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A formula relating two different variational limits of sequences of optimal control problems governed by
ordinary differential equations is found out. It is employed to obtain a new representation theorem for
the Γ-limit of a sequence of optimal control problems.

1. Introduction

In this paper we deal with sequences of optimal control problems of the form

min
(u,y)

{∫ 1

0

fh
(

t, y(t), u(t)
)

dt : y′(t) = gh
(

t, y(t), u(t)
)

, y(0) = y0

}

(Ph)

where the state variable y varies in the Sobolev space Y = W 1,1(0, 1;Rn), the control
variable u varies in a space U of measurable functions, and the functions fh, gh satisfy
suitable conditions. The variational convergence problem for such a sequence consists
in finding a limit problem (P∞) such that if (uh, yh) is an optimal pair of (Ph), up to
extracting subsequences, we have (uh, yh) → (u∞, y∞) in a suitable sense, where (u∞, y∞)
is an optimal pair of problem (P∞). This has been done by many authors using two
major approches. The first one, which uses the theory of Γ-convergence and its tools, has
been developed in Buttazzo and Dal Maso [11], Buttazzo and Cavazzuti [10], Buttazzo
and Freddi [12], [13], Denkowski and Migorski [16], Freddi [20], Migorski [24], [25]; the
second one, which is based on the notion of chattering parameter functions and on the
classical one of relaxed controls as parametrized measures in the sense of L. C. Young,
has been studied by Artstein [1], [2], [3]. In Section 3 we briefly describe this method
and refer for details and generalizations to [3]. In Section 4 we recall the definition and
the main features of Γ-convergence, referring, for a more complete treatment, to the
books of Attouch [4], Buttazzo [9] and Dal Maso [15]. In Section 7 we investigate on the
relationship between the two kind of variational limits. Although in [10], [11], [12] and
[13] the space of controls is an Lp space and even in the papers of Artstein U is the class of
all measurable functions, we are able to compare the two approaches only when U is the
space L∞ of bounded functions. In this treatment, which uses classical Young’s measures,
such a restriction seems technically unavoidable. However, it could be considered as a first
step towards a more complete study which should involve other classes of parametrized
measures.

When the sequence of optimal control problems is independent of h, we are in the frame-
work of relaxation, and the two methods provide two different relaxed formulations. Their
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relationship has been studied by Ioffe and Tihomirov [21], Berliocchi and Lasry [6] and
by Mascolo and Migliaccio [23]. In spite of the apparent difference in formulation, they
proved that the two relaxed problems are closely connected. Starting from some ideas
about the relaxation case of [22] and [23] we prove a similar result in the more general
setting of the variational convergence. More precisely, under uniform boundedness con-
ditions on the set of controls we obtain, in Section 6, a formula which relates the two
variational limits each other (Theorem 6.2) and in Section 7 we give a representation
of the variational limit in the form of a new control problem with a formulation where
parametrized measures do not appear. This last result can be sketched as follows. As
Artstein shows in [3] (Section 11) it is not restrictive to assume that the control problems
(Ph) can be written in a parametric form which, if the controls are uniformly bounded,
that is U = L∞(0, 1;K) where K is a compact subset of Rm, is given by

min
{

∫ 1

0

f
(

t, y(t), u(t), ρh(t)
)

dt : y′(t) = g
(

t, y(t), u(t), ρh(t)
)

, y(0) = y0, u(t) ∈ K
}

where Γ is a compact metric space, and ρh : [0, 1] → Γ are given parameter functions.
Functions f and g are measurable in t and continuous with respect to the other variables
and satisfy other suitable but quite reasonable assumptions (namely (a)...(e) of Section 3).
By µ(t) we denote the weak limit (in the sense of parametrized measures) of the sequence
δρh(t). We shall prove that when U and Y are endowed respectively with the weak*
topology and the strong one of L∞, then the variational limit (P∞) can be written in the
form

min
{

∫ 1

0

f̌
(

t, y(t), u(t), y′(t)
)

dt : y(0) = y0
}

where the integrand f̌ is obtained in the following way: setting for every (t, y, λ, γ, v) ∈
[0, 1]×Rn×Rm×Γ×Rn

ϕ(t, y, λ, γ, v)) = f(t, y, λ, γ) + χ{v = g(t, y, u, γ), λ ∈ K}

(χ
E
denotes here the indicator function of the set E, that is the function which takes the

value 0 on E and +∞ elsewhere) and denoting by

ϕ∗(t, y, λ∗, γ, v∗) = sup{λ∗λ+ v∗v − ϕ(t, y, λ, γ, v) : λ ∈ Rm, v ∈ Rn}

the Fenchel duality transform of the function ϕ with respect to the variables λ and v, the
others being frozen, then

f̌(t, y, λ, v) = sup{λ∗λ+ v∗v −
∫

Γ

ϕ∗(t, y, λ∗, γ, v∗)µ(t)(dγ) : λ∗ ∈ Rm, v∗ ∈ Rn}. (1)

In other words:

f̌(t, y, λ, v) =

(

∫

Γ

(

f(t, y, λ∗, γ) + χ













v∗ = g(t, y, λ∗, γ)
λ∗ ∈ K

)∗
µ(t)(dγ)

)∗

(λ, v) (2)

that is, we have to take the conjugate of the function ϕ with respect to the control pair
(λ, v), integrate with respect to µ(t) in the parameter variable γ and, finally, take the
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conjugate again. We shall see in Section 8 that our result extends those obtained by
Buttazzo and Cavazzuti in [10] when the right hand side of the state equation had the
particular form

gh(t, y, u) = ah(t, y) +Bh(t, y)bh(t, u).

When applied to the case of relaxation, these results reduce to those obtained by Mascolo
and Migliaccio in [22] and [23].

One of the most important features of [3] is that it deals with fully nonlinear constraints
in the sense that the state and control variables are not separable in the state equation.
Thanks to the work of Artstein, and to the representation formula above, we are now
able to write explicitely the Γ-limit of a sequence of problems with fully nonlinear state
equations depending on highly oscillating parameters. This fact is enlightened by a con-
cluding example which, due to this nonlinearity, cannot be developed into the framework
of the previous papers [10], [11], [12], [13], [20].

2. Notation and preliminary notions

This section is devoted to recall some general notions and to explain notation.

