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1. Introduction

An increasing number of mathematical models involve random sets (alias, measurable
multifunctions, multivalued random variables, etc). In recent years, strong laws of large
numbers (SLLN), for random sets whose values are not assumed to be bounded, gave rise
to applications in several fields, such as Mathematical Economics, Stochastic Optimiza-
tion, Statistics and related fields. The aim of this paper is to present two new versions of
the SLLN for random sets. We shall assume that the image space, namely, the space of
closed subsets of a Banach space, is equipped with topologies, that have received special
attention only recently, for the purpose of theoretical developements and/or potential
applications.

To explain the problem that we address, let us recall that a random set is a random
variable whose values are sets and that, formally, a multivalued SLLN consists of the
equality
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where I is a given closed valued random set defined on a probability space (€2,.4, P) and
(T';)i>1 is a sequence of independent random sets having the same distribution as I'. In
the right-hand side of (1.1), 7 represents a topology (or convergence) on the space of
closed sets, whereas on the left-hand side, the integral of I' over (2 is the Aumann integral
and co stands for the closed convex hull operation. However, the random sets I'; are not
assumed to be convex valued, which is an interesting feature of this type of result. When
(1.1) holds, it is convenient to say that the multivalued SLLN holds with respect to the
topology .

For random sets with closed (possibly unbounded) values' in a Banach space X, results
of such type were first proved by Artstein and Hart [2] in the case where X is finite
dimensional. Later, Hiai [29] and Hess [20, 21| independently proved similar results for
random sets taking their values in an infinite dimensional Banach space, with respect
to the Mosco convergence. Moreover, using an extension of the SLLN for single-valued
random variables due to Etemadi [15], it was shown in [20, 21] that the independence
condition on the sequence (I';) could be replaced by a weaker condition, namely the
pairwise independence. Also, in [20, 21] a converse to the multivalued SLLN was proved
in the case where the values of I do not contain any line (they can contain half-line only).

The above multivalued SLLN were established assuming that the set of all closed subsets of
X, denoted by C(X), is endowed, either with the Painlevé-Kuratowski convergence, which
corresponds to the Fell topology (see [8]), or with the Mosco convergence, an interesting
infinite-dimensional extension of the Painlevé-Kuratowski convergence to reflexive spaces.
The Mosco convergence was introduced for studying variational inequalities (see [34, 35]).

Although these results provide useful convergence properties for sequences of random sets,
one may ask for multivalued SLLN with respect to a topology 7 on C(X) that satisfies
the following additional requirements:

(i) the topology 7 involves more explicitly the norm of the space X by means of a
distance between sets (which is useful to study the rates of convergence)

(ii) even in non reflexive Banach spaces, 7 has “nice” properties, such as metrizabil-
ity, second countability. We also mention the variational properties which, in the
stochastic context, are most helpful for applications to stochastic optimization.

In order to fulfill the first requirement, we consider the case where C(X) is endowed with
the Wijsman topology 7y, namely the topology of pointwise convergence of distance
functions. Indeed, when X is separable, 7y is metrizable and separable, and, unlike the
Mosco topology, it has interesting properties even in the non reflexive case. The Wijsman
topology was introduced in [41, 42]. It has been studied intensively during the last ten
years and appeared as a building block in the construction of a lot of other interesting
topologies on hyperspaces (see [8, 9] and Section 3 for an example connected to the
multivalued SLLN). The Wijsman topology is also useful to study the convergence of best
approximations (see [3, 40]). Let us remark that the Hausdorff metric topology is not
a good candidate, since it is not well-suited to the case of random sets with unbounded
values, the case we are interested in.

So, the first question we address is: in a general (separable) Banach space, does the SLLN

'We do not mention systematically the references concerning the multivalued SLLN for integrably
bounded random sets (see, e.g., [2] and [29]).
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for closed valued random sets hold when C(X) is endowed with 73?7 The main objective of
the present paper is to show that, by combining arguments of various kinds (probabilistic,
topological, convex analysis) an affirmative answer to this question can be given. This is
done in Section 3 (Theorem 3.5). As in the previous versions of the multivalued SLLN
existing in the literature, the convexification effect of the averaging process indicated in
(1.1) can be observed.

On the other hand, in the special case of random sets with convex values, it is possible
to prove the multivalued SLLN with respect to a topology 7, which is stronger than
Tw and satisfies requirement (ii). Recently, Beer [7, 8] introduced the so-called “slice
topology” on C.(X), the space of all closed convex sets of X, which is a natural and
most interesting extension of the Mosco topology to non reflexive Banach spaces. More
precisely, Beer showed that, in a general Banach space, the slice topology on C.(X),
denoted by 7Tg, is stronger than the Mosco topology, and that both topologies coincide if
and only if X is reflexive. Also, like the Mosco topology, the slice-topology enjoys good
variational properties. Consequently, keeping in mind requirement (ii), one is led to ask
if the multivalued SLLN holds for C.(X)-valued random sets, with respect to the slice
topology. At the end of Section 3, a positive answer to that question is given.

Concerning the probabilistic arguments, the reader will see that the proof of our main
results heavily relies upon specific properties of the distribution of random sets with closed
values in an infinite dimensional Banach space. In our opinion, it is not possible to prove
the multivalued SLLN stated in the present paper without appealing to these properties.
Moreover, some of them are essential when X is not finite dimensional. It is why we
begin by providing suitable results along this line. These results, which are interesting
in their own, extend previous ones of Hart and Kohlberg [17], and Artstein and Hart [2],
and allow for shorter or self-contained proofs.

