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We provide several characterizations of compact epi-Lipschitzness for closed convex sets in normed vector
spaces. In particular, we show that a closed convex set is compactly epi-Lipschitzian if and only if it has
nonempty relative interior, finite codimension, and spans a closed subspace.

Next, we establish that all boundary points of compactly epi-Lipschitzian sets are proper support points.
We provide the corresponding results for functions by using inf-convolutions and the Legendre–Fenchel
transform. We also give an application to constrained optimization with compactly epi-Lipschitzian data
via a generalized Slater condition involving relative interiors.
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1. Introduction

The concept of compactly epi-Lipschitzian (CEL) sets in locally convex topological spaces
was introduced by Borwein and Strojwas [6]. It is an extension of Rockafellar’s concept
of epi-Lipschitzian sets [36]. An advantage of the CEL property is that it always holds
in finite dimensional spaces and, in contrast to its epi-Lipschitzian predecessor, makes
it possible to recapture much of the detailed information available in finite dimensions.
The original motivation for introducing the CEL concept was to select class of closed
sets in infinite dimensions (primarily in Banach spaces) for which the Clarke tangent and
normal cones [11] adequately measure boundary behavior. A number of strong results
were obtained in this direction; see [3], [6], [7], [8], and references therein. At the same
time it was clarified that the CEL property is not sufficient for the (weak-star) locally
compactness of the Clarke normal cone at boundary points [3, Example 4.1]. To get

∗Research supported by NSERC and by the Shrum endowment of Simon Fraser University for the first
author, research partly supported by the Pacific Institute for the Mathematical Sciences for the second
author, and research partly supported by the National Science Foundation under grant DMS-9704751
and by an NSERC Foreign Researcher Award for the third author.

ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag



376 J. Borwein, Y. Lucet, B. Mordukhovich / Compactly epi-Lipschitzian convex sets

the latter result, Borwein introduced [3] the notion of epi-Lipschitz-like (ELL) sets that
takes an intermediate place between the epi-Lipschitzian and CEL properties. He also
proved in [3] that, for any closed subset C ⊂ X of a normed space and its boundary point
c ∈ bdC, the Clarke normal cone is locally compact if C is CEL and tangentially regular
at this point. The mentioned regularity property seems to be restrictive even in the finite
dimensional setting. In particular, it never holds for the so-called Lipschitzian manifolds
[38] which are locally homeomorphic to graphs of nonsmooth Lipschitz continuous vector
functions; see [26, Section 3] for more details.

Further research showed that the regularity assumption can be avoided in infinite dimen-
sions and the CEL property alone ensures the required local compactness if the Clarke
normal cone is replaced with a different concept of generalized normals. The first result
in this direction was obtained by Loewen [23] who proved, for any closed sets in reflex-
ive spaces, that the CEL property implies the local compactness of the so-called limiting
Fréchet normal cone [22] which is an infinite dimensional generalization of the normal cone
introduced by Mordukhovich [24], [25]. An extension of this result to the more general
case of weakly compactly generated Asplund spaces was obtained by Mordukhovich and
Shao [30].

In the case of general Banach spaces a similar result was established by Jourani and
Thibault [19] for the so-called G-normal cone of Ioffe [15] that is another infinite dimen-
sional extension of Mordukhovich’s construction. In [17], Jourani proved that the CEL
property implies the local compactness of Ioffe’s A-normal cone (which may be bigger
than the G-cone) if the space is “weakly trustworthy.Ô Recently Ioffe [16] established
several characterizations of the CEL property in terms of normal cones satisfying certain
requirements in corresponding Banach spaces. We refer the reader to [4], [10], [16], [17],
[18], [19], [20], [21], [29], [28], [30] and their bibliographies for various applications of the
CEL property to subdifferential calculus, metric regularity, Lipschitzian stability, neces-
sary optimality conditions, and related aspects of nonlinear analysis and optimization in
Banach spaces.

The primary goal of this paper is to provide intrinsic characterizations of the CEL property
of closed convex sets in normed spaces. We are not familiar with any of such characteri-
zations for either CEL or ELL convex sets even in particular infinite dimensional spaces.
On the other hand, it has been known for a long time that a convex set is epi-Lipschitzian
if and only if its interior is nonempty; see Rockafellar [37]. In this paper we prove that
the CEL and ELL properties of closed convex sets agree in any normed spaces. Our main
Theorem 2.5 in Section 2 contains also eight other characterizations of the CEL property
one of which requires the additional Baire structure of the normed space in question. In
particular, we show that a closed convex subset of a normed space is CEL if and only if
its relative interior is nonempty and its span is a closed subspace of finite codimension.

In Section 3 we study supporting properties of CEL sets. The main characterization
theorem of Section 2 allows us to establish that any boundary point of a CEL closed
convex set in an arbitrary normed space is a proper support point of the set. In the
case of Banach spaces we give a variational proof of this result and discuss its nonconvex
generalizations. Section 4 concerns with characterizations of the CEL property for closed
convex functions that are derived from the corresponding set characterizations applied
to epigraphs. The final Section 5 contains some applications of the obtained results to
constrained optimization via a generalized Slater interiority condition. Throughout the
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paper we use standard notation and terminology.

2. Characterizations of compactly epi-Lipschitzian Convex Sets

We give our main characterization theorem and proceed to prove it.

2.1. The main results: formulations and discussions

In the following, X denotes a normed linear space, and ‖.‖ its norm. First we recall the
definition of CEL and ELL sets [3, Definition 3.1]. We use the terminology compactly
epi-Lipschitzian while in the literature it is sometimes referred as compactly epi-Lipschitz.

Definition 2.1. (i) A set C in X is compactly epi-Lipschitzian (CEL) if for all x in C,
there are Nx a neighborhood of x, U a neighborhood of the origin, a positive ε and
K a convex compact set such that

0 < λ < ε =⇒ C ∩Nx + λU ⊂ C + λK.

(ii) A subset C of X is epi-Lipschitz-like (ELL) if for all x in C there are Nx a neighbor-
hood of x, Ω a convex set with polar set Ω0 weakly∗ locally compact, and a positive
ε such that

0 < λ < ε =⇒ C ∩Nx + λΩ ⊂ C.

