = W and ¢ = ||h||. Taking the square
root in (3.12), multipliying by ¢ and subtracting ¢ we get
tV2ce —e < fl(zytd) — f'(x;td) — ¢ for all ¢ € [0,8]. (3.14)
Now let ¢ € £(h); from Lemma 2.2 and (2.2), we have ¢ < & when

g
Al <min{—, =}.
|| H—mln{QL’Q}

Besides, using (3.14), we obtain for all & € B(0, 5=)

) 2L
|R|[V2ece —e < f(x+h)— f(z)— f'(z;h) forall ¢ €0,¢]. (3.15)
The concave function ¢ — ||h||v/2ce — ¢ attains it maximum at ¢ = %cHhHQ, which is

smaller than & for ||h|| < /2. Setting,

. Lo |2
p::mln{§,ﬁ, ?}

and taking the maximum in the lefthand side of (3.15), we get
1
§c|\h|\2 < flx+h) — f(x) = f'(x;h) for all h e B(0,p).
Then, (3.13) follows. O

The inequalities (3.12) and (3.13) will be called respectively the (uniform) half-order ver-
tical lower growth condition and second-order horizontal lower growth condition. Propo-
sition 3.4 shows how a vertical lower condition implies an horizontal lower condition. To
analyse the converse, we need two elementary lemmas.

Lemma 3.5. Let v : R™ — RU{+cc} and p : R™ — RU{+00} be two convex functions.

Assume that
o(h) < (h) for all h e R™, (3.16)

and $(0) = (0). Then we have
2L (0;d) < ¢'(0;d) forall d€ S and all &> 0. (3.17)
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Proof. By assumption, we have for all ¢ > 0

(1) = 9(0) +2 _ b(td) — p(0) + ¢
t - t

Take the infima and use (2.1) to obtain (3.17). O

Lemma 3.6. Let © € R™ and p > 0. Set

R™ > h s 4p(h) := f(x + h) + T, (h).

for all d €S and all ¢t > 0.

Then we have

P d) < L0;d) < fl(x;d) + % forall d€ S and all &> 0. (3.18)

In particular,

O'(0;d) = f'(x;d) forall d€S. (3.19)

Proof. Use Lemma 3.5 with ¢(-) replaced by f(z +-) to see that 0. f(z) C 0.¢(0). Also,
from [8, Theorem X1.3.1.1], for all ¢ > 0

0:4(0) C 0-f(2) + 0:1p(0,0)(0) = 0:-f(2) + Np(0,0)+(0)
Use support functions and observe that the support function of Ng(g,y).(0) is %; this gives

(3.18). To obtain (3.19), set ¢ = 0. O

Here, using Lemmas 3.5 and 3.6, we specify to what extent a horizontal lower condition
implies a vertical lower one.

Proposition 3.7. Assume (3.13) holds at = € R™ for a given ¢ > 0. Then we have

V2ee — c < fl(x;d) — f'(x;d) forall d€ S and all € >0, (3.20)
p
or equivalently

d.f(x) D df(x) + B(0,V/2ec — %) for all &>0. (3.21)

Proof. Set R 5 h Y(h) == f(z 4+ h)+ I'B(O’p)(h) and R™ 5 h — o(h) = f(z) +
f'(z;h) + %cHhHQ From (3.13), we have

o(h) < ¥(h) for all h e R™.
Then, apply Lemma 3.5 to get
S(0:d) < 0/ (0:d) forall d €S andall &> 0. (3.22)
Furthermore it is easy to see that
F(0;d) = ['(a:d) forall d€ S,
and
205 d) — [z d) = glg{%ct +5) = Ve forall de s

Then use (3.22) with Lemma 3.6: (3.20) follows, together with its geometric form (3.21).
O
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Proposition 3.4 and 3.7 enable us to establish the following theorem of equivalence.