2. The distribution of random sets and of their measurable selections

This section is devoted to the presentation of fundamental properties of the distribution
of random sets, whose values lie in a Banach space. For proving the multivalued SLLN
for sequences (I',) of random sets that are pairwise independent and have the same
distribution as a given random set I', it will be necessary to consider measurable selections
that are measurable with respect to the o-fields Ar, and Ar (i.e. generated by the given
random sets). This naturally leads to the question of the relation between the sets of
distributions of Ap-measurable selections and those of A-measurable selections where A
is the o-field given on 2. The answer is given in Theorem 2.3 and in Corollary 2.5(i)
for integrable selections. In view of application to the SLLN, the relation between the
multivalued integrals is given in Corollary 2.5(ii). On the other hand, we shall also need
to extract equidistributed and pairwise independent selections from random sets having
similar properties. For this purpose, appropriate characterizations of equidistribution
are proved at the end of this section (Proposition 2.6), as well as a connection with the
multivalued integral.

The distribution of random sets was studied by several authors for various purposes
(applications to mathematical economics, stochastic optimization, etc.). Let us mention,
for example, Hart and Kohlberg [17], Hildenbrand [30], Artstein [1], Giné, Hahn and
Zinn [16], Artstein and Hart [2], Hess [18, 19, 24], Salinetti and Wets [38], Lavie [33] and
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Raynaud de Fitte [36].

We begin with some notation. Consider a probability space (£2,.4, P) and a separable
Banach space X, whose norm is denoted by ||.|| and Borel o-field by B(X). Also de-
note by M(X) (resp. M (X)) the set of all finite measures (resp. probability measures)
on (X,B(X)). The vector space M(X) is endowed with the weak topology, namely the
topology o(M(X), Cy(X)), where Cy(X) denotes the space of real-valued, bounded con-
tinuous functions on X. The weak topology on M(X) (in fact, a weak™ topology) is also
called the topology of narrow convergence. Recall that M (X) is a closed convex subset
of M(X). For each measurable function f : Q2 — X, the distribution of f is denoted by
ps and defined on B(X) by us(B) = P{f *(B)} (B € B(X)).

Let C(X) be the set of all closed subsets of X and £ the Effros o-field on C(X). This
o-field is generated by the subsets U~ = {F € C(X) : FNU # 0}, where U ranges over
the open subsets of X. On the other hand, for any subset Y of X, the distance function
of Y is defined by

d(z,Y)=inf{|lzr —y||:y €Y} ze€X.

A map T from Q into C(X) is also called a multifunction with closed values in X. The
domain and the graph of T" are respectively defined by

dom(I') ={weQ:T'w) #0} and Gr(l)={(w,z) €eQxX:2e€T(w)}.

[ is said to be Effros measurable or weakly measurable in the terminology of Himmelberg
[31] (or simply “measurable”) if for every B in £, I *(B) is a member of A. From the
definition of the Effros o-field it follows that I' is measurable if and only if, for any open
subset U of X,

DU ) ={weQ:T(w)NU # 0}

is a member of A (I'"}(U™) is also denoted by I'"U). The sub-o-field I'"*(€) generated
by I' is denoted by Ar.

A measurable multifunction defined on a probability space is also called a random set
(r.s.). Like for real or vector valued random variables, the distribution ur of the measurable
multifunction T can be defined on the measurable space (C(X),E) by

ur(B) = P{T"Y(B)} VB e&. (2.1)

Further, two random sets I' and A are said to be independent if the equality pra)y =
pr @ pa holds on the product space (C(X) x C(X),E®E).

First, we recall a simple and useful criterion for two r.s. to have the same distribution.
We give the short proof for convenience.

Proposition 2.1. IfT" and A are two r.s. with values in C(X) then the following three
statements are equivalent:

(i) T and A have the same distribution on (C(X),E).

(ii)  For any open subset U of X, P{I'"(U)} = P{A~(U)}.

(iii) For any finite subset Y = {x1,...,xx} of X (or of some countable dense subset), the
RF -valued random vectors (d(x,T))zey and (d(x, A))zey have the same distribution.
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Proof. For every subset F' of X, the subset F'* of C(X) is defined by F" = {C € C(X) :
C C F}. In order to prove the equivalence (i) < (ii), first observe that, for every open
subset U of X, one has

(U)e = (U = {C e C(X): C C U}

where U¢ denotes the complement of U. This class generates £ and is stable under finite
intersection, which by a classical result yields the desired equivalence. For proving the
equivalence (i) < (iii), remember that the Effros o-field is also generated by the family
of distance functions

C —d(z,C)
where z ranges over X (or over a countable dense subset). Like in the first part of the
proof, it is enough to observe that the class

{CelC(X):d(x;,C)<a; Vi=1,...,k}
(where k € N*, z; € X and «; € R), generates £ and is stable under finite intersection. [

For every sub-o-field F of A, consider the space £°(Q, F, P; X) of all measurable func-
tions? from (€2, F) into (X, B(X)). Further, define the two following subsets associated
with the multifunction I' and which concern its measurable selections:

ST, F)={fe€ LYV F, P;X): f(w) € T'(w), for almost every w € dom(I")}
MI,F)={p=pre M(X): feST, F)}

So, S(T", F) is the set of F-measurable selections of I" and M (T, F) the set of all probability
measures p on (X,B(X)) such that each p € M(T', F) is the distribution of some F-
measurable selection of I'. By the Kuratowski Ryll-Nardzewski Theorem every Effros
measurable multifunction, I' admits at least one measurable selection. Moreover, I' admits
a Castaing representation, that is, a sequence (f,) of measurable selections, such that for
every w € dom(T"), I'(w) is equal to the closure of the countable subset {f,(w) : n > 1}
(see e.g. [13, chapter III] or [37]).