Let L(0, 1) be the σ-algebra of Lebesgue measurable subsets of the interval [0, 1], while
B(S) denotes the Borel σ-algebra of a given complete separable metric space S and P(S)
the set of probability measures on S which will be always endowed with the topology of
weak convergence of measures.

Given a measurable space (Ω,F), and a map

α : Ω → P(S)
ω 7→ α(ω)

then the following propositions are equivalent (see for instance Valadier [27], Lemma A2
and Neveu [26], Proposition III-2-1)

1. for every open set A ⊆ S the function ω 7→ α(ω)(A) is F -measurable;

2. for every Borel set B ⊆ S the function ω 7→ α(ω)(A) is F -measurable;

3. for every bounded continuous function ϕ : S → R the function ω 7→
∫

S
ϕ(s)α(ω)(ds)

is F -measurable;

4. for every positive B(S)-measurable function ψ defined on S the function ω 7→
∫

S
ψ(s)

α(ω)(ds) is F -measurable.

α(ω)(ds) denotes integration in the variable s with respect to the measure α(ω). When
one of the above mentioned properties holds then the map α is said to be measurable and
it is called a parametrized measure.

The following spaces of functions will be used throughout the paper:

L1(0, 1), the space of Lebesgue integrable real-valued functions defined on [0, 1];

L1(0, 1;Rm), m ∈ N, the space of Lebesgue measurable functions f : [0, 1] → Rm such
that |f | ∈ L1(0, 1);

W 1,1(0, 1;Rn), n ∈ N, the space of absolutely continuous functions f : [0, 1] → Rn;

Cb(S), the space of bounded, continuous, real-valued functions defined on S;
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C0(S), the space of continuous real functions f defined on S which vanish at infinity, in
the sense that for any ε > 0 there exists a compact subset K of S such that |f(x)| < ε
for every x ∈ S \K;

Mb(S), the space of all real bounded Borel measures on the space S.

Moreover, if (Ω1,F1) and (Ω2,F2) are measurable spaces then we denote by M(Ω1; Ω2)
the space of all (F1,F2) measurable functions from Ω1 to Ω2. Namely, if K is a subset of
Rm, M([0, 1];K) is the space of all

(

L(0, 1),B(Rm)
)

-measurable functions from [0, 1] to
K, while L∞(0, 1;K) is the space of all

(

L(0, 1),B(Rm)
)

-measurable functions form [0, 1]
to Rn such that f(x) ∈ K for almost every x ∈ [0, 1].

Given a set E, let’s denote by χ
E

the indicator function of the set E, which takes the
value 0 on E and +∞ elsewhere.

Remark 2.1. If the space S is also locally compact then the properties 1., 2., 3. and 4.
above are equivalent to measurability with respect to B(Ω) and the Borel σ-algebra of
the σ

(

M b(S), C0(S)
)

topology on P(S) (see Valadier [27], Remark 1, page 157). In this
sense the mapping α belongs to the space M(Ω,P(S)).

3. Chattering variational limits

In this section we briefly describe a tool developed by Artstein in [1], [2], [3]. Starting
from his idea of chattering parameter function which issue from, and interact with, the
classical one of relaxed control, he explained how to study the variational convergence of
optimal control problems with ordinary state equations. We give here only a quick and
simple description for the purposes of the present paper only, and refer to [3] for other
results, details and generalizations.

Given a complete separable metric space Γ, let ρ be a B(Γ)-measurable map

ρ : [0, 1] → Γ

which will be called a parameter function. Let moreover

f : [0, 1]× Rn × Rm × Γ → R,
g : [0, 1]× Rn × Rm × Γ → Rn

be two L(0, 1) ⊗ B(Rn) ⊗ B(Rm) ⊗ B(Γ)-measurable functions which are continuous in
(y, u, γ) and satisfying the following assumptions:

(a) for every compact subset K of Rm the function

t 7→ sup
(u,γ)∈K×Γ

|f(t, 0, u, γ)|

belongs to L1(0, 1);

(b) there exist two constants α > 0 and β ≥ 0 such that f(t, y, u, γ) ≥ α|u| −β for every
y ∈ Rn, u ∈ Rm, γ ∈ Γ and almost every t ∈ [0, 1];

(c) there exists a continuous function ω : [0,+∞[→ [0,+∞[, ω(0) = 0, such that

|f(t, x, u, γ)− f(t, y, u, γ)| ≤ ω(|x− y|)(1 + |u|)

for every x, y ∈ Rn, u ∈ Rm, γ ∈ Γ and almost every t ∈ [0, 1];
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(d) there exist C ∈ L1(0, 1) and D > 0 such that

|g(t, 0, u, γ)| ≤ C(t) +D|u|,

uniformly in γ ∈ Γ, for every u ∈ Rm and almost every t ∈ [0, 1];

(e) there exists k ∈ L1(0, 1) such that

|g(t, y, u, γ)− g(t, x, u, γ)| ≤ k(t)|y − x|

for every x, y ∈ Rn, u ∈ Rm, γ ∈ Γ and almost every t ∈ [0, 1].

Remark 3.1. As the aim of the paper is the comparison between chattering variational
limits and Γ-limits, our assumptions (a)–(e) deviate slightly from hypotheses 2A–2D of
[3]. In fact it is easy to see that the former are slightly milder and have been introduced
because they fit better to the framework of Γ-convergence. Moreover the fundamental
results of Artstein that are used in the sequel, namely Theorems 2.3 and 2.5 below, can
be easily proved to hold true when 2A–2D are replaced by (a)–(e). In exchange for this
slight extension, in the sequel we will be constrained to restrict to bounded controls, even
if Artstein deals with controls which are only measurable functions.

We are interested by the study of the asymptotic behaviour (as h → ∞) of the optimal
pair of control problems

min
{

∫ 1

0

f
(

t, y(t), u(t), ρh(t)
)

dt : y′(t) = g
(

t, y(t), u(t), ρh(t)
)

, y(0) = y0
}

(Ph)

where u ∈ L1(0, 1;Rm) and y ∈ W 1,1(0, 1;Rn) and ρh : [0, 1] → Γ is a sequence of
parameter functions.