Theorem 3.8. Let x € R™ and ¢ > 0. The following statements are equivalent:

Ve <e,3p>0: ||h||<p= < H(xh), (3.23)
Vi<e,3e>0: e<e= <V(x,de) forall de S, (3.24)
Ve <e,3e>0: e<ée= 0.f(z) DIf(x)+ B(0,Vv2ec), (3.25)
Ve <e,3E>0: e <é= Ag(0.f(z),0f(x)) < V2ed. (3.26)
Proof. [(3.23) = (3.24)]. Assume (3.23) holds and take 0 < ¢’ < ¢: there exists p such
that
Wl < p= 40 < Hwh).
where n = C_Qc’. Then, from Proposition 3.7,

\/Qé‘(c’—l—n)—E < fl(x;d) — f'(x;d) forall d €S and all ¢ >0.
p

The lefthand side term is equivalent to \/2¢(¢’ + 1) when ¢ tends to 0; hence it is greater
than v/2ec for ¢ small enough. This implies (3.24).

[(3.24) = (3.23)]. This sense is a direct consequence of Proposition 3.4. Finally (3.25)
and (3.26) are only geometric forms of (3.24) . O

3.3. Directional lower growth conditions

In the previous subsection, we have considered bounds such as (3.20) and (3.24), which
hold uniformly with respect to the direction d. They bring geometric counterparts such
as (3.21) and (3.25) on the approximate subdifferentials. However, if we accept bounds
depending on d, we can be more accurate. Specifically, the need of a ¢ < ¢ can be
eliminated from Theorem 3.8.

For all d € S, consider the function

Ry e = t(e,d):=inf{t e Ry : c € E(td)}.
It has the following properties (see [4, §2] and [8, §X1.2.3]).

Proposition 3.9. Assume that the growth condition (3.13) holds at x € R™. Then, for
all d € S, we have

tle,d) >0 forall e >0
and

limt(e,d) =0.

el0
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Proof. Let ¢ > 0 and d € S. For ¢ > 0 small enough we have

fxt1d) = f(z) e
. :

c . €,
— 1= -d) <
tg+ 5+ L (wd) <

Then limy w = +oo and the infimum cannot be obtained for ¢ | 0. Also, the
function Ry 3 ¢+ f(x + td) is not affine in a neighborhood of 0 (in R}) and thus by [4,
Theorem 2.8 (ii)] we obtain the desired result. O

Proposition 3.9, together with Proposition 3.4, leads us to the following directional result.

Theorem 3.10. Let x € R™ and d € S. The following statements are equivalent:
de,p>0:t€(0,p] = c< H(z,td), (3.27)
and
de,e>0:e <= c<V(x,de). (3.28)
The constant ¢ is the same in (3.27) and (3.28).

Proof. [(3.27) = (3.28)]. Suppose (3.27) holds. From Proposition 3.9, there exists &
such that

0 <t(e,d) <p forall € (0,2].

Then set t = t(e,d) in (3.27), multiply by ¢(e,d) > 0 and add @ to obtain for all
e €(0,7]

%“&®+ta _ fatied)d) - f(x)

+e—t(e,d)f'(z;d)
(e,d) — t(e,d)

= fl(z;d) — f'(z;d).

1
V2 = igg{ﬁd + ;} < fl(x;d) — f'(x;d) for all e € [0,¢],

which is (3.28).
[(3.28) = (3.27)]. This sense is direct from Proposition 3.4. O

4. Vertical and horizontal limits

In this section, we take a directional point of view and we show that the second-order
horizontal and half-order vertical difference quotients have the same lim sup and lim inf
when the horizontal and vertical decrements respectively tend to zero. Then we apply
this result to the case of an existing limit: this limit exists if and only if f has a second-
order directional derivative. When this limits is not zero we have a development of
fi(z;d) — f'(z;d); when this limit is zero, we are in a particular case of degeneracy and
further analysis is needed to get a development of f!(z;d) — f'(z;d).
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Theorem 4.1. Let 2 € R™ and d € S. Then, we have

(i)  the quotients H(x,td) and V(x,d,c) have the same lim sup in Ry U {4+o00} when {
and ¢ respectively tend to 0:

limsup H(z,td) = limsup V(z,d,¢),
tl0 el0

(i) the quotients H(z,td) and V(x,d, ) have the same liminf in Ry U {+o00} when {
and ¢ respectively tend to 0:

liminf H(z,td) = liminf V(z,d,¢).

tJ0 el0

Proof. [(i)] This case can be divided in two subcases (a) and (b):

(a) One of the quotients is not bounded from above. Then, via Theorem 3.1 (applied in
the direction d) the other one is not bounded. This implies

limsup H(z,td) = limsup V(z,d,e) = +o00.
tl0 el0

(b) Both quotients are (nonnegative and) bounded from above respectively for small ¢
and e. Then the limsup’s exist in R,. Set for example

C :=limsup H(z,td) € R, .