To characterize CEL convex sets, we recall what is a precompact set and a Baire space.

Definition 2.2. (i) A set P is precompact or totally bounded if for any open set U ,
there is a finite set F with P ⊂ F + U .

(ii) A set Σ is a polytope if it is the convex hull of a finite number of points.

(iii) A normed linear space X is a Baire space or of the second category if any countable
covering of X with closed sets An, contains a set An0 with nonempty interior.

Remark 2.3. The Baire category theorem tells us that if X is a complete metric space,
every nonempty open subset of X is of the second category [39, 41]. In particular, any
complete metric space is a Baire space (see [41] for a reference on Baire spaces). Hence
Baire spaces include Banach spaces, but there are examples of Baire spaces which are not
complete as the following example shows [41, Exercise 3-1-4] (see also [1]) .

Example 2.4. Take X an infinite dimensional Banach space. It contains Y a nonclosed
subspace with countable non-finite codimension. Name (ei)i the sequence of linearly
independent vectors such that span(Y ∪∪∞

i=1{ei}) = X. DefineXN := span{Y, e1, . . . , eN}.
Then X = ∪XN and there is N̄ with XN̄ of second category. Since XN̄ is not closed, it is
a non-Banach Baire space.

Now we can state our main theorem.

Theorem 2.5. Let C denote a closed convex set in a normed linear space X. The fol-
lowing are equivalent:

(i) The set C is CEL.

(ii) There is a convex compact set K with 0 ∈ int (C +K).

(iii) There is a precompact set P with 0 ∈ int (C + P ).
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(iv) There is a convex polytope Σ with 0 ∈ int (C + Σ).

(v) There is a finite dimensional space E with int (C + E) 6= ∅.
(vi) There is a point x in C such that the polar set of C−x, (C−x)0 is weak-star locally

compact.

(vii) The subspace spanned by C, spanC, is a finite-codimensional closed subspace and
the relative interior riC := intspanC C is nonempty.

(viii) The set C is ELL.

(ix) The projection Q : X → M on the subspace M := spanC is linear continuous with
its null space N (Q) finite dimensional and int (Q(C)) nonempty.

When X is a Baire normed space, these are also equivalent to:

(x) There is a continuous linear open map Q : X → Y having a finite dimensional
nullspace such that int (Q(C)) is nonempty.

In fact, our proof shows that the theorem still holds when Baire normed space is replaced
by convex Baire spaces (see [40] for a reference on convex Baire spaces). That notion is
slightly more general since there are examples of convex Baire spaces which are not Baire
normed space.

This theorem calls for several kind of remarks.

Remark 2.6. First are some straightforward remarks:

• Clearly compact epi-Lipschitzness is invariant under translation.
Hence we may always assume 0 ∈ C to simplify some of our arguments.

• The intersection of CEL convex sets need not be CEL. Indeed, take C1 a pointed
cone with interior in X an infinite dimensional subspace. Let C2 be −C1. Then C1

and C2 are CEL (since they have nonempty interior) but C1 ∩ C2 = {0} is not CEL
(otherwise 0 would have a compact neighborhood, so X would be finite dimensional).
For example, take the positive cone in c or in l∞.

• Compact epi-Lipschitzness is clearly an infinite dimensional notion. Indeed, any set
in a finite dimensional normed linear space is CEL (take K equals to the unit ball).

Remark 2.7. Next all three parts of Properties (vii) are needed:

• We do need spanC to be closed. Take Φ a discontinuous linear function on an infinite
dimensional Banach space and consider C := Φ−1(0) an hyperplane. Then there is
e in X such that C + Re = X, so spanC is finite codimensional. However, we have
int (C + [−1, 1]e) is empty.
Indeed, suppose there is an open set U contained in C + [−1, 1]e. Then Φ(U) ⊂
Φ(C)+ [−1, 1]Φ(e) = [−1, 1]Φ(e). So Φ is bounded which contradicts the fact Φ is not
continuous. Consequently, there is no compact convex set K such that int (C +K) 6=
∅, which means C is not CEL.

• Assuming riC is nonempty and spanC closed does not imply C is CEL. For example
take C := Re in an infinite dimensional Banach space. Then riC 6= ∅ but C is not
finite codimensional hence not CEL.

• We do need riC 6= ∅. Consider X := l2(N) the space of sequences with the norm ‖·‖2,
and C := l+2 the positive cone. Then spanC = X is finite codimensional closed but
riC = ∅.
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• Property (vii) may be rewritten as: “there is a finite codimensional closed subspace
M such that C ⊂ M and intM(C) is nonemptyÔ. This seems a weaker statement since
Property (vii) merely states that it holds for M = spanC. However note that for any
set S in a normed space X, int (S) nonempty yields spanS = X; consequently, the
set M in the rephrased statement must be spanC. That fact follows from arguing by
contradiction: take any s in int (S) and assume there is x not in spanS. Then build
xn := x/n+ s. For n large enough, xn is in int (S), so x = n(xn − s) is in spanS.

Remark 2.8. The convexity is very important in our result. Indeed, takeX := l∞(N) the
bounded sequences in the supremum norm, define f(x) := lim infn→∞|xn|, and consider
C := {x ∈ X : f(x) ≤ 0}. Then C is CEL but neither ELL nor convex [3, Example 4.1].

Similarly, {(x, r) : lim infxk ≤ r in l2(R)} is nonconvex CEL but not ELL.

Remark 2.9. In Property (iv) not only can we find a polytope Σ satisfying int (C + Σ) 6=
∅, but also can we take Σ =

∑N
k=1[−1, 1]ek where e1, . . . , eN are linearly independent

vectors. This fact will be used several time to simplify our proofs.

2.2. Proof of the main theorem: general relations

The proof of Theorem 2.5 is split into several lemmas. We first show how all parts fit
together.

Proof. First the relations (i)⇔(ii)⇒(iii)⇒(iv)⇔(v) are implied by Proposition 2.10 and
Lemma 2.11. Next Lemma 2.14 gives (iv)⇒(x)⇒(ii) and Lemma 2.12, 2.15, and 2.16 give
(iv)⇔(vii)⇔(ix); so all properties (i)–(v), (vii), (ix), and (x) are equivalent.