It is known that £°(Q, A, P; X) (= L£°%(X)) endowed with the topology of convergence
in probability is a metrizable topological vector space. Since a sequence converging in

probability admits an almost sure converging subsequence it is clear that, for any sub-o-
field F of A, the set S(T', F) is closed in £L°(Q2, F, P; X).

Before stating the results on the sets of selections and their associated set of probability
measures, an example is in order.

Example 2.2. Consider the case where Q = [0,1], A = B(Q2), P = Lebesgue’s measure,
X =Rand I'={0,1} (i.e. T is a constant multifunction). Clearly we have

AF = {@, Q}, S(F,AF) = {f = O,f = 1} and M(F,Ar) = {50,51}
and also

SIA) ={f=1(4): Ac A}, M(I',A) ={p do+ (1 —p) b1 :p€[0,1]}

2In the present paper, we consider the prequotient setting but all the results could be restated in the
quotient setup.
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where 1(A), the (probabilistic) indicator function of A, is defined by 1(4)(w) = 1 if
w € A, 1(A)(w) = 0 otherwise. This shows that the inclusions

S(T, Ar) € S(T, A) and M(T, Ar) C M(T,A)

may be strict.

The following theorem is the main result of the present section. It was already stated in
[19, Proposition 5|, but the proof contained a gap®, so that a new proof has to be worked
out. This theorem provides a fundamental equality which is the starting point for the
study of the distribution of multifunctions in connection with their measurable selections.
Its consequences, especially Corollary 2.5(ii) concerning the multivalued integral, play an
important role in the proof of the multivalued SLLN.

Theorem 2.3. If ' is a r.s. with closed values in X, then, in M(X) endowed with the
topology of weak convergence of measures, the following equality holds true

coM((,A) =co M (T, Ar) (2.2)
where €0 denotes the closed convex hull operation.

Proof. If I'(w) is empty for each w € 2, (2.2) is trivially satisfied. Otherwise, it is
possible to assume that dom(I") is equal to Q. The inclusion Ar C A, clearly shows
that the right-hand side of (2.2) is contained in the left-hand side. To prove the converse
inclusion we shall use the support function for a closed convex set contained in the vector
space M (X), which is in duality with Cy(X). In this framework, the support function of
M C M(X) is denoted by s(., M) and given by

5(6,M) = sup{ [ G(a)u(da) : € M} Vo€ Cu(X),
So, we ought to show that for any ¢ in Cy(X), the following inequality holds
s(¢p,co M (T, A)) < s(p,c0 M(T', Ar)). (2.3)
which, by the definitions, is implied by

Vo € Cy(X), Vfe ST, A) and VYa > 0,39 € S(T, Ar) :
(2.4)
/(15 z)pp(dr) < /q§ T) g (dz) + cv.

By the change-of-variable formula the last inequality is equivalent to

/Q B/ () P(dw) < / 8(9(w))P(dw) + . (2.5)

Now, define the multifunction A on Q by A(w) = cl¢(I'(w)), for every w € Q, where cl
denotes the closure in R. Clearly, A has non-empty, closed bounded values in R, because

3We are glad to think H. Ziat for having called our attention on this point.
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¢ is bounded. Further, assuming that the set of all closed subsets of R is endowed with
its own Effros o-field, it is readily seen that A is Ar-measurable. Indeed, for any open
subset O of R, one has

A O0={weQ:¢TW)NO#0}={weQ:T(w)N¢ '(0) # 0} € A.
Also consider the bounded real function b on €2 defined by
bw) =sup{r e R:r e A(w)}.
For every u € R, the following equivalences are clear
b(w) >u & $((w))N (u,+00) #0 < T(w)N ¢~ ((u, +00)) # 0

and show that b(.) is Ar-measurable. Now, define the multifunctions ® and ¥ respectively,
by setting for each w € Q2

O(w) =[b(w) — a,b(w)] and Y(w)=A(w) N P(w).

The multifunction ® is Ap-measurable since for any open interval I of R, one has &~ =
b~1(B) for some suitable Borel subset of R, and we have just proved the Ap-measurability
of b(.). Therefore, ¥ being the intersection of two .Ar-measurable multifunctions with
closed values in R, it is Ap-measurable too (see, for example [37]). Since it is nonempty
valued by construction, it admits at least one Ap-measurable selection 1. Now, consider
the closed valued multifunction © defined on Q by ©(w) = ['(w) N ¢~ ((w)). Tts graph
Gr(0) satisfies

Gr(@) ={(w,2) €Qx X :2€0W)}=CrT)N{(w,2) €A x X :2 € ¢~ (Y(w))}
=Gr(M)N{(w,z) € Q2 x X : ¢(z) =¢(w)} € Ar ® B(X).