£40
Then, by definition of the lim sup, for all n > 0, there exist p > 0 such that
H(z,td) < C +n for all ¢ €]0,p].

Here we stress the fact that C' 4+ 5 > 0 which enables us to apply Theorem 3.1- [(3.3) =

(3.4)]:
32 >0: V(x,d,e) < C +n forall € €]0,2].
This implies

C":=limsupV(z,d,e) < C+n.

=10
This inequality can be obtained for any n > 0. Thus,
C'<C.
The converse is similar using Theorem 3.1-[(3.4) = (3.3)]. Then C' = C" and (i) is proved.

[(ii)] We consider here three subcases (a), (b) and (¢):

a) one Of the hm il’lf’S 1s +OO, say hm inft 0 H xZr, td = +o0. ThlS mears hmf 0 H xZr, td =
4 4
“+o0 or equivalently

Ve>0,3p>0:1€(0,p] = H(z,ld) > c.
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Apply Theorem 3.10-[(3.27)=(3.28)], to get
Ve>0,32>0:¢€(0,¢] = V(x,d,e) > ¢,

which implies liminf. ;g V(z,d, ¢) = lim.)o V(z,d,¢) = +o0o. The converse is similar using

Theorem 3.10-[(3.28)=-(3.27)].
(b) Both lim inf’s exist in R, \ {0}. This case is very similar to (i)-(b) via Theorem 3.10.

(¢) One of the liminf’s is zero, say liminfy g H(z,td) = 0. By contradiction, assume that
liminf.yo V(2,d,e) > 0 (possibly +00); then,

d¢>0,6>0:e€(0,e] = V(z,d,e) > c.
Finally, use Theorem 3.10 to prove that
de>0,p>0:1€(0,p] = H(z,td) > ¢,
which contradicts our assumption. The converse is similar. O

Consider, when it exists, the second-order derivative of f at x € R™ in the direction

dES:

o) = g 1),

L0

As a corollary of Theorem 4.1, we have the following characterization of the second-order
directional derivative.

Corollary 4.2. The function f has a second-order derivative in the direction d € S at
z € R™ if and only if V(z,d,¢) has a limit when ¢ tends to 0. In this case we have

[ (x5 d) = liigl V(z,d,e).

Proof. This is straightforward from Theorem 4.1. O

Corollary 4.2 can also be found as Theorem 2.1 in [18§].
When f"(z;d) # 0, we have an estimate of f!(z;d) — f'(z;d):

filaid) = f'(2;d) = /2f"(2;d)e + o( V).
When f”(z;d) = 0, Corollary 4.2 still applies but we do not have any more an equivalent
of f!(z;d) — f'(x;d) in £'/2. This case is a particular case of degeneracy: the graph of f
“osculates” its tangent at = in the direction d,

liminf H(z,td) = 0.

£10

The osculation can be isolated, for example for f(z) = ;—CHJEHW with 4 > 2: in this case f
is still strictly convex but not strongly convex at 0 in any direction d € S; it is shown in
[12] that we have for this example

fllsd) = f'(x5d) = (vee)' /" + ofe').
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The osculation can also hold on an interval, say
R, 5t — f(x +td) is affine in a neighborhood of 0 (in Ry). (4.1)
This case is well studied in [4]. Introducing

ty:=sup{t € R, : flz+td) = f(z)+tf'(z;d)} € R, U {+oc},

the degeneracy condition (4.1) is equivalent to say ¢, > 0. With this notation we have
the following horizontal /vertical result.

Theorem 4.3 ([4, Th. 2.8 (i)], [8, Prop. X1.2.3.4]). Let « € R™ and d € S; then
we have
1o AV — Fl{ e
limfs<']“’d) f('L’d)
el0 €

= % € R, U {+oo}. (4.2)

Thus this result tells us for example that {4 = 0 means ¢ = o( fl(z;d) — f'(z;d)); on the
other hand, t; = 400 means f!(z;d) = f'(z;d) for all € > 0.