Now use Lemma 2.17 to get (vii) and (iv) imply (viii) and [3, Proposition 3.1 (a)] to
obtain (viii)⇒(i).

Finally, [3, Lemma 2.1] gives (v)⇒(vi)⇒(ii).

Let us start with the proof of our first characterization: (i)⇔ (ii). Note that it holds with-
out any closedness assumption, so any convex set containing a CEL set is CEL (properties
(i)–(vi) are clearly preserved under inclusion). In particular, if C is convex CEL, its closure
C̄ is CEL.

Proposition 2.10. Let C be a convex subset of X. Then C is CEL if and only if there
is K a convex compact set such that 0 ∈ int (C +K)

Proof. Apply the notation of Definition 2.1. If C is CEL, take x in C and λ := ε/2.
Since

x+ λU ⊂ C ∩Nx + λU ⊂ C + λK,

we obtain λU ⊂ C+(λK−x). Hence 0 ∈ int (C + (λK − x)), which proves the necessary
condition.

Fix x̄ ∈ C. Let V be a neighborhood of zero with V ⊂ C + K and let U be a convex
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neighborhood of zero with U + U ⊂ V . Then for any λ ∈ (0, 1) one has

C ∩ (x̄+ U) + λU ⊂ (1− λ)C + λ(x̄+ U) + λU

⊂ (1− λ)C + λ(U + U) + λx̄

⊂ (1− λ)C + λC + λK + λx̄

⊂ C + λ(K + xb).

This completes the proof because K + x̄ is compact.

Lemma 2.11. In Theorem 2.5, the following relations hold:
(ii)⇒(iii)⇒(iv) ⇔(v).

Proof. Clearly, (ii)⇒(iii) holds (a compact set is precompact) as well as (iv)⇒(v) (spanΣ
is finite dimensional) and (v)⇒(iv)(because for any basis e1, . . . , eN ofE, Σ=

∑N
i=1[−1, 1]ei

is a convex polytope spanning E and so satisfying int (C + Σ) 6= ∅).
So the only remaining implication to prove is (iii)⇒(iv). Let U be a nonempty bounded
open set with U ⊂ C + P . Using precompactness, there is a finite set F such that
P ⊂ F + U/2. Define Σ := coF . We have

U ⊂ C + F +
U

2
.

By induction, we deduce

U

2
⊂ C

2
+

Σ

2
+

U

4
⊂ C

2
+

C

4
+

Σ

2
+

Σ

4
+

U

8
,

⊂ · · · ⊂ (
1

2
+

1

4
+ · · ·+ 1

2n
)C + (

1

2
+

1

4
+ · · ·+ 1

2n
)Σ +

U

2n+1
.

Consequently,
U

2
⊂ (1− 1

2n
)(C + Σ) +

U

2n+1
.

Taking the limit when n goes to infinity, we find U/2 ⊂ C + Σ. Since C is closed and Σ
compact, we obtain int (C + Σ) 6= ∅.

Lemma 2.12. In Theorem 2.5, the following relation holds: (vii)⇔(ix).

Proof. The set M := spanC is a finite codimensional closed subspace. We can write
M +N = X with M ∩N = {0} and the null space N := N (Q) finite dimensional. The
result follows since X and M ×N are isomorphic.

Remark 2.13. Note that we only need the projection to be continuous with finite di-
mensional null space and int (Q(C)) nonempty. Indeed, Q is open is always true for a
projection (at least in a normed space) and all projections are linear.

Next we show the particular part involving Baire spaces.

Lemma 2.14. In Theorem 2.5, the following relations hold:
(iv)⇒(x)⇒(ii).
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Proof. Assume Property (iv) holds. Call N := spanΣ the finite dimensional space
spanned by Σ. Let Y = X/N be the quotient space, and define Qx := x + N . Then N ,
the nullspace of Q, is finite dimensional. In addition, Q(C) = C + N contains C + Σ.
Hence it has nonempty interior.

Note that [39, p. 60, Proposition 3] shows that Q is open. So to end the proof, we show
that Property (x) implies Property (ii).

Assume (x) holds and X is a Baire space. Name N := N (Q) and Br := {x ∈ X :
‖x‖ ≤ r} the closed ball of radius r in X. The set Cr := C + N ∩ Br is closed (since it
is the sum of a closed set and a compact set). The set Q(C +N) = Q(C) has nonempty
interior in Y , i.e. , there is an open set V such that V ⊂ Q(C + N). We deduce that
Q−1(V ) ⊂ Q−1(Q(C + N)). The continuity of Q implies that Q−1(V ) is open and its
linearity implies Q−1(Q(C + N)) = C + N . Indeed take x ∈ Q−1(Q(C + N)), there is
c ∈ C such that Q(x) = Q(c). Hence x = (x − c) + c ∈ N + C; the reverse inclusion is
obvious. Consequently C+N has nonempty interior. So there is an open set U contained
in C + N = ∪∞

r=1Cr. We deduce that there is r0 with int (Cr0) nonempty. Therefore
Property (ii) holds with K = N ∩Br0 .

Next we prove the part involving finite codimensional spaces.

2.3. Proof of the main theorem: finite codimension property

Lemma 2.15. The following relation holds in Theorem 2.5: (iv)⇒(vii).

Proof. Without loss of generality, we can assume 0 ∈ C. There are ΣN :=
∑N

k=1[−1, 1]ek
with e1, . . . , eN linearly independent and U an open neighborhood of 0 with U ⊂ C+ΣN .

Step 1: The subspace spanC is finite codimensional and closed.

Take e /∈ spanC and assume C + [−1, 1]e has interior. We are going to prove spanC is
closed. For contradiction we suppose the open unit ball B[0; 1] is contained in C+[−1, 1]e.
Take r > ‖e‖. If spanC is not closed, it is dense. Since e /∈ spanC there is a sequence
xn ∈ spanC with xn → e ∈ B[0; r]. Eventually xn ∈ B[0; r] ⊂ rC + [−r, r]e and so
xn ∈ rC for n large enough. Using the closedness of C, we obtain the contradiction:
e ∈ rC ⊂ spanC.