Denote by P(Γ) the probability measures on Γ with the topology of the weak convergence
of measures and by M the space of functions

µ : [0, 1] → P(Γ)

which are measurable in the sense stated in Section 2. The elements of M are called
chattering parameters. We say that a sequence of chattering parameters (µh) converges
weakly to a chattering parameter µ if

∫ 1

0

[

∫

Γ

ψ(t, γ)µh(t)(dγ)
]

dt →
∫ 1

0

[

∫

Γ

ψ(t, γ)µ(t)(dγ)
]

dt (3)

as h → ∞ for all ψ ∈ Cb([0, 1]×Γ). The space of classical parameter functions can be
viewed as a subspace of M by the identification of ρ with δρ(t) that is the Dirac measure
supported at {ρ(t)}.
Remark 3.2. The space M might be endowed by another widely used notion of con-
vergence, which is the so-called narrow convergence of Young measures: a sequence of
chattering parameters (µh) is said to be narrowly converging to a chattering parameter
µ if (3) holds for every test function ψ ∈ L1(0, 1;C0(Γ)) = {ψ : [0, 1]×Γ → R : ψ is

measurable, ψ(t, ·) ∈ C0(Γ) for a.e. t ∈ [0, 1],
∫ 1

0
sup |ψ(t, ·)| dt < +∞}. It is known that

if Γ is compact then the narrow convergence coincides with the weak convergence stated
above (see Valadier [27]).
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Analogously, denote by U the space of measurable mappings

ν : [0, 1]× Γ → P(Rm)

where P(Rm) are the probability measures over Rm and once again measurability is in-
tended in the sense stated in Section 2. They are called chattering relaxed controls
(shortly relaxed controls). Classical control functions u(t) are embedded into U by the
identification with δu(t).

We are now in a position to introduce the fundamental objects of this section, that are
the chattering relaxed control problems

min
{

∫ 1

0

[

∫

Γ

[

∫

Rm

f
(

t, y(t), λ, γ
)

ν(t, γ)(dλ)
]

µ(t)(dγ)
]

dt :

y′(t) =

∫

Γ

[

∫

Rm

g
(

t, y(t), λ, γ
)

ν(t, γ)(dλ)
]

µ(t)(dγ), y(0) = y0

}

(Cµ)

where the chattering parameter µ is fixed and the minimum is taken over all the relaxed
controls ν. Moreover the cost is assumed to be +∞ if either the state equation does not
have a unique solution defined on the entire interval [0, 1] or the integrand in the cost
functional is not integrable. Anyway, here and in the rest of the paper it will be assumed
always that the involved parametrized measures are of first order, that is

t 7→
∫

Γ

[

∫

Rm

|λ| ν(t, γ)(dλ)
]

µ(t)(dγ) ∈ L1(0, 1). (4)

This object is well defined due to the measurability assumption on the parametrized mea-
sures µ and ν. Indeed, from 4. of Section 2, by taking (Ω,F) =

(

[0, 1]×Γ,L(0, 1)⊗B(Γ)
)

,
S = Rm and P(S) = P(Rm), the function ϕ : (t, γ) 7→

∫

Rm |λ| ν(t, γ)(dλ) turns out to
be L(0, 1) ⊗ B(Γ)-measurable. Afterwards, since the positive function (t, γ) 7→ ϕ(t, γ) is
L(0, 1) ⊗ B(Γ)-measurable, the function

∫

Γ
ϕ(t, γ)µ(t)(dγ) is L(0, 1)-measurable by Fu-

bini’s theorem for parametrized measures (see e.g. Valadier [27]). Moreover the assump-
tions we made on the functions f and g imply that the maps (t, γ) 7→

∫

Rm f
(

t, y(t), λ, γ
)

ν(t, γ)(dλ) and (t, γ) 7→
∫

Rm g
(

t, y(t), λ, γ
)

ν(t, γ)(dλ) are L(0, 1)⊗ B(Γ)-measurable and
the cost functional and the right hand side of the state equation are well defined (see
for instance Neveu [26], Proposition III-2-1). Moreover condition (4), together with the
assumptions (d) and (e) on the function g, implies global existence and uniqueness of the
solution to the state equation.

Following Artstein [3], by a standard construction, we can associate with a chattering
parameter µ the unique probability measure Dµ on L(0, 1)⊗ B(Γ) such that

Dµ(E×G) =

∫

E

µ(t)(G) dt (5)

for any E ∈ L(0, 1) and G ∈ B(Γ). To simplify notation, when ρ is a parameter function
and δρ(t) is the associated chattering parameter, we shall writeDρ instead ofDδρ . Moreover
(see again Neveu [26], Proposition III-2-1) for every ϕ ∈ Cb([0, 1]×Γ) we have

∫

[0,1]×Γ

ϕdDµ =

∫ 1

0

[

∫

Γ

ϕ(t, γ)µ(t)(dγ)
]

dt. (6)
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Remark 3.3. An immediate consequence of (6) is that, given a sequence (µh) of chatter-
ing parameters, µh → µ weakly if and only if Dµh

→ Dµ weakly (as probability measures).

In an analogous way, we can associate with a relaxed control ν and a chattering parameter
µ the unique probability measure Dµ(ν) on L(0, 1)⊗ B(Γ)⊗ B(Rm) such that

Dµ(ν)(E×G×B) =

∫

E

[

∫

G

ν(t, γ)(B)µ(t)(dγ)
]

dt (7)

for any E ∈ L(0, 1), G ∈ B(Γ) and B ∈ B(Rm); moreover, for every ϕ ∈ Cb([0, 1]×Γ×Rm)
we have

∫

[0,1]×Γ×Rm

ϕdDµ(ν) =

∫ 1

0

[

∫

Γ

[

∫

Rm

ϕ(t, γ, λ)ν(t, γ)(dλ)
]

µ(t)(dγ)
]

dt. (8)

We usually write Dρ(ν) instead of Dδρ(ν) and, similarly, if ν(t, γ) = δu(t) we write Dρ(u)
instead of Dρ(ν).