Thus, Aumann-Von Neumann’s selection Theorem (see, e.g., Theorem II1.18 in [13]) yields
the existence of an Ar-measurable selection g of © such that, for almost every w €
2, g(w) € O(w) whence, by the definition of ©, ¢(g(w)) = 1(w). Consequently, returning
to the definition of multifunction ¥ of which 1 is a selection, we obtain

/Q H(f () P(dw) < / b(w) P(dw) < / () P(dw) + a < / H(9(w)) P(dw) + a

which proves (2.5) and finishes the proof. O

We denote by £1(Q, A, P; X) (= £L}(X)) the subspace of £L°(X) whose members are Boch-
ner-integrable and by M'(X) the subset of M(X) whose members  satisfy [ ||z|ldu <
+00. Given a sub-o-field F of A and a random set ', define the following subsets of
LY(Q,F, P; X) and M(X) respectively

SUT,F)={fe L' (QF P;X): f(w) € I'(w), for almost every w € dom(T")}
MU, F) = {pus: f € SHT, F)}

Using standard measurable selection arguments, it is not hard to see that, when Ar C
F C A, the set S'(I', F) is non empty if and only if the positive function d(0,T(.)) is
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integrable. In such a situation, we shall say that the multifunction I is integrable. Observe
that when T' is integrable, P(dom(I")) = 1. On the other hand, I is said to be integrably
bounded if the function w — h(I'(w)) = sup{||z|| : # € T'(w)} is integrable. In this case,
we have S}(T', A) = S(I, A). An integrably bounded multifunction is also integrable, but
the converse implication is false. For any measurable multifunction I' and any sub-o-field
F of A, the multivalued integral of T’ over 2, with respect to F, is defined by

I@Jﬁz{éﬂ%fes%ﬂfﬁ

I(T", A) is non empty if and only if I" is integrable. Now, consider an integrable multi-
function T'. Obviously, the inclusion M (T, F) C M(T', F) holds for any sub-o-field F of
A. The following simple lemma shows that, in M (X), the closure of both sides are equal.

Lemma 2.4. For any sub-o-field F of A and any integrable r.s. I' whose values are
members of C(X), the following equality holds true

MY (T, F)=cM(T,F) (2.6)
the closure being taken in M(X) (or M(X)) in the weak topology.

Proof. In (2.6) the inclusion of the left-hand side in the right-hand side is clear. Con-
versely, consider p in M (T, F). There exists f in S(I', F) such that y = p;. Further, T
being integrable, one can find at least one g in S*(I', F). For every positive integer k,
define f;, in S'(T, F) by

Ay ={weQ:||fI|<k} and fi = f1(A) + g1(A)

where A° denotes the complement of A. It is readily seen that the sequence (fi)k>1
converges to f in probability, whence in distribution, as k£ tends to infinity. This shows
that f is a member of the left-hand side of (2.6) as required. O

From Theorem 2.3 and Lemma 2.4, we easily deduce the following corollary, whose first
part makes more precise equality (2.2) when T is integrable. Part (ii) is an application to
the multivalued integral. It has been given by Artstein and Hart [2, Theorem 2.2] when I"
is an integrable measurable multifunction with closed values in a finite dimensional space.
Let us also note that Artstein and Hart’s proof relies on a previous result of Hart and
Kohlberg [17] valid for integrably bounded r.s., whereas our proof is self-contained.

Corollary 2.5.
(i)  For every integrable r.s. I' whose values are in C(X), the following equality holds
true

co M (T, A) =co M (T, Ar) (2.7)

the closure being taken in M(X) (or M(X)) in the weak topology.
(ii)  For any integrable r.s. I' whose values lie in C(X), one has

col(I',A) =co I(T, Ar). (2.8)
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Proof. (i) Appeal to Theorem 2.3 and Lemma 2.4, and observe that two subsets of a
topological vector space have the same closed convex hull as soon they have the same
closure.

(ii) Obviously, the right-hand side is included in the left-hand side, so it only remains to
prove the opposite inclusion. For this purpose, first observe that, for any f € £1(X), we
have

ST+ f)=S"(T)+ f and I(F+f):I(F)+/fdP.

Consequently, since S'(T", Ar) is non empty it is possible to assume that 0 is a member of
['(w), for almost all w. Now, first consider the special case where I is integrably bounded.
In this case, the linear map ® : p — [, « dp from M'(X) into X, is continuous on
MY (T, A). Indeed, for every f € S'(T',.A) and w € Q, one has || f(w)|| < h(T'(w)). Hence,
by Theorem 5.4 in [10] ® is continuous. This yields the following equalities

cd®@E@ M\ (I, F)) =co®(M'(T,F)) =co (I, F)

that are valid for any sub-o-field F of A containing Ar. This yields (2.8) when I' is
integrably bounded.

To prove (2.8) in the general case, define for every integer £ > 1 the multifunction Iy by
setting 'y (w) = cl{T'(w) N B(0, k) } and observe that each I'y is Ar-measurable, integrably
bounded.

Moreover, we have

INw) = U Ip(w) Yw e Q,

k>1

whence for any sub-o-field F of A containing Ar

I(T, F) = | I(T, F). (2.9)

E>1

Equality (2.9) is valid for ¥ = A and F = Ar as well. Thus, taking the closed convex
hull of both sides and using the equality proved in the integrably bounded case, we obtain

@ I(T, A) = d{| @ I(Ty, A)} = df| J @0 I(Ty, Ar)} =@ I(T, Ar)

k>1 E>1
which finishes the proof. O

The following result states that two r.s. I' and A have the same distribution, if and only
if, the sets of distributions of selections that are measurable relatively to the o-fields Ar
and Aa respectively, are equal. As we shall see, this property also plays a crucial part in
the proof of the multivalued SLLN in an infinite dimensional Banach space. Considering
the o-fields generated by the random sets, instead of the o-field A allows for more precise
results. Indeed, unlike in [2], the equalities of statements (ii) and (iii) below do not involve
any closure operation (see also Remark 3.7).