Now build C0 := C, Ck := Ck−1 + [−1, 1]ek. All Ck have Property (vi) (since C ⊂ Ck and
that property is preserved under inclusion). Hence the previous argument shows Ck−1 is
closed in spanCk for k = 1, . . . , N . Since spanCN = X (see Remark 2.7), all spanCk are
closed. In particular, spanC0 = spanC is closed.

Since CN = C+ΣN has nonempty interior, spanCN = X is finite codimensional. Moreover
span(Ck−1 + [−1, 1]ek) = spanCk yields codimCk−1 ≤ codimCk < ∞. In particular,
spanC0 = spanC is finite codimensional which ends Step 1.

Step 2: The relative interior of C, riC := intspanC C is nonempty.

To prove the claim we use the two properties: 0 ≤ α ≤ β ⇒ αC ⊂ βC (since α/βC +
(1− α/β)0 ⊂ C), and α, β ≥ 0 ⇒ (α+ β)C = αC + βC (another use of convexity).

Note M := spanC = coneC − coneC, E1 :=
∑

ei∈M [−1, 1]ei, and E2 :=
∑

ei 6∈M [−1, 1]ei.
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There is an open set U ⊂ C + E1 + E2 which satisfies

0 ∈ U ∩M ⊂ (C + E1 + E2) ∩M ⊂ C + E1.

For ei ∈ M = coneC − coneC, there are α1
i , α

2
i ≥ 0 and c1i , c

2
i ∈ C such that ei =

α1
i c

1
i − α2

i c
2
i . So any u ∈ U ∩M ⊂ C + E1 can be written with λi ∈ [−1, 1] as

u = c+
∑

i∈I

λi(α
1
i c

1
i − α2

i c
2
i ),

= c+
∑

i∈I+
(λiα

1
i c

1
i + (1− λi)α

2
i c

2
i + α1

i c
1
i ) +

∑

i∈I−
(−λiα

2
i c

2
i + (1 + λi)α

1
i c

1
i + α2

i c
2
i )− x̄,

where I+ := {i ∈ I : λi ∈ [0, 1]}, I− := {i ∈ I : λi ∈ [−1, 0]}, I := {i : ei ∈ M}, c ∈ C
and x̄ :=

∑

i∈I(α
1
i c

1
i + α2

i c
2
i ). So

U ∩ spanC ⊂ [1 + 2
∑

i

(α1
i + α2

i )]C − x̄

which implies riC is not empty.

Lemma 2.16. The following relation holds in Theorem 2.5: (vii)⇒(iv).

Proof. Without loss of generality, we can assume 0 ∈ intspanC C. Call X0 := spanC and
X1 := X0 + Re1 with X = X0 + span{e1, . . . , eN} with ‖ei‖ = 1. There is a ball B0 with
radius r0 centered at 0 with B0 ∩X0 ⊂ C. We claim that there is another ball B1 ⊂ B0

with B1 ∩X1 ⊂ C + [−1, 1]e1. Indeed, take y in B0 ∩X1 and not in X0, then y = Ýc+ αe1
for some Ýc in C. Consider the linear functional u : X1 → R defined for all x = c + βe1
by u(x) = β. Since X0 = N (u) is closed, u is continuous [39, p. 382, Proposition 4].
Therefore u(B0) is bounded and hence there is r1, 0 < r1 < r0 such that for the ball B1

centered at 0 and with radius r1 one has u(B1) ⊂ [−1, 1], and for y ∈ B1 ∩X1 not in X0,
y ∈ C + [−1, 1]e1. Moreover B1 ∩X0 ⊂ B0 ∩X0 ⊂ C. All in all, B1 ∩X1 ⊂ C + [−1, 1]e1.

Now consider X2 := X1 +Re2. Applying the same argument gives the existence of a ball
B2 with B2 ∩X2 ⊂ C + [−1, 1]e1 + [−1, 1]e2. Consequently there is BN in XN = X with
BN ⊂ C +

∑N
i=1[−1, 1]ei which means (iv).

Lemma 2.17. The following relations hold in Theorem 2.5:
(vii) and (iv)⇒(viii).

Proof. We can always assume 0 ∈ riC.

Take x = 0 ∈ C, Nx a convex neighborhood of x such that Nx∩C−Nx∩C ⊂ C (0 ∈ riC),
ε := 1, 0 < λ < ε, and Ω := x− C ∩Nx. Then Ω is convex and

C ∩Nx + λΩ = C ∩Nx − λC ∩Nx ⊂ C ∩Nx − C ∩Nx ⊂ C

since λ(C ∩Nx) ⊂ C ∩Nx because C ∩Nx is a convex set containing zero.
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Taking (i)⇒(vi) and the definition of ELL into account, it remains to be proved that Ω
is CEL. But there is K :=

∑N
i=1[−1, 1]ei compact convex and an open ball B centered at

0 with B ⊂ C + K which yields B ⊂ B ∩ C + K ⊂ C + K (same argument as in the
previous lemma, we heavily use the closedness of spanC). Hence B ∩ C is CEL, which
ends the proof.

2.4. Proof of the main theorem: quasi-relative interior

Using quasi-relative interiors [5], we give an alternative proof of (iv)⇒(vii) under the ad-
ditional assumption that C has nonempty quasi-relative interior. Even if the assumption
is stronger, it clarifies the relation with quasi-relative interiors. Note that the proof uses
Theorem 3.2 whose second proof does not depend on Theorem 2.5.

Definition 2.18. A point x is in the quasi-relative interior of a convex set C if for all
nonzero continuous linear functional λ:

λ(C − x) ≥ 0 ⇒ λ(C − x) = 0.

The set of quasi-relative interior points is denoted by qriC.

In other words, x is a quasi-relative interior point of C if and only if TC(x), the tangent
cone to C at x, is a subspace. In Rn, the quasi-relative interior of a convex set is its
relative interior.

If X is a separable Banach space and C a closed convex set, Borwein and Lewis [5] proved
that C has a nonempty quasi-relative interior. So the next proposition applies in separable
Banach spaces.