Definition 3.4. Let Q : [0, 1]×Rn×Rm×Γ → R be a measurable function, continuous
with respect to the variables (y, u, γ) ∈ Rn×Rm×Γ. Let W = (µh, νh) be a sequence of
chattering parameters and relaxed controls. We say that W is Q-tight if

(i) the sequence t 7→
∫

Γ

[

∫

Rm

|λ| νh(t, γ)(dλ)
]

µh(t)(dγ) is weakly relatively compact in

L1(0, 1);

(ii) for every ε > 0 there exists a compact subset Kε of Rm such that
∫ 1

0

[

∫

Γ

[

∫

Rm\Kε

|Q(t, yh(t), λ, γ)| νh(t, γ)(dλ)
]

µh(t)(dγ)
]

dt < ε ∀h ∈ N

where yh is the solution (unique) of the state equation

y′(t) =

∫

Γ

[

∫

Rm

g
(

t, y(t), λ, γ
)

νh(t, γ)(dλ)
]

µh(t)(dγ), y(0) = y0.

Proposition 3.5. If (µh, νh) satisfies condition (i) of the Definition 3.4 then the sequence
(

Dµh
(νh)

)

is relatively compact with respect to the weak convergence of probability mea-
sures.

Proof. By the Dunford-Pettis theorem, condition (i) of Definition 3.4 implies uniform
integrability, that is for every ε > 0 there exists δε > 0 such that

A ∈ L(0, 1), |A| < δε =⇒
∫

A

[

∫

Γ

[

∫

Rm

|λ| νh(t, γ)(dλ)
]

µh(t)(dγ)
]

dt < ε

where the modulus denotes Lebesgue’s measure. Then, by taking Eε a compact subset of
[0, 1] such that |[0, 1] \ Eε| < δε and B1 the closed unit ball of Rm, we have

∫

[0,1]\Eε

[

∫

Γ

[

∫

Rm\B1

νh(t, γ)(dλ)
]

µh(t)(dγ)
]

dt ≤

≤
∫

[0,1]\Eε

[

∫

Γ

[

∫

Rm

|λ| νh(t, γ)(dλ)
]

µh(t)(dγ)
]

dt < ε
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and, by (7), given any compact subset Gε of Γ, the set Kε = Eε×Gε×B1 is a compact
subset of [0, 1]×Γ×Rm such that

Dµh
(νh)

(

[0, 1]×Γ×Rm \Kε) =

∫

[0,1]\Eε

[

∫

Γ\Gε

[

∫

Rm\B1

νh(t, γ)(dλ)
]

µh(t)(dγ)
]

dt < ε.

and the sequence of probability measures
(

Dµh
(νh)

)

turns out to be tight and eventually
(see Billingsley [8], page 37) relatively compact with respect to the weak convergence.

The following closure result concernes variations in both controls and chattering param-
eters.

Theorem 3.6 ([3], Theorem 9.3)). Let Q : [0, 1]×Rn ×Rm × Γ → R be a measurable
function, continuous with respect to the variables (y, u, γ) ∈ Rn×Rm×Γ, and satisfying
conditions (a), (b), (c) above. Let µh converge weakly to µ∞ and let (νh) be relaxed controls
such that the sequence (µh, νh)h∈N∪{∞} is Q-tight. Let yh be the solution (unique) of the
state equation

y′(t) =

∫

Γ

[

∫

Rm

g
(

t, y(t), λ, γ
)

νh(t, γ)(dλ)
]

µh(t)(dγ), y(0) = y0.

If Dµh
(νh) weakly converges to Dµ∞(ν∞), then

lim
h→∞

∫ 1

0

[

∫

Γ

[

∫

Rm

Q
(

t, yh(t), λ, γ
)

νh(t, γ)(dλ)
]

µh(t)(dγ)
]

dt =

=

∫ 1

0

[

∫

Γ

[

∫

Rm

Q
(

t, y∞(t), λ, γ
)

ν∞(t, γ)(dλ)
]

µ∞(t)(dγ)
]

dt.

Remark 3.7. Theorem 3.6 holds true when in particular Q = f .

The next Theorem 3.8 gives the continuous dependence of optimal controls.

Theorem 3.8 ([3], Propositions 10.1 and 10.2). Let µh converge weakly to µ∞ and
let νh be an optimal (possibly relaxed) control of (Cµh

). Assume that (µh, νh)h∈N is f -tight.

(i) If ν∞ is a relaxed control such that Dµh
(νh) converges weakly to Dµ∞(ν∞), then ν∞

is an optimal solution of (Cµ∞).

(ii) There exists an optimal control ν∞ of (Cµ∞), and a subsequence (νhj
) such that

Dµhj
(νhj

) converges weakly to Dµ∞(ν∞). If, in particular, (Cµ∞) has a unique solu-

tion ν∞ then the whole sequence Dµh
(νh) converges weakly to Dµ∞(ν∞).

4. Gamma-convergence

In 1982 Buttazzo and Dal Maso started the study of limits of optimal control problems
by using the theory of Γ-convergence. In this section we recall the definition and the
main features of sequential Γ-limits and refer for applications to the papers cited in the
introduction.
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Let us denote by U and Y two topological spaces and let Fh : U × Y → R be a sequence
of functions. For every u ∈ U and y ∈ Y we define

Γseq(U
−, Y −) lim inf

h→∞
Fh(u, y) = inf

uh→u
inf

yh→y
lim inf
h→∞

Fh(uh, yh)

and
Γseq(U

−, Y −) lim sup
h→∞

Fh(u, y) = inf
uh→u

inf
yh→y

lim sup
h→∞

Fh(uh, yh).

If the two Γ-limits coincide, then their common value will be indicated by

Γseq(U
−, Y −) lim

h→∞
Fh(u, y).

Remark 4.1. In the subsequent sections U will be the space L∞(0, 1; co(K)) of all mea-
surable functions which take values into the convex hull of the compact subset K of Rm,
endowed with the weak* topology, while Y will be the space of absolutely continuous
functions W 1,1(0, 1;Rn) with the metric of uniform convergence. Hence the topology on
the product space U×Y is metrizable and the infima which appear in the definitions of
the Γ-limits are in fact minima. Moreover, the sequential definition of Γ-convergence
given above coincides with the topological one and Γ-limits do not change if we replace
the functions Fh by their lower semicontinuous envelopes (see Dal Maso [15], Propositions
6.11 and 8.1).

The following proposition has been proved in [11].

Proposition 4.2. Let (uh, yh) be a minimum point for Fh, or simply a pair such that

lim
h→∞

Fh(uh, yh) = lim
h→∞

[

inf
U×Y

Fh

]

.