Proposition 2.6. Let I' and A be two random sets with closed values in X. Then, the
two following statements are equivalent:
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(i) T and A have the same distribution on the measurable space (C(X),E).
(ii)) In M(X), the following equality holds true

M(T, Ar) = M(A, Ap).

Moreover, if I' and A are integrable then each of the above statements is equivalent to

(iii) In M'(X), the following equality holds true
MY(T, Ar) = M (A, Ap).
Consequently, if I' and A have the same distribution, one has
I(I', Ar) = I(A, Ax).

Proof. (i) = (ii). For any p in M(T', Ar), there exists f € S(I', Ar) such that p = ;.
Since f is Ar-measurable and X is complete, one can find a map ¢ from C(X) into X, that
is measurable with respect to the o-fields £ and B(X), and satisfies f = ¢ol (see e.g. [14],
p. 18). Now, define g from Q2 to X by g = ¢oA. Clearly, g is Ax-measurable and has the
same distribution as f. Further, the positive function F' — d(¢ o F, F') defined on C(X)
is £-measurable. Consequently, the map w — d(g(w), A(w)) = d(¢ o A(w), A(w)) has the
same distribution as the map w — d(f(w),'(w)) = d(¢ o I'(w),T'(w)) (A is replaced by
['). This implies

PlweQ:d(g(w),Alw)) =0} =P{lw e N:d(f(w),['(w)) =0} =1

and shows that g is a selection of A.

(ii) = (i). Assume that I" and A are not equidistributed. Then, according to Proposition
2.1, it is possible find a non void open subset U of X such that P{I""U} # P{A U}.
Assume for instance, without loss of generality, that P{I'"U} > P{A~U}. Using a
Castaing representation of I' whose members are Ar-measurable, it is not difficult to
construct f € S(I', Ar), verifying, for any w € I'"U, f(w) € I'(w) NU. Consequently, for
any g € S(A, Aa) one has

P{g"'(U)} < PIAU} < P{DU} = P{f(U)} (2.10)

which shows that no g in S(A,.Aa) can have the same distribution as f.

(i) = (iii). The beginning of the proof is similar to that of implication (i) = (ii). Thus,
it only remains to show that if f is integrable, so is g. This fact is a consequence of the
following equalities which are easily obtained by the change-of-variables formula

= OA = = =
/Q lglldP / l6oAldP /C(X)||¢I|d/m /C(X)||¢I|dur / \flaP

(iii) = (i). As in the proof of implication (ii) = (i) assume the existence of an open
subset U of X such that P{I'"U} > P{A~U}. Inspecting the proof of Proposition 2.1, it
is readily seen that U may be assumed to be bounded, so that each measurable function
with values in U is automatically Bochner-integrable. Consider a Castaing representation
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(fu)n>1 of I', whose members are Arp-measurable. For every integer n > 1, we set A, =
{w e Q: f,(w) € U}. We define the sequence (B,,),>1 by

Bi=4; and B,=A4,\(J4),) n>2

j<n

Pick fo in Si(I', Ar) and define f = > . 1(B,)f, + 1(A°) fo. Clearly, f is an Ap-
measurable Bochner integrable selection of T' and satisfies f(w) € U for every w € T~ U.
Therefore, for every g € S'(A, Ax), relationships (2.10) are still valid, which yields the
same contradiction as in the proof of implication (ii) = (i). Finally, using the definition
of I(T', Ar), we easily obtain the second statement. O

Remark 2.7.

(i)  An alternate proof of the last statement of Proposition 2.6(iii) was given by Hiai
[29, Lemma 3.1(2)] using the properties of the multivalued conditional expectation
as defined by Hiai and Umegaki (J. Mult. Anal. 7, 1977).

(ii) Itis worthwhile to remark that Theorem 2.3 and Proposition 2.6 ((i) and (ii)) remain
valid when X is only assumed to be a complete separable metric space.

3. The multivalued strong law of large numbers with respect to the Wijsman
topology

As already mentioned, the Wijsman topology 7w on C(X) is the topology of pointwise
convergence of distance functions. It was introduced in [41, 42] in view of applications
to consistency problems in Statistics, in the finite dimensional setting. Recall that a net
(C,) of closed sets is said to converge to C in the Wijsman topology if, for every z € X,
one has

d(z,C) = limg, d(z,Cy).

When X is finite dimensional, Ty coincides with the Fell topology (which induces Pain-
levé-Kuratowski convergence). When the Banach space X is reflexive, Ty is in general
weaker than the Mosco topology but is equivalent to it when the norm is assumed to be
Fréchet differentiable (see [40, 8]). An other interesting feature of the Wijsman topology
is that the space (C(X), 7w ) is metrizable and separable, and that the Borel o-field of
Tw is equal to & (see [18, 23]). Furthermore, Beer has shown that if X is Polish then
(C(X), Tw) is Polish too, and that the converse implication holds (see [5]). This permits
one to consider Effros measurable multifunctions as ordinary measurable maps with values
in a complete separable metric space.