Proposition 2.19. Assume C is a CEL closed convex set with nonempty quasi-relative
interior. Then there is a finite codimensional closed subspace M such that C ⊂ M and
intM(C) is nonempty.

Proof. If 0 does not belong to C, it belongs to C − c̄ where c̄ ∈ C. Since qri(C − c̄) =
qri(C)− c̄ and C − c̄ is closed convex CEL, we apply the proposition to C − c̄. So we can
always assume 0 ∈ C.

Proposition 2.10 and Lemma 2.11 give (v): there is a finite dimensional subspace Σ0 and
a nonempty open set U with U ⊂ C + Σ0. We name Ýc a point in qriC.

If int (C) is nonempty, the whole space M := X satisfies the theorem: U ∩X ⊂ C ⊂ X
and codimX = 0. Otherwise int (C) = ∅, so Ýc belongs to bdC, the boundary of C.
Applying Theorem 3.2, we deduce that Ýc is a support point of C. So there is a nonzero
continuous linear functional λ0 ∈ X∗ such that λ0(C − Ýc) ≥ 0. Since Ýc is in qriC and
0 ∈ C, we obtain λ0(C) = 0, i.e. , C is in the nullspace M1 := N (()λ0) of λ0. Naming
Σ1 := Σ0 ∩M1 gives

U ∩M1 ⊂ C + Σ1 ⊂ M1.

Now either the proposition holds with M = M1 or we can build inductively a sequence of
finite codimensional closed subspaces Mk and a sequence of finite dimensional subspaces
Σk with codimMk = k and dimΣk < dimΣk−1 (in fact dimΣk +1 = dimΣk−1) such that

U ∩Mk ⊂ C + Σk ⊂ Mk.



384 J. Borwein, Y. Lucet, B. Mordukhovich / Compactly epi-Lipschitzian convex sets

Indeed, that property holds for k = 1. Suppose it holds for k, then either intMk
(C) is

nonempty so the theorem holds, or intMk
(C) is empty and Ýc belongs to bdC ⊂ suppC ⊂

Mk. Hence there is a nonzero continuous linear functional λk ∈ (Mk)
∗ such that λk(C −

Ýc) ≥ 0. We apply the Hahn-Banach theorem [39, p. 77, Theorem 1] to extend λk to
all X. The same argument as above gives λk(C) = 0. We define Mk+1 := N(λk) and
Σk+1 := Σk ∩Mk+1 to obtain

U ∩Mk+1 ⊂ C + Σk+1 ⊂ Mk+1

with dimΣk+1 < dimΣk. Consequently both sequences exist.

To conclude, note that n := dimΣ0 is finite implies dimΣn = 0. So Σn = {0} and
codimMn = n. Consequently the proposition holds with M = Mn.

Remark 2.20. The assumption “C has nonempty quasi-relative interiorÔ (which is true
if the space is Banach and separable) is needed in the proof of the proposition.

Because of this assumption, the proof above does not cover all cases since the quasi-relative
interior is empty for sets like S := l+p (R) with 1 ≤ p < ∞ (the positive cone in lp(R) := {s :
R → R :

∑

r∈R|s(r)|p < ∞}). Indeed recall that
∑

r∈R|s(r)|p = sup
F finite

∑

r∈R∩F |s(r)|
and that the sum being finite implies the support of s is countable in S. Take any s̄ in
l+p (R). Since the support of s̄ is countable, there is r̄ in R with s̄(r̄) = 0. Define the linear
functional f(s) := s(r̄). Using f(s̄) = s̄(r̄) = 0 and f(S) = {s(r̄) : s ∈ S} ≥ 0 yields
〈f, S− s̄〉 ≥ 0. Since there is Ýs with f(Ýs) = 1, f is not always 0 on S. Hence s̄ is a support
point of S and TS(s̄) is not a subspace. All in all, qriS is empty.

3. Supporting properties of compactly epi-Lipschitzian sets

Starting from our main characterization theorem, we study supporting properties of CEL
sets. An alternate proof of the main theorem in that section is presented for CEL sets in
Banach spaces. The extension to nonconvex sets is then discussed.

3.1. Convex sets in normed spaces

In addition to characterizing CEL closed convex sets, we show that they have “niceÔ
boundaries. Indeed, our next theorem will show that every boundary point of such a set
is also a support point. First we need a technical lemma.

Lemma 3.1. Let X be a normed linear space, K be a convex compact set, and C be a
closed convex set. If c̄ is in bdC, the boundary of C, then there is k̄ in bdK such that
c̄+ k̄ ∈ bd(C +K).

Proof. Take c̄ in bdC. Suppose, to the contrary, that for all k̄ in bdK, c̄ + k̄ does not
belong to bd(C +K). Then it must belong to int (C +K). Since K has empty interior
(X has infinite dimension) the inclusion holds for all k ∈ K. Since K is compact, there
is a positive ε such that

c̄+K + εB ⊂ C +K (3.1)

Now applying the R̊adström cancellation principle [33] gives c̄+εB ⊂ C which contradicts
the fact that c̄ belongs to bdC.
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Here is the announced theorem. Recall that a proper support point means that C is
supported by an hyperplane and C is not included in the hyperplane. We will need such
a proper hyperplane in the proof of Lemma 5.1.

Theorem 3.2. Suppose X is a normed space and C a CEL closed convex set. Then every
boundary point of C is also a proper support point of C.

Our proof relies on the two classical separation theorems: with nonempty interior and in
finite dimensions. See the next remark for an alternate proof and links to the Bishop-
Phelps theorem.

Proof. Take c̄ in the boundary of C. First suppose int (C) is nonempty. Then we can
separate C from {c̄} (with the Hahn–Banach theorem for example): there is a nonzero
continuous linear functional l such that l(c̄) = supc∈C l(c) which means that c̄ is a support
point of C.