Assume that (uh, yh) converges to (u∞, y∞) in U × Y and that there exists

F∞(u, y) = Γseq(U
−, Y −) lim

h→∞
Fh(u, y) ∀(u, y) ∈ U×Y.

Then we have

(i) (u∞, y∞) is a minimum point for F∞ on U × Y ;

(ii) lim
h→∞

[

inf
U×Y

Fh

]

= min
U×Y

F∞.

The Γ-convergence theory can be used to study the behaviour as h → ∞ of optimal pairs
of sequences of the optimal control problems (Ph) of Section 3 by setting

Jh(u, y) =

∫ 1

0

f
(

t, y(t), u(t), ρh(t)
)

dt,

Λh = {(u, y) ∈ U × Y : y′(t) = g
(

t, y(t), u(t), ρh(t)
)

, y(0) = y0, u(t) ∈ K},

Fh(u, y) = Jh(u, y) + χ
Λh
(u, y)

(9)

and using Proposition 4.2. Many papers on the subject are devoted to identify the Γ-limit
of a sequence and to try to represent it into a (Ph)-like form, that is into the sum of a
new cost functional and the indicator of a new set of admissible pairs.
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5. Continuous extensions of parametrized measures

In this section we state a theorem which extends to parametrized measures the well-known
Tietze-Uryshon extension theorem. It will be applied in the next section to prove the main
theorem on the relationship between chattering limits and Γ-limits.

Let Ω be a metric space with its Borel σ-algebra B(Ω). A parametrized measure over Rm

is a measurable mapping

ν :Ω → P(Rm)

ω 7→ ν(ω)

where P(Rm) are probability measures over Rm and measurability is intended in the
sense stated in Section 2. Anyway, as observed in Remark 2.1, this is the case when this
measurability concept coincides with measurability with respect to B(Ω) and the Borel
σ-algebra of the σ

(

Mb(Rm), C0(Rm)
)

topology on P(Rm). In the sequel also continuity is
taken with respect to the metric of Ω and the σ

(

Mb(Rm), C0(Rm)
)

topology on P(Rm).
The chattering relaxed controls of Section 3 are in fact parametrized measures over Rm

where Ω = [0, 1]× Γ.

Theorem 5.1. Let ν : Ω → P(Rm) be a parametrized measure and H be a closed subset
of Ω such that the restriction of ν to H is continuous. Then there exists a parametrized
measure Ýν : Ω → P(Rm) such that

(1) Ýν is continuous on Ω;

(2) Ýν(ω) = ν(ω) for every ω ∈ H;

(3) if K is a subset of Rm such that supp ν(ω) ⊆ K for every ω ∈ H then supp Ýν(ω) ⊆ K
for every ω ∈ Ω.

This theorem is in fact a specialization of a general theorem of Dugundji (see [17], Theorem
4.1), which we recall here for convenience of the reader.

Theorem 5.2. Let Ω be a metric space, H a closed subset of Ω, L a locally convex linear
space, and f : H → L a continuous map. Then there exists a continuous extension
Ýf : Ω → L of f ; furthermore, Ýf(Ω) is contained into the convex hull of f(H).

To obtain Theorem 5.1 by Theorem 5.2 we can choose L = Mb(Rm) endowed with the
σ
(

Mb(Rm), C0(Rm)
)

topology. With this topology L is a locally convex linear space. To
conclude is then enough to observe that the set of probability measures with support in
K is a convex subset of Mb(Rm).

6. Relationship between chattering limits and Γ-limits

In order to state a theorem relating Γ-limits of sequences of optimal control problems
with their chattering variational limits, let us set
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˜J(µ, ν, y) =

∫ 1

0

[

∫

Γ

[

∫

Rm

f
(

t, y(t), λ, γ
)

ν(t, γ)(dλ)
]

µ(t)(dγ)
]

dt,

˜Λ =
{

(µ, ν, y) ∈ M×U×Y :

: y′(t) =

∫

Γ

[

∫

Rm

g
(

t, y(t), λ, γ
)

ν(t, γ)(dλ)
]

µ(t)(dγ), y(0) = y0

}

,

˜F (µ, ν, y) = ˜J(µ, ν, y) + χ
˜Λ
(µ, ν, y).

(10)

Definition 6.1. LetK be a subset of Rm. A relaxed control ν is said to be equi-supported
in K if supp ν(t, γ) ⊆ K for every γ ∈ Γ and almost every t ∈ [0, 1].

Let K be a compact subset of Rm and U be the space L∞(0, 1; co(K)) endowed with its
weak* topology and Y the space W 1,1(0, 1;Rn) with the metric of uniform convergence.
On the integrand f we assume conditions (a), (b), (c), (d), (e). Our main goal is to prove
the following theorem.

Theorem 6.2. If the sequence of parameter functions (ρh) converges to a chattering one,
say µ in the space M, that is

δρh(t) → µ weakly, (11)

then for every u ∈ U and y ∈ Y

Γseq(U
−, Y −) lim

h→∞
Fh(u, y) = min{ ˜F (µ, ν, y) : ν ∈ B(u)} (12)

where

B(u) =
{

ν ∈ U : ν is equi-supported in K and
∫

Γ

[

∫

Rm

λ ν(t, γ)(dλ)
]

µ(t)(dγ) = u(t) a.e. t ∈ [0, 1]
}

.

Remark 6.3. If Γ = Rd then hypothesis (11) is satisfied by a subsequence if (ρh) is
bounded in L1 (see [3], Corollary 7.3). Moreover, if µ is associated with a measurable
function, that is µ(t) = δρ(t) for a suitable measurable function ρ, then ρh → ρ in measure
and hence in the L1 norm. On the contrary, if (ρh) is weakly, but not norm converging in
L1, then µ is not associated to any measurable function (see Valadier [27], Theorems 19
and 20).

Remark 6.4. We remark that when the sequence of parameter functions ρh is constant,
that is ρh = ρ for any h ∈ N, then for all h ∈ N it is Fh = F and the Γ-limit

Γseq(U
−, Y −) lim

h→∞
Fh

is the lower semicontinuous envelope of F on the space U × Y , and formula (12) reduces
to the one discovered by Mascolo and Migliaccio [23].