First, we need a bit of notation. The closed unit ball of X* is denoted by B*. Given a

subset C of X, the (convex analysis) indicator function x(C) and the support function
s(.,C) are defined on X (resp. on X*) by

x(C)(z) =0if z € C, 400 otherwise z € X

and
s(z,C) =sup{{z,z) 12 € C} z€ X",

It is known that s(.,C) is the conjugate function of x(C) and that, whenever C is a
nonempty member of C.(X), x(C) and s(.,C) are conjugate to each other.
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We begin with two preparatory lemmas of purely deterministic nature. They will be
helpful for proving the “liminfhalf” of the multivalued SLLN when C(X) is endowed
with the Wijsman topology . They are needed to control the cardinality of the negligible
subsets.

Lemma 3.1. For any closed convex subset C' of X, there exists a countable subset D* of
B* verifying, for any x € X,

d(z,C) = sup{(z,z) — s(z,C)}. (3.1)

2€Dy

Proof. It is easy to check that d(.,C) is the infimal convolution of x(C') and ||.||, which
can be expressed by the equality d(z, C) = (x(C)V]||-||)(z), for every z € X. By conjugacy
this yields

d(.,0)"(z) = s(z,C) + x(B*)(2) Vze X"

Since d(.,C) a is positive, convex, lower semicontinuous function, the following equality
holds

d(z,C) = (d(., €)™ (z) = sup{(z,7) — 5(2,C) —x(B")(2)} =€ X,

whence

d(z,C) = sup{(z,z) — s(z,C)}. (3.2)

ZEB*

X being separable, the supremum of the continuous functionals © — (z,z) — s(z, C), for
z in B*, can be rewritten as the supremum over some countable subset D* of B* (see [12,
Proposition 3 p. IX.60]) which proves (3.1). O

Lemma 3.2. Let (Cy)n>1 be a sequence in C(X). Also consider C € C(X) and a count-
able dense subset D* of B* such that

d(z,c0C) = sup{(z,z) — s(z,c0C)} z€ X (3.3)

z€D*
(which is possible by Lemma 3.1). If, for every z € D*, one has

limsup s(z, C,) < s(z,C) (3.4)

n—oo

then, for every x € X,
liminfd(z,C,) > d(z,c0 C).

n—00
Proof. For every x € X, we have by (3.2) and elementary calculations

liminfd(z,C,) > liminfd(z,¢6 C,) > sup liminf[{z, z) — s(z, Cy,)]

n—o0 n—oQ z€D* n—oQ

whence,

liminfd(z,Cy,) > sup[{z,z) — s(z,¢0 C)] = d(x,c0 C)

n—o0 zeD*
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The crucial step for proving the multivalued SLLN with respect to the Wijsman topology
consists of the following proposition, which is an adaptation to infinite dimensional spaces
of a technique due to Artstein and Hart [2]. This adaptation is done via Proposition 2.6(iii)
(see Remark 3.7).

Proposition 3.3. Consider a separable Banach space X, an integrable r.s. I' with val-
ues in C(X), a sequence (I'y)n>1 of pairwise independent random sets having the same
distribution as I' and the set C' of all convex combinations of I(T', Ar), with rational coef-
ficients. Then, for each y € C', there exists a negligible subset N(y) of Q and a sequence
(gn)n>1 in LY(X) verifying:

(i) foreachn>1, g, € SY(T,, Ar,)
(ii)  for any w € Q\N(y),

1
y = T}Lngoﬁzgi(w)-
1=

Proof. Consider y € C’. From the definition of C' we have y = 2521 Ajy; where k
is a positive integer, A\; are positive rationals summing to one and where, for each j >
1,y; = [, f;dP, for some f; € S*(T', Ar). Obviously, for every j = 1,...,k, it is possible
to write \; = % where m and the m; are positive integers satisfying m = 25:1 m;.
Then, Proposition 2.6(iii) shows that for each j € {1,...,k} and each i > 1, one can
find a member f;f of S'(T';, Ar,) that has the same distribution as f;. Thus, for every
j € {1,..,k}, (f})i>1 is a pairwise independent sequence of X-valued random variables
having he same distribution as f;. Now, define the sequence (g, )n>1 by setting, for every

n>1,

i1 i
gn = f}" if j satisfies 1+ Zmp <n< Zmp (modulo m). (3.5)
p=1 p=1

Moreover, if n < m; (modulo m), we set g, = f{".

In the above relation, the integer j depends on n. Also define for every j,n > 1, the
following set of integers

IGim) = (i <n:g= [} (3.6)

For every n > 1 and w € 2, the following equalities hold

200 =13 Y fe = F e S fw 67

J=14el(jn) i€l(j,m)

where # denotes the cardinality of a subset. On the other hand, for any n > 1, there
exist two integers ¢, and r, satisfying

n=mgq, + rn, (3.8)

0<r,<m and g¢, >0, (3.9)
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from which we deduce that, for any j € {1,...,k},
#I(], n) = mj(Qn + 5n) (310)

where §,, may be equal to 0 or 1. Using (3.7) and (3.9) we obtain

#1(j,n) _ my(gn+6n) _ my(1+ 60/dn) (3.11)
n Mgy + Tn m+Tn/Gn .