Now assume int (C) is empty. Theorem 2.5 implies C has nonempty relative interior.
So we can apply the above argument to obtain a nonzero continuous linear functional l,
defined on spanC, with l(c̄) = supc∈C l(c). Now spanC being finite codimensional allows

us to extend l to a continuous linear functional Ýl defined on all X. For example define
Ýl(x) := l(ProjspanC(x)), where ProjspanC is the projection onto spanC. So c̄ is a proper
support point of C.

Note that every point in C is a support point of C. Indeed if c̄ ∈ C \ riC the above proof
shows c̄ is a proper support point. Otherwise c̄ ∈ riC. Write X = spanC ⊕Re⊕ Y . Fix
x = c+ re+ y and take l(x) = r. Then l(C) = 0 and hence c̄ is a support point of C.

Remark 3.3. Theorem 3.2 can be obtained from Lemma 4 in [2] in the case of Banach
spaces based on our characterizations of CEL sets.

Remark 3.4. Theorem 3.2 does not always hold for non-CEL closed convex sets. Indeed,
Fonf [13] proved that in every incomplete normed space there is a closed bounded convex
set C with no support point. Theorem 3.2 tells us that such a set C cannot be CEL.

A more striking case when bdC equals suppC (the set of support points of C) is provided
by the following example in which C(S) could be `∞.

Example 3.5. Let S be a compact Hausdorff space, and F ⊂ S be a closed non Gδ set.
Then C := {f ∈ C(S) : f ≥ 0 and f(x) = 0 for x ∈ F} verifies

bdC = C = suppC.

We end that subsection with a way to generate CEL closed convex sets. Indeed, a con-
sequence of the next proposition is that in any normed linear space, projections of CEL
closed convex sets are CEL: note that any closed convex set containing a CEL closed
convex set is CEL. Note also that the closed convex hull of a CEL set is necessarily CEL
by Proposition 2.10.

Proposition 3.6. Assume C is CEL, Q : X → Y is an open linear continuous map, and
X, Y are normed linear spaces. Then Q(C) is CEL.
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Proof. There is a convex compact set K and an open set U with U ⊂ C + K. Thus,
Q(U) ⊂ Q(C) + Q(K). Now since Q is open, Q(U) is open and since Q is continuous,
Q(K) is compact. Hence, we found a compact set K ′ = Q(K) with int (Q(C) +K ′)
nonempty, which means that Q(C) is CEL.

3.2. Variational arguments in Banach spaces

Let us present another proof of Theorem 3.2 in the case of Banach spaces X, i.e. , under
an additional completeness assumption in the theorem. This proof is fully independent
of Theorem 2.5: it is actually based on variational arguments and admits generalizations
to nonconvex sets; see the next subsection. For the case of convex closed sets C under
consideration we use the classical Bishop-Phelps theorem on the density of support points
in the boundary of C; see, e.g., [32, Theorem 3.18].

Take any c̄ in the boundary of C. According to the Bishop-Phelps theorem, we find
sequences {cn} ⊂ X and {ξn} ∈ X∗ satisfying cn → c̄ as n → ∞, ‖ξn‖ = 1, and

ξn ∈ N(cn;C) := {ξ ∈ X∗| 〈ξ, c− cn〉 ≤ 0} (3.2)

for all n = 1, 2, . . ., where N(·;C) signifies the normal cone of convex analysis. Since C is
CEL, we can apply Loewen’s result in [23, Proposition 3.7] to conclude that there exist a
compact set S ⊂ X, a neighborhood U of c̄, and a number γ > 0 such that

N(c;C) ⊂ Kγ(S) := {ξ ∈ X∗| γ‖ξ‖ ≤ max
s∈S

|〈ξ, s〉|} (3.3)

for all c ∈ C ∩ U . Note that the mentioned result of [23] covers the general case of
nonconvex sets C ⊂ X where N(c;C) in (3.3) is replaced with the so-called Fréchet
normal cone to C at c ∈ C defined by

̂N(c;C) := {ξ ∈ X∗| lim sup
x→c, x∈C

〈ξ, x− c〉
‖x− c‖

≤ 0}. (3.4)

It is well known that constructions (3.2) and (3.4) agree for convex sets.

Due to the weak∗ compactness of the unit ball in the dual space X∗ we select a subnet
ξν ∈ N(cν ;C) in (3.2) which weakly∗ converges to some ξ̄ ∈ X∗. Passing to the limit in
(3.2), we easily get that 〈ξ̄, c− c̄〉 ≤ 0.

It remains to prove that ‖ξ̄‖ 6= 0. Assume on the contrary that ξ̄ = 0. Using the
compactness of the set S ⊂ X in (3.3), we conclude that 〈ξν , s〉 → 0 uniformly in S.
Thus (3.3) implies that ξν → 0 in the norm topology of X∗. But this is impossible due
to ‖ξν‖ = 1 for all ν. The obtained contradiction completes the proof of Theorem 3.2 in
Banach spaces.

3.3. Nonconvex generalizations

The above arguments can be extended to the nonconvex case using variational principles
and appropriate concepts of normal cones in nonsmooth analysis. IfX is an Asplund space
(that is, a Banach space where every convex continuous function is generically Fréchet
differentiable, in particular, any reflexive space; see [32]), then a proper analogue of the
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Bishop-Phelps theorem is obtained by Mordukhovich and Shao [27] via the density of the
set

c ∈ bd C with ̂N(c;C) 6= {0} (3.5)

involving the Fréchet normal cone (3.4). Moreover, the density of (3.5) for every closed set
C ⊂ X is shown to be a characterization of Asplund space; see [12]. Now using Loewen’s
result mentioned above, we conclude similarly to Subsection 3.2 that for any closed set
C, CEL at c̄, one has

N(c̄;C) 6= {0} at every c̄ ∈ bd C (3.6)

in terms of the limiting normal cone

N(c̄;C) := lim sup
c→c̄, c∈C

̂N(c;C) (3.7)

introduced in [22] as an extension of the finite dimensional construction of Mordukhovich
[24]. In (3.7) “limsupÔ connotes the sequential Painlevé-Kuratowski upper limit of multi-
functions with respect to the norm topology in X and the weak∗ topology in X∗. Note
that we can use the sequential vs. topological (net) upper limit in (3.6) and (3.7) since a
bounded set in X∗ is weakly∗ sequentially compact for any Asplund space X; see [32].