The rest of the current section is devoted to prove Theorem 6.2. To this aim we need of
the following approximation lemma.
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Lemma 6.5. Let ρh be a sequence of parameter functions weakly converging in M to a
chattering one µ and let ν be a relaxed control equi-supported in K. Then there exists
a sequence of (continuous) relaxed controls νh, equi-supported in K such that Dρh(νh)
converges weakly to Dµ(ν).

Proof. Let’s begin by showing that there exists a family of relaxed controls {νε(t, γ)}ε
continuous at every point (t, γ) ∈ [0, 1]×Γ and equi-supported in K such that

Dµ(ν
ε) → Dµ(ν) weakly as ε → 0, (13)

that is to say (see (8)) that as ε goes to 0 the function of ε

∫ 1

0

[

∫

Γ

[

∫

Rm

ϕ(t, γ, λ) νε(t, γ)(dλ)
]

µ(t)(dγ)
]

dt (14)

converges to
∫ 1

0

[

∫

Γ

[

∫

Rm

ϕ(t, γ, λ) ν(t, γ)(dλ)
]

µ(t)(dγ)
]

dt (15)

for every bounded and continuous ϕ : [0, 1]×Γ×Rm → R.

To this end, let us consider the measure Dµ on [0, 1]×Γ defined in (5) by means of the
chattering parameter µ. By applying Lusin’s theorem (see Federer [19], Theorem 2.3.5
and Bertsekas and Shreve [7], Proposition 7.20) to the measurable mapping

ν : [0, 1]×Γ → P(Rm)
(t, γ) 7→ ν(t, γ),

for any ε ∈ (0, 1) there exists a compact set Hε ⊆ [0, 1]×Γ such that the restriction ν|Hε

is continuous and Dµ(Hε) ≥ 1 − ε. Moreover we can, of course, assume that ε1 < ε2
imply Hε2 ⊆ Hε1 . By Theorem 5.1, for every ε ∈ (0, 1) there exists a relaxed control νε

which is continuous on [0, 1]×Γ and such that νε(t, γ) = ν(t, γ) for every (t, γ) ∈ Hε and
supp νε(t, γ) ⊆ K for every (t, γ) ∈ [0, 1]×Γ. Let

H :=
⋃

ε∈(0,1)

Hε.

As (Hε)ε is a monotone family of measurable sets, then H is measurable and Dµ(H) = 1.
If (t, γ) ∈ H then there exists ε0 ∈ (0, 1) such that νε(t, γ) = ν(t, γ) for every ε ∈ (0, ε0)
and this implies that as ε goes to 0 the functions

(t, γ) 7→
∫

Rm

ϕ(t, γ, λ) νε(t, γ)(dλ) (16)

converge Dµ-almost everywhere to the function

(t, γ) 7→
∫

Rm

ϕ(t, γ, λ) ν(t, γ)(dλ).

As moreover
∣

∣

∣

∣

∫

Rm

ϕ(t, γ, λ) νε(t, γ)(dλ)

∣

∣

∣

∣

≤ max
λ∈K

|ϕ(t, γ, λ)| =: ψ(t, γ),
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and ψ is a bounded and continuous function, then the desired convergence of (14) to (15)
can be obtained by applying the Lebesgue’s dominated convergence theorem to the family
of functions (16).

As a second step, let us show that as h → ∞

Dρh(ν
ε) → Dµ(ν

ε) weakly ∀ε ∈ (0, 1), (17)

that is, for every bounded and continuous function ϕ : [0, 1]×Γ×Rm → R and for every
ε ∈ (0, 1) the sequence

∫ 1

0

[

∫

Γ

[

∫

Rm

ϕ(t, γ, λ) νε(t, γ)(dλ)
]

δρh(t)(dγ)
]

dt

converges, as h → ∞, to

∫ 1

0

[

∫

Γ

[

∫

Rm

ϕ(t, γ, λ) νε(t, γ)(dλ)
]

µ(t)(dγ)
]

dt.

As δρh → µ weakly, to prove the convergence above is enough to check that the function
defined on [0, 1]×Γ by

(t, γ) 7→
∫

Rm

ϕ(t, γ, λ) νε(t, γ)(dλ)

is bounded and continuous. Boundedness is trivial, while to prove continuity is easy.
Indeed, as the relaxed controls νε are equi-supported in K then this compact set can
replace the integration domain Rm and, if (tn, γn) is a sequence converging to (t0, γ0) in
[0, 1]×Γ then the sequence of functions defined on K by ϕ(tn, γn, ·) converges uniformly
to ϕ(t0, γ0, ·). Finally, this fact, together with the continuity of νε in (t0, γ0) implies that

lim
n→∞

∫

Rm

ϕ(tn, γn, λ) ν
ε(tn, γn)(dλ) =

∫

Rm

ϕ(t0, γ0, λ) ν
ε(t0, γ0)(dλ)

which proves the desired continuity.

By putting together (13) and (17) and using a suitable diagonal argument we eventually
get that there exists a sequence (εh) such that, as h → ∞

Dρh(ν
εh) → Dµ(ν) weakly

and the result is achieved by taking, of course, νh = νεh .

As the diagonal process mentioned above deviates from the standard one, we spend a
couple of words to illustrate it. Let’s denote by d the metric of the weak convergence of
probability measures. As

Dρh(ν
1/2) → Dµ(ν

1/2) weakly as h → ∞

then there exists n1 ∈ N such that

d
(

Dρh(ν
1/2), Dµ(ν

1/2)
)

≤ 1

2
for every h ≥ n1.
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Let’s define then εn1 = 1/2. In the same way, as

Dρh(ν
1/4) → Dµ(ν

1/4) weakly as h → ∞

then there exists n2 > n1 ∈ N such that

d
(

Dρh(ν
1/4), Dµ(ν

1/4)
)

≤ 1

4
for every h ≥ n2

and define then εn = 1/2 if n1 < n < n2 and εn2 = 1/4. By induction we can construct
an increasing sequence of integers (nk)k such that

d
(

Dρh(ν
1/2k), Dµ(ν

1/2k)
)

≤ 1

2k
for every h ≥ nk

and define then εn = 1/2k−1 if nk−1 < n < nk and εnk
= 1/2k. Then we have that for

every k ∈ N there exists nk such that, for every h ≥ nk

d
(

Dρh(ν
εh), Dµ(ν)

)

≤ d
(

Dρh(ν
εh), Dµ(ν

εh)
)

+d
(

Dµ(ν
εh), Dµ(ν)

)

≤ 1

2k
+d

(

Dµ(ν
εh), Dµ(ν)

)

and the conclusion follows from the fact that εh goes to 0 when k goes to ∞.