5. Application to the maximum eigenvalue function

We consider the convex function S, 3 A — A(A), where S, is the space of symmetric
n X n matrices and A(A) is the maximum eigenvalue of A. We prove that A(-) satisfies
uniform upper growth conditions and we derive more than first-order results for it. We
introduce first the following notation.

- AMA) = M(A) > ... > A(A) are the eigenvalues of A € S,

- E(A) C R" is the eigenspace associated with A\(A)

- F(A)= E(A)* is the subspace orthogonal to E(A)

- Projgay T is the orthogonal projection of x € R onto the subspace F(A)
- [ is the identity matrix

- O, :={U e R . UTU = I} is the set of unitary matrices

- Ae B :=1tr AB standard Euclidean inner product of A, B € S,

- |Al| := VA e A Euclidean norm of A € S,

- S is the unit sphere of S, equipped with || - ||

- 8t C S, is the cone of positive semidefinite matrices

- A=< Bmeansthat B—Ae S/

We start with the following descriptions of the subdifferential and e-subdifferential of A
at A€ S,.

Theorem 5.1. The subdifferential of \ at A € S, is given by
ONA) ={VeSH: trV=1, AeV =)(A)}, (5.1)
and for all ¢ >0, ils e-subdifferential is
IDNA)={VeS 1tV =1 AeV > XA) —¢}. (5.2)

Proof. The proof of (5.1) can be found in [15, Theorem 3] and [7, Theorem 3.1]. The
extension to the e-subdifferential is proposed in [23]. O
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Using a matrix notation, we establish the following linear algebra result.

Lemma 5.2. Let U € O,. Then, there exist n X n matrices (E, F,X,T) such that

(a) the columns of E are unil vectors of E(A)

(b) the columns of F' are unit vectors of F(A)

(¢) Y and T are diagonal and positive semidefinite (5.3)
(d) 4T =1

(e) U=EX+FT

Proof. Let e € E(A) and f € F(A). Set U = [uy, ... ,u,] and decompose each vector u;
on F(A)® F(A)=Rrfori=1,... ,n as follows:

u; = oie; + 7 fi

where
i = || Projp(ay will Ti = || Projpay will
71)1”(”5;@) “ i >0 and 7PFOJFT(‘A) A |
€; = t . [ ‘ .
€ otherwise f otherwise

Then verify that

E:=le,...,e), Y:=diag(oq,...,0,)
F=1[fi,...,fu], T:=diag(m,...,7m)
satisfy the desired properties. O

We will also use the following inequality.

Lemma 5.3. Let X, T, A € S, be positive semidefinite diagonal malrices such that Y% +
T? =1 and tr A = 1. Then, we have

tr(SAT) < [tr(TAT)]Y2, (5.4)
Proof. Note that ¥ < I, and AT is (diagonal) positive semidefinite to get
tr(ZAT) < tr(AT). (5.5)

Now use A = diag(d1,...,0,) = 0, tr A =1 and T = diag(t1,... ,t,) = 0, together with

the concavity of the square-root function, to obtain

Xn: Sit; < (i: 5132
=1 =1

With a matrix notation, this means tr(AT) < [tr(TAT)]/2. Altogether with (5.5), this
gives (5.4). O

Besides the introduced notation, we denote by r the multiplicity of A(A); then we have
the following characterization of e-subgradients.
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Proposition 5.4. Let A€ S, and ¢ > 0. For all V € 0.\(A), there exists G € OA(A)
and five n X n matrices (K, F, ¥, T, A) such that

(a) (E,F,%,T) satisfy (5.3) (a,b,c,d)
(b) A is diagonal, positive semidefinite and tr A = 1 56
(¢) V=G4 (ESATF" 4 FSATE") + (FTATFT — ETATET) (5.6)
() TAT < sp=mm
Proof. Write the spectral decomposition of V' € 0.A(A): there exists U € O, and a
diagonal matrix A such that V = UAUT. In view of (5.2), we have A = 0 and tr A =
1. Then, apply Lemma 5.2: U = EX 4+ FT where (F, F,X,T) satisfy (5.3) (a,b,c,d).
Plugging this in the spectral decomposition of V', we obtain

V = EAE" + (EXATF" + FEATE") + (FTATFT — ETATE™). (5.7)
Furthermore,
EAET e A = Ao (ETAE) = MA)tr(AEET)
= MA)TL dllel® =AA4),

and FAET = 0 means, together with (5.1), that G := EAFET € 9A(A). Then (a,b,c) are
satisfied;
we still have to prove (d): use AoV > A(A) — ¢, together with (5.7), to obtain

AoV = NA)+ (TAT) o (FTAF — NA)I) > MA) —¢.