When C is convex, the normal cone (3.7) reduces to the normal cone of convex analysis.
Thus (3.6) can be viewed as an extention of our support point theorem (Theorem 3.2) to
nonconvex CEL sets in Asplund spaces. Note that in this form it does not hold outside
of Asplund spaces. In fact it was shown by Fabian and Mordukhovich [12] that in any
non-Asplund space X there is an epi-Lipschitzian set C ⊂ X for which (3.6) is violated
at every boundary point. To cover the case of arbitrary Banach spaces, one needs to use
a different normal cone for nonconvex sets.

An appropriate construction was introduced by Ioffe under the name of the (approximate)
G-normal cone denoted by NG(·;C), see [15]. This construction is another infinite dimen-
sional extension of [24] being generally more complicated than (3.6). It agrees with (3.6)
in certain most important situations but may be bigger (never smaller) than (3.6) even
for epi-Lipschitzian sets in spaces with Fréchet smooth renorms; see [29, Section 9] for
more details and further references.

Similarly to the arguments in [27] one can show that the density result (3.5) holds in
terms of NG(·;C) for any closed set C in a Banach space X. Then we need to pass to
the limit and get an analogue of (3.6) in terms of the G-normal cone for any closed CEL
set. To make it possible, we can use the result of Jourani and Thibault [19, Lemma 3]
that ensures a local compactness property of type (3.3) for the G-normal cone under the
CEL assumption on C at c̄. This justifies the NG-analogue of Theorem 3.2 for CEL sets
in arbitrary Banach spaces.

Note that density (properness) results of type (3.5) where obtained by Borwein and Stro-
jwas [7, 8] for various normal cones dual to some tangent cones in Banach spaces. However,
for arbitrary CEL sets those normal cones may not possess a local compactness property
of type (3.3), called “normal compactnessÔ in [29], that is crucial for the limiting pro-
cedure. In particular, the Clarke normal cone is not locally compact unless C is ELL;
see [3]. The normal compactness property with the Clarke normal cone is shown to be
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satisfied for ELL sets in [20]. Ioffe recently proved [16] that the CEL property of C ⊂ X
at c̄ is actually equivalent to property (3.3), if N(·;C) is either the Fréchet normal cone
on an Asplund space X or the G-normal cone on an arbitrary Banach space. It follows
from Borwein [3, Example 4.1] that this result does not hold for the Clarke normal cone
in X = l∞.

4. Characterizations of compactly epi-Lipschitzian Convex Functions

The analogous of our main theorem for CEL sets is presented for CEL closed convex
functions. As usual the link between functions and sets is provided by the epigraph

epi f := {(x, r) ∈ X × R : f(x) ≤ r}.

We say that a closed convex function f : X → R ∪ {+∞} is CEL if its epigraph is CEL.
As for sets, we can always assume f(0) = 0.

The next theorem characterizes CEL convex functions. The notation δK denotes the
indicator function of the set K: δK(x) = 0 if x ∈ K, +∞ otherwise. We denote by f ∗ the
Legendre–Fenchel conjugate of f (see [14, 35])

f ∗(s) := sup
x∈X

[〈s, x〉 − f(x)],

and f2g the inf-convolution of f and g

f2g(x) := inf
y∈X

[f(y) + g(x− y)].

The core denotes the algebraic interior of a set

coreC := {x ∈ C : ∀d ∈ X,∃T > 0 : |t| ≤ T ⇒ x+ td ∈ C}.

Theorem 4.1. Let f : X → R∪{+∞} be a proper closed convex function. The following
are equivalent:

(i) The function f is CEL.

(ii) There is a convex compact set K such that f2δK is continuous at 0.

(iii) There is a convex compact set K such that f ∗ + δ∗K has bounded level sets.

(iv) There is a convex compact set K such that 0 ∈ core(dom f2δK).

To prove the theorem, we need several basic steps. First we recall the following well-known
result. Its simple proof is included for the sake of self-containedness.

Lemma 4.2. Take σ : X → R ∪ {+∞}.
• If 0 ∈ int (epiσ), then σ is bounded on some neighborhood of 0.

• If σ is finite and continuous at 0, then int (epiσ) is nonempty.

Proof. There is an open ball B of center 0 and radius r with 0 ∈ B ⊂ epiσ. If there is
a sequence xn converging to 0 with σ(xn) = ∞, then for n large enough, (xn, σ(xn)) ∈ B,
i.e. , ‖xn‖ + |σ(xn)| < r which contradicts σ(xn) = ∞. This proves the first part of the
lemma.
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Next, assume σ is (finite and) continuous at 0. Set I := (σ(0)− 1, σ(0) + 1). Then

(0, 2) + σ−1(I)× I = σ−1(I)× (σ(0) + 1, σ(0) + 3)

⊂ {(x, α) : σ(x) < α} ⊂ epiσ.

Since σ−1(I) is open, int (epiσ) is nonempty.

Remark 4.3. Note that even if a function is continuous CEL convex it may not send
bounded sets to bounded sets.

Indeed take X = l2 and f(x) =
∑∞

n=1|xn|2n. Then f is convex and continuous (since it is
lower semi-continuous and finite in a Banach space). Moreover f is CEL since its epigraph
spans l2×R (which is clearly closed and of finite codimension), and has nonempty interior
(by the previous lemma since f is continuous at 0). However, f(2en) = 22n implies that
if we denote B the unit ball, f(2B) is unbounded.

So f is a CEL convex continuous function that does not send bounded sets to bounded
sets.

Since the strict epigraph of the inf-convolution is the sum of the strict epigraphs (see
Remark [14, IV.2.3.3]) we need to relate compact epi-Lipschitzness to strict epigraphs.
Recall that

epis f := {(x, r) ∈ X × R : f(x) < r}.
Lemma 4.4. If f is a proper convex function, span(epi f) = span(epis f), and ri(epi f) =
ri(epis f). In particular, epi f is CEL if and only if epis f is CEL.

Proof. The second assertion clearly follows by using Theorem 2.5(vii).

Step 1: span(epi f) = span(epis f).