Proof of Theorem 6.2. First of all we observe that ν(t, γ) = δu(t) ∈ B(u), hence B(u) 6=
∅ ∀u ∈ U . Let us begin by showing that for all (u, y) ∈ U × Y and ν ∈ B(u) it is

Γseq(U
−, Y −) lim sup

h→∞
Fh(u, y) ≤ ˜F (µ, ν, y).

By Remark 4.1 it is equivalent to prove that

Γseq(U
−, Y −) lim sup

h→∞
F h(u, y) ≤ ˜F (µ, ν, y)

where F h denotes the lower semicontinuous envelope of Fh in the topology of U×Y .

The case where (µ, ν, y) 6∈ ˜Λ is trivial because the right hand side is +∞. Suppose then

(µ, ν, y) ∈ ˜Λ and ν ∈ B(u). We have to show that there exists a sequence (uh, yh) such
that

uh → u weakly* in L∞(0, 1; co(K)), (18)

yh → y uniformly, (19)

lim sup
h→∞

F h(uh, yh) ≤ ˜J(µ, ν, y). (20)

Let (νh)h be a sequence of relaxed controls equi-supported in K and such that

Dρh(νh) → Dµ(ν) weakly as h → ∞; (21)

the existence of such a sequence is ensured by Lemma 6.5. Then define for every h ∈ N

uh(t) =

∫

Rm

λ νh
(

t, ρh(t)
)

(dλ), (22)
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and yh as the solution to the Cauchy problem

{

y′(t) =
∫

Rm g
(

t, y(t), λ, ρh(t)
)

νh
(

t, ρh(t)
)

(dλ)

y(0) = y0
(23)

that is

yh(t) = y0 +

∫ t

0

[

∫

Rm

g
(

τ, yh(τ), λ, ρh(τ)
)

νh
(

τ, ρh(τ)
)

(dλ)
]

dτ.

As the supports of the measures νh(t, γ) are all contained in K, then uh ∈ L∞(0, 1;K)
and (18) follows by (21) and the fact that ν ∈ B(u). To prove (19) we note that thanks
to the assumptions (d) and (e) and the fact that all the relaxed controls νh have support
in K, the functions yh are equi-bounded and, by (e), they are also equi-continuous. Thus
by the Ascoli-Arzelà’s theorem there exist y ∈ C[0, 1] and a subsequence (yhk

) such that

yhk
→ y uniformly.

By (e) follows easily that y = y and the whole sequence converges.

It remains to prove (20). The value of the functional F h at the point (uh, yh) has been
characterized by Mascolo and Migliaccio in [23] to be the minimum of the functional

˜F (ρh, σ, yh) =

∫ 1

0

[

∫

Rm

f
(

t, yh(t), λ, ρh(t)
)

σ(t)(dλ)
]

dt

taken on the measurable mappings σ : [0, 1] → P(K) such that

∫

Rm

λσ(t)(dλ) = uh(t) (24)

and that

y′h(t) =

∫

Rm

g
(

t, yh(t), λ, ρh(t)
)

σ(t)(dλ), y(0) = y0 (25)

Here, as usual, P(K) is the space of probability measures over K and measurability is
taken in the sense stated in Section 2. Since (22) and (23), σh(t) = νh(t, ρh(t)) is among
the admissible relaxed controls satisfying (24) and (25), and therefore we have

F h(uh, yh) ≤ ˜F (ρh, σh, yh)

=

∫ 1

0

[

∫

Rm

f
(

t, yh(t), λ, ρh(t)
)

νh(t, ρh(t))(dλ)
]

dt

=

∫ 1

0

[

∫

Γ

[

∫

Rm

f
(

t, yh(t), λ, γ
)

νh(t, γ)(dλ)
]

δρh(t)(dγ)
]

dt

(26)

and since Dρh(νh) → Dµ(ν) weakly, by Theorem 3.6 (see also Remark 3.7) the right hand

side of (26) converges to ˜J(µ, ν, y) and (20) holds (the f -tightness condition required by
Theorem 3.6 is trivially satisfied here because ν is equi-supported in K together with each
element of the sequence νh).
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To complete the proof it remains to show that also the inequality

inf{ ˜F (µ, ν, y) : ν ∈ B(u)} ≤ Γseq(U
−, Y −) lim inf

h→∞
Fh(u, y)

holds true. Let (u, y) ∈ U × Y be such that

Γseq(U
−, Y −) lim inf

h→∞
Fh(u, y) < +∞.

Then there exists (uh, yh) ∈ Λh such that, as h → ∞

uh → u weakly* in L∞(0, 1; co(K))

yh → y uniformly

lim
h→∞

Jh(uh, yh) = Γseq(U
−, Y −) lim inf

h→∞
Fh(u, y).

We have to show that there exists ν ∈ B(u) such that (µ, ν, y) ∈ ˜Λ and

˜J(µ, ν, y) ≤ lim
h→∞

Jh(uh, yh). (27)

Since
∫

Γ

[

∫

Rm

|λ| δuh(t)(dλ)
]

δρh(t)(dγ) = |uh(t)|

and because (uh)h is equi-bounded then the sequence
(

µh, νh
)

, with µh(t) = δρh(t) and
νh(t, γ) = δuh(t), satisfies condition i) of the Definition 3.4 and, by Proposition 3.5, the
sequence of measures

(

Dρh(uh)
)

h
associated to (δρh , δuh

) is relatively compact with re-
spect to the weak convergence of probability measures on [0, 1] × Γ × Rm. Therefore
a subsequence, let us say Dρhj

(uhj
), converges weakly to a probability measure σ on

[0, 1]× Γ×Rm. Then, denoted by Π[0,1]×ΓDρhj
(uhj

) and Π[0,1]×Γσ the projections of such

measures on [0, 1]×Γ, we have that

Π[0,1]×ΓDρhj
(uhj

) → Π[0,1]×Γσ weakly as j → ∞

and, of course, Π[0,1]×ΓDρhj
(uhj

) = Dρhj
, where Dρhj

is the measure on [0, 1]×Γ defined

in (5). But, on the other hand, assumption (11) implies that Dρhj
→ Dµ weakly, so that,

by uniqueness of the limit we obtain that

Π[0,1]×Γσ = Dµ

that is

σ(E×G×Rm) =

∫

E

µ(t)(G) dt

for every pair of measurable sets E and G. By the disintegration theorem (see for instance
Valadier [27], Theorem at page 182 and the following Remark 1) the measure σ can be
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disintegrated with respect to its projection Dµ, that is, there exists a measurable family
(