Knowing that fTAf; < X\.41(A), fori = 1,... ,n, we obtain (d) and the proof is complete.
O

We are now in a position to prove that A satifies everywhere a half-order vertical upper
growth condition uniform with respect to D € §.

Theorem 5.5. At A € S,,, A salisfies the following half-order vertical upper growth con-
dition (3.4): for all D € S, and all e >0

M(A; D) < N(A; D) + [(20(A)e)' 2 +20(A)e] || D] (5.8)
where C(A) == sor——0r7-
Proof. Let D € S, c> 0 and V € d.\(A). Use Proposition 5.4, to write
VeD=CGeD+(SAT) e (E'DF + F'DE) + (TAT) o (FTDF — ETDE).
Let us bound from above each of the three terms. First, G € OA(A) implies
GeD < N(A;D). (5.9)

Then, denoting (XAT) = diag(o101t1,. .. ,0,0,t,), we have

(YAT) e (E"DF + FTDE) = Z oidit: [D e (eif] + fiel)].
=1
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Now, use Cauchy-Schwartz inequality, together with |le;f + fiel|| = V2, to get

(SAT) e (E"DF + F'DE) < V2||D| tr(ZAT). (5.10)
Similarly we have for the last term

(TAT)e (F'DF — ETDE) = Y. 642[D e (fifl — eiel)]
E tr(TAT) | DI (1Sl + llesel ) (5.11)

26r(TAT) || D],
since || f; fT]| = ||e;e] || = 1. Putting together (5.9), (5.10), (5.4) and (5.11), we get
V e D < N(A; D) +V2||D|| (tr(TAT)Y? 4+ 2| D|| tr(TAT). (5.12)
Altogether with (5.6)(a), we obtain (5.8). O

Applying now the equivalence of §3.1 between horizontal and vertical developments, we
obtain the following result.

Corollary 5.6. We have

(i) X satisfies the half-order vertical upper growth condition (3.4);
(i1) A satisfies the second-order horizontal upper growth condition (3.3);
(ii1) OA(:) is radially Lipschitz.

Proof. Consider C'(A) from (5.8) and set & := QCIW' Then for all ¢ € [0,&] and D € S,

we have
N(A; D) < N(A; D) + 1/2eC'(A),

where C'(A) = 4C(A). Hence (i) holds. Then apply respectively Theorem 3.1 and
Theorem 3.2 to obtain (ii) and (iii). O

The fact that dA(-) is radially Lipschitz was obtained by A. Shapiro using perturbation
theory techniques [19, §5]. Using recent results [20] we could have obtained directly the
second-order horizontal upper growth condition by bounding from above the second-order
directional derivative of A.

6. Conclusion

This paper was motivated by the interest of the e-subdifferential itself [8], [22], [5], [14].
Our aim was to give a better understanding of vertical developments. In particular we
have shown in §3 that bounding V(z,-,¢) for some ¢ > 0 allows us to bound H(z,-) in
a whole neightborhood of A = 0 or equivalently to obtain a Lipschitz-like property of

df(z+-).

In addition to bounding difference quotients, one can also pass to the limit (§4). This
somehow reveals a limitation of the vertical approach. Indeed, when it exists, lim.
V(z,d,e) = limyg H(z,td) but such a limit may not be so useful: it gives second-order
information along the half-line z 4+ [R,d only, and it is not even continuous in d [8,
Remark X.4.2.11]. Alternatively, the convergence cannot be uniform with respect to
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d € S. This explains the need for more sophisticated objects such as second-order epi-
derivatives [17]. According to [10], it is also relevant to consider limyg 4,4 H(z,td;) for
a particular convergence law t — d;.

Another comment concerns A(+): using techniques from sensitivity analysis [9], directional
second-order horizontal developments of A(-) can be obtained as in [20] and [21]. Our
contribution here, via the vertical approach, is to give uniform bounds on the second-
order difference quotients without the perturbation theory needed in [20] and [21]: this is
Corollary 5.6.
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