From the above relationships, we deduce that the sequences (r,) and (d,,) are bounded,
whereas from (3.8) and (3.9) we deduce

lim g, = +o0. (3.12)
n—,oo
Therefore, for every j € {1, ..., k}, equality (3.11) yields

(i
_ i OGN (3.13)
m n—oo n

)

Aj =

Further, looking at (3.10), we see that (3.12) also implies

lim #I(j,n) = +o0. (3.14)

n—o0

Then, returning to (3.7), using (3.13) and (3.14), and applying Etemadi’s SLLN (see [15])
for vector-valued random variables to each sequence ( f;)iZIa for any j € {1, ..., k}, one can
easily deduce the existence of a negligible subset N(y) such that for every w € Q\N(y),

k n
1
y=2 Ay =lim ~% g;(w).
j=1 i=1

0
Given the closed-valued integrable random sets I" and I';,(n > 1), we set
C=col(T,A). (3.15)
and
1 n
Zn(w)=cl=>» I} >1 € Q. 3.16
@=d ) w21 (3.16)

As already mentioned, the above result is the main tool to prove the most difficult “half”
of the multivalued SLLN in the Wijsman topology (the easy “half” involves the “lim inf”
operation instead of the “lim sup” one). This is the purpose of the next proposition.

Proposition 3.4. Under the same hypotheses as in Proposition 3.3, there exists a negli-
gible subset N such that, for any w € Q\N and z € X,

limsupd(xz, Z,(w)) < d(z,c0 I(T', A)). (3.17)

n—o0
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Proof. Foreveryw € Qandn > 1,let C' and Z,(w) be asin (3.15) and (3.16) respectively.
From Corollary 2.5(ii) we know that coI(T',,A) = coI(T', Ar). Further, let D’ be a
countable dense subset of I(T', Ar) satisfying cl D' = ¢l I(T", Ar), and consider the set C’
of all rational convex combinations of members of D’. On the other hand, consider a
countable dense subset D of X and observe that it suffices to prove (3.17) for all z in D.
Indeed, each side of (3.17) defines a Lipschitz function of = (with Lipschitz constant 1).
So, consider z € D and an integer p > 1. One can find ' = y/(z,p) € C’, depending on
x and p, such that
lz —y'll < d(z, e I(T, A)) +1/p.

Further, Proposition 3.3 applied to 3, yields the existence of a negligible subset N (z,p)
and of a sequence (g,),>1 verifying properties (i) and (ii). Then, define the negligible
subset N as the union of the N(z,p) where x € D and p > 1, and consider w € Q\N.
For every x € D, we have

1 1
limsupd(z, Z,(w)) < lim ||z — — Zg,(w)“ = ||z —y|| < d(z,c0I(T, A)) + -,
n—00 n

n—00 i1 D
whence, by the arbitrariness of p, yields the desired conclusion. O

Now, we can state and prove the main result of the present paper, namely, the multivalued
SLLN when C(X) is endowed with the Wijsman topology.

Theorem 3.5. Consider a separable Banach space X, an integrable r.s. I' with values in
C(X) and a sequence (I'y)n>1 of pairwise independent r.s. having the same distribution
as . Then, there exists a negligible subset N such that, for any w € Q\N,

- _ i LS
wI(T,A) = Tw JL%nZPZ(w)

=1
that s, for any v € X,

n

Az, I(T, A)) = lim d(z,~ 3 " T4(w)).

n—o0 n
i=1
Proof. We begin by choosing a countable subset D* of B*, satisfying (3.1) relatively to
the subset co C = I(I', A), that is

d(z,C) = sup[(z,z) — s(2,C)] Vz € X.

zeD*

Let z be fixed in D*. Since the map F' — s(z, F) is Effros measurable from C(X) in
R, we deduce that (s(z,T;));>1 is a sequence of R-valued, pairwise independent random
variables having the same distribution as s(z,I'). Further, by the equality d(0,(w)) =
sup{—s(z,T'(w)) : z € B*} and the integrability of T', it is possible to apply the SLLN
for R-valued random variables to the sequence (s(z,I';)). This yields the existence of a
negligible subset N(z) of 2 verifying, for every w € Q\N(z),

n

s(z,C) = nlg{)lo % Zs(z, [;(w)) = lim s(z, Z,(w)).

n—00
=1
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Now, defining the negligible subset N; as the union of the N(z), for z € D*, we deduce
that
s(z,C) = lim s(z,Z,(w)) Vze€ D" Ywe Q\N;.

n—oo

The above equality and Lemma 3.2 entail

liminfd(x, Z,(w)) > d(z,C) Ve X VYwe Q\N. (3.18)

n—oQ

On the other hand, Proposition 3.4 yields the existence of a negligible subset Ny such
that

limsupd(z, Z,(w)) < d(z,C) Vre X Vwe Q\N,. (3.19)

n—oo

Finish the proof by defining the negligible subset N = N; U N, and by combining inequal-
ities (3.18) and (3.19). O

Remark 3.6. If X is assumed to be finite dimensional, Theorem 3.5 is comparable to
Theorem 3.2 of [2], except that we only assume pairwise independence and we do not
assume the completeness of (2,4, P). As to the infinite dimensional case, if X is reflex-
ive then Mosco convergence implies Wijsman convergence. As already mentioned, the
converse is true when X is suitably renormed, so that in this case Mosco and Wijsman
topologies are equivalent, and Theorem 3.5 appears as a variant of [20, 21]. However,
when X is not reflexive, the situation is quite different because the Mosco convergence
has no longer nice properties. Indeed, the Mosco topology, as defined in [7], is not even
Hausdorff. So, it is important to observe that Theorem 3.5 continues to hold in the
framework of non reflexive Banach spaces, where 7Ty, still enjoys nice properties.