Take y in span(epi f). There are αi ≥ 0, xi ∈ X, and ri ∈ R with f(xi) ≤ ri for
i = 1, 2 and y = α1(x1, r1) − α2(x2, r2). Since without loss of generality we can assume
(0, 0) ∈ epi f , the points (0, a) are in span(epi f) for any a ∈ R. (The convexity allows to
write span(epi f) = cone(epi f)− cone(epi f)).

Either α2 = 0 and we can write

y = α1(x1, r1) = α1(x1, r1 + 1)− (0, α1)

so y belongs to span(epis f). Or α2 6= 0 and we write

y = α1(x1, r1)− α2(x2, r2) = α1(x1, r1 + 1)− α2(x2, r2 +
α1

α2
).

So y is again in span(epis f). The reverse inclusion is obvious.

Step 2: ri(epi f) = ri(epis f).

Take y ∈ ri(epi f), and note M := span(epi f) = span(epis f), and B(y, δ) the open
ball of center y and radius δ. There is δ > 0 such that B(y, δ) ∩ M ⊂ epi f . Take
u := (xu, ru) ∈ B(y, δ/2)∩M and consider u′ := u−(0, δ/3). Using the triangle inequality
we deduce u′ ∈ B(y, δ). Since u′ is also in M , it is in epi f . Hence u is in epis f . We
conclude that B(y, δ/2) ∩M ⊂ epis f . The reverse inclusion is clear.
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Now we prove Theorem 4.1.

Proof. Step 1: (ii) implies (i).

Assume (ii). Apply Lemma 4.2 and Lemma 4.4 to obtain

∅ 6= int (epi(f2δK)) = int (epis(f2δK)) = int (epis f + epis δK).

Note that epis δK ⊂ K × (0,∞) and epis f + K × (0,∞) ⊂ epis f + K × {0} to get
int (epis f +K ′) 6= ∅ with K ′ := K×{0} a compact convex set. Consequently epis f , and
so epi f , is CEL.

Step 2: (i) implies (ii).

Conversely, assume (i). Then there is K ′ a compact convex set with 0 ∈ int (epis f +K ′).
Define K := ProjX K ′ and t̄ := min(x,t)∈K′ t. Since both projections ProjX and ProjR are
continuous and K ′ is compact, K is compact convex, t̄ is well-defined and we have

epis f +K ′ ⊂ epis f +K × {t̄}.

We obtain 0 ∈ int (epis f̃ +K × (0,∞)) where f̃ := f(.)− t̄. Applying again Remark [14,
IV.2.3.3] we deduce 0 ∈ int (epis(f̃2δK)). Applying Lemma 4.2, the function f̃2δK is
bounded on a neighborhood of 0.

To conclude we note that f̃2δK is a convex function, so it is continuous at 0 (for example
see [14, Lemma IV.3.1.1] whose proof still holds in a normed linear space). Since f̃2δK =
f2δK − t̄, (ii) holds.

Step 3: (ii) ⇔ (iii) ⇔ (iv).

The key result we use is a theorem proved by Moreau [31] and by Rockafellar [34] which
implies that a proper convex function on a normed linear space is strongly continuous at
0 if and only if its conjugate has bounded level sets.

More precisely, [34, Theorem 7A(a)] and [34, Corollary 4D] give (ii) ⇔ (iii), while [34,
Theorem 4C] gives (iii)⇔(iv).

5. Applications to constrained optimization

In order to apply the Fenchel duality theorem of [5], we first prove that the relative interior
is equal to the quasi-relative interior for CEL closed convex sets.

Lemma 5.1. Assume C is CEL, closed, and convex. Then riC = qriC.

Proof. Without loss of generality we can take x = 0 to prove both inclusions.

Step 1: We show that riC ⊂ qriC.

Take x = 0 ∈ riC and let us prove cl(PC) = spanC. Fix a neighborhood V of zero with
V ∩ spanC ⊂ C. Then for any λ > 0 one has

(λV ) ∩ spanC = λV ∩ λ spanC ⊂ λC.

So (PV ) ∩ spanC ⊂ PC and hence, since PV = X one gets (PV ) ∩ spanC = spanC. So
spanC ⊂ PC. As PC ⊂ spanC, one has spanC = PC. In particular spanC = cl(PC)
since spanC is closed.
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Step 2: We show that x 6∈ riC ⇒ x 6∈ qriC.

If x 6∈ ri and x ∈ C then x ∈ bdC. Applying Theorem 3.2, there is a nonzero continuous
linear functional λ such that λ(C \ {x} − x) > 0. Since X is infinite dimensional and C
is CEL, C is not reduced to {x}. So there is x′ ∈ C with λ(x′ − x) > 0. Consequently we
found a nonzero continuous linear functional λ such that λ(C − x) ≥ 0 but λ(C − x) 6= 0.
In other words, x 6∈ qriC.

To write our next theorem, we use the same notations as in [5]: X is a normed space,
g : X → (−∞,∞] and h : Rn → (−∞,∞] are convex proper; and A : X → Rn is a
continuous linear function.

Theorem 5.2. If g is closed convex CEL and

either A(ri(dom g)) ∩ ri(domh) 6= ∅
or A(ri(dom g)) ∩ domh 6= ∅ and h is polyhedral,

then

inf{g(x) + h(Ax) : x ∈ X} = max{−g∗(ATλ)− h∗(−λ) : λ ∈ Rn}.

Proof. If the function g is CEL convex, then its domain is also CEL by Proposition 3.6.
So Lemma 5.1 gives qri(dom g) = ri(dom g). Applying Fenchel duality theorem [5, Corol-
lary 4.3] gives the same generalized Slater condition as in finite dimension: we need to
find a point in ri(dom g) with image by A in ri(domh).

So the CEL property ensures sufficient amount of compactness to recover the finite di-
mensional results (see our discussions in Section 1 and in Subsections 3.2 and 3.3).

The subsequent sum rule and minimax theorem have been stated in [5]. In fact, Ye used
our main characterization theorem (Theorem 2.5) to apply a sum rule in her proof of
necessary conditions for optimal control of strongly monotone variational inequalities [42].
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