Remark 3.7. As the reader has noticed, the key ingredient in the proof of Theorem 3.5
is Proposition 3.3 whose proof is an adaptation of a technique due to Artstein and Hart
[2]. Let us explain why an adaptation of their proof is necessary. In Artstein and Hart’s
proof, the main argument consists of an appeal to the SLLN for independent sequences
of vector-valued random variables (they are not assumed to be identically distributed).
This result holds in finite dimensional spaces but, in infinite dimensions, it remains valid
only in Hilbert spaces or in B-convex Banach spaces (see [4]). In our proof, we only need
the SLLN for i.i.d. sequences, which is known to hold in every Banach space, whatever
be the norm.

Now, we shall deduce from Theorem 3.5 and from a recent result of Beer, a version of
the SLLN in the slice topology for r.s. with closed convex values. One of the main
advantages of the slice topology is that, as the Mosco topology in the reflexive setting, it
makes the polarity and, when applied to convex functions via the epigraphs, the Young-
Fenchel transform both bicontinuous. The slice topology was introduced by Sonntag and
Zalinescu [39] and Beer [7], and intensively studied by Beer in [6, 7, 8]. First, we recall the
definition of this topology along with a characterization involving the Wijsman topology.

The gap between two nonempty subsets B and C of X is denoted D(B,C), and defined
by
D(B,C) =inf{||lz —y|| : z € B,y € C}.
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A slice of a ball is the intersection of a closed ball B(xg,r) (where 2y € X and r > 0) and
of a closed half space F(z,a) = {z € X : (2,2) > a} (where z € X*,z # 0 and a € R).
Moreover, it is assumed that F(z, «) passes through the interior of B(zg,7). This occurs
if and only if

a—(z,x0) <2

Definition 3.8. The slice topology on C(X) is the weak (or initial) topology determined
by the family of gap functionals {D(B,.) : B is a nonempty slice of a ball}. It is denoted
by 7.

From Theorem 5.2 in [7], we know that the slice topology restricted to C.(X) is the weak
topology determined by the family {D(B,.) : B closed convex bounded}. Our proof of
the multivalued SLLN with respect the slice topology is based on the next result (Theorem
3.1 and Lemma 3.3 in [6]).

Proposition 3.9. Let (X, py) be a normed linear space and Iy the family of all norms
equivalent to po. Then, the slice topology T; on C.(X) is the weak topology determined by
the family of distance functions

{dp(z,.):z € X,pelly}

where d, stands for the distance function associated with the norm p, that is, for any
subset C' of X and for any x € X,

dy(z,C) = 3ig(fjp(:c — 7).

Furthermore, if X has a strongly separable dual, the slice topology on C.(X) is determined
by the countable family
{dy(z,.):z € D,peIl}

where D 1is a countable subset of X and 11, a countable subfamily of 11,.

In other words, the topology 7, on C.(X) is the supremum of the topologies Ty (), where
W (p) denotes the Wijsman topology associated with the norm p and where p ranges over
[Iy. If X* is separable then p needs only range over the countable subfamily II;, which is
decisive for our approach. Here is a multivalued version of the SLLN with respect to the
slice topology.

Theorem 3.10. Let X be a Banach space with strongly separable dual X* and T' an
integrable r.s. with values in Co(X). If (Gn)n>1 s a sequence of pairwise independent r.s.
having the same distribution as I then one has for almost all w € €,

@ I(T, A) =T, ~ lim >or) (3.20)

Proof. Let C and Z,(w) be defined as in (3.15) and (3.16). Consider the countable
subfamily II; as above. From Theorem 3.5, we know that, for every norm p € II;, there
exists a negligible subset N(p) such that for every w € Q\N(p), one has

C=Twe — 7}3{)10 Zn(w). (3.21)
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Thus, if we define the negligible subset N as the union of the N(p), where p € II;, we can
see that, for every w € Q\N and p € Il;, equality (3.21) will hold. By Proposition 3.9,
this yields the desired conclusion. O

Remark 3.11. (i) Another proof of Theorem 3.10 can be given starting, as above, from
the multivalued SLLN with respect to the Wijsman topology (Theorem 3.5), but using
the definition of the slice topology in terms of gap functionals, instead of appealing to
Proposition 3.9. This alternate approach allows one for proving the SLLN in the slice
topology for random sets with closed, possibly non convex, values (so that the convex-
ification effect of the averaging operation can be observed once more). This was done
recently in [27] but, there, the arguments involving the slice topology are more involved.
In the present paper, mainly devoted to the SLLN with respect to the Wijsman topology,
we have chosen presenting a self-contained treatment and avoiding too much technicalities
about the slice topology.

(ii)) On the other hand, we remark that natural applications of Theorems 3.5 and 3.10
to integrands can be proved via the epigraphical multifunctions. For example, it was
shown in [27, Theorem 4.1] that the discrete stochastic inf-convolution of a sequence of
integrands 7;-epi-converges to a continuous deterministic infimal convolution. This is a
useful property in stochastic optimization. Similar results concerning economic models
had been proved in [2] in the context of finite dimensional spaces.

(iii) The results of the present paper suggest that other strong limit theorems (such as
martingale convergence or ergodic theorems) for random sets with respect to the Wijsman
or slice topology could be true. As already mentioned, the case of random sets with
unbounded values is the most interesting in view of applications. In fact, the case of
multivalued martingales has received special attention recently. For example, one can
consult the papers by Hess [25, 26, 28] and Krupa [32], were further references can be
found.
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