ν(t, γ)
)

(t,γ)∈[0,1]×Γ
of probabilities such that

σ(E×G×B) =

∫

E

[

∫

G

[

∫

B

ν(t, γ)(dλ)
]

µ(t)(dγ)
]

dt

for every E×G×B ∈ L(0, 1)⊗B(Γ)⊗B(Rm), turning then out to be equal to the measure
Dµ(ν) associated to (µ, ν) . Summarizing, we have seen that there exists a suitable relaxed
control ν such that

Dρhj
(uhj

) → Dµ(ν) weakly as j → ∞. (28)

By well-known properties of the weak convergence of probability measures follows imme-
diately that the supports of ν(t, γ) are contained all in K so that it is trivial to check that
the family (δρh , δuh

)h ∪ (µ, ν) is f -tight and by Theorem 3.6 we get

lim
j→∞

Jhj
(uhj

, yhj
) = lim

j→∞
˜J(µhj

, νhj
, yhj

) = ˜J(µ, ν, y)

that is (27) holds. It remains to check that ν ∈ B(u) and that (µ, ν, y) ∈ ˜Λ. We already
remarked that ν is equi-supported in K. Equality

∫

Γ

[

∫

Rm

λ ν(t, γ)(dλ)
]

µ(t)(dγ) = u(t) a.e. t ∈ [0, 1]

follows by passing to the limit as j → ∞ each side of

∫ 1

0

[

∫

Γ

[

∫

Rm

λϕ(t) δuhj
(t)(dλ)

]

δρhj (t)(dγ)
]

dt =

∫ 1

0

uhj
(t)ϕ(t) dt

where ϕ : [0, 1] → Rm is any continuous function. Indeed, by (28) and (8) the left hand
side converges to

∫ 1

0

[

∫

Γ

[

∫

Rm

λϕ(t) ν(t, γ)(dλ)
]

µ(t)(dγ)
]

dt

and since uh → u weakly* in L∞(0, 1; co(K)) then the right one tends to

∫ 1

0

u(t)ϕ(t)dt.

To conclude we have to show that (µ, ν, y) ∈ ˜Λ. We observe that the fact that (uh, yh) ∈ Λh

can be written, using the previous notation, as

yh(t) = y0 +

∫ t

0

[

∫

Γ

[

∫

Rm

g
(

τ, yh(τ), λ, γ
)

δuh(τ)(dλ)
]

δρh(τ)(dγ)
]

dτ.

Since yh → y uniformly, then by hypothesis (e) we have

lim
h→∞

∫ t

0

[

∫

Γ

[

∫

Rm

(

g
(

τ, y(τ), λ, γ
)

− g
(

τ, yh(τ), λ, γ
)

)

δuh(τ)(dλ)
]

δρh(τ)(dγ)
]

dτ = 0



56 L. Freddi / Γ-convergence and Chattering Limits in Optimal Control Theory

and being Dρhj
(uhj

) → Dµ(ν) weakly we obtain

lim
j→∞

∫ t

0

[

∫

Γ

[

∫

Rm

g
(

τ, y(τ), λ, γ
)

δuhj
(τ)(dλ)

]

δρhj (τ)(dγ)
]

dτ =

=

∫ t

0

[

∫

Γ

[

∫

Rm

g
(

τ, y(τ), λ, γ
)

ν(τ, γ)(dλ)
]

µ(τ)(dγ)
]

dτ.

Summarizing, we have

lim
j→∞

yhj
(t)= y0 + lim

j→∞

∫ t

0

[

∫

Γ

[

∫

Rm

g
(

τ, yhj
(τ), λ, γ

)

δuhj
(τ)(dλ)

]

δρhj (τ)(dγ)
]

dτ

= y0 +

∫ t

0

[

∫

Γ

[

∫

Rm

g
(

τ, y(τ), λ, γ
)

ν(τ, γ)(dλ)
]

µ(τ)
]

(dγ)dτ

and, since yh(t) → y(t), we get

y(t) = y0 +

∫ t

0

[

∫

Γ

[

∫

Rm

g
(

τ, y(τ), λ, γ
)

ν(τ, γ)(dλ)
]

µ(τ)(dγ)
]

dτ

that is (µ, ν, y) ∈ ˜Λ.

7. A representation theorem

When the space of parameters is also compact then formula (12), which identifies the Γ-
limit using parametrized measures, can be made more explicit. For the case of a constant
sequence a representation theorem has been obtained by Mascolo and Migliaccio ([22],
Theorem 4.4). We extend that result to the general case of the variational convergence.
Let be given a sequence of optimal control problems

min
{

∫ 1

0

f
(

t, y(t), u(t), ρh(t)
)

dt :
y′(t) = g

(

t, y(t), u(t), ρh(t)
)

,
y(0) = y0,
u(t) ∈ K a.e. t ∈ [0, 1]

}

where K is a compact subset of Rm, Γ is a compact metric space, ρh : [0, 1] → Γ is
a sequence of parameter functions. We have already observed in Section 4 that the
variational convergence problem for such a sequence consists in finding the Γ-limit

Γseq(U
−, Y −) lim

h→∞
Fh(u, y) (29)

where U = L∞(0, 1; co(K)) with the weak* topology, Y = W 1,1(0, 1;Rn) with the metric
of uniform convergence, and

Fh(u, y) =

∫ 1

0

f
(

t, y(t), u(t), ρh(t)
)

dt+ χ









y′(t) = g
(

t, y(t), u(t), ρh(t)
)

, u(t) ∈ K

y(0) = y0.

The main result of this section is given by the following theorem which solves the problem
of the explicit characterization of the Γ-limit (29).
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Theorem 7.1. Let us assume (a), (b), (c), (d), (e) of Section 3. If the sequence of
parameter functions (ρh) converges weakly to a chattering parameter µ, that is

δρh(t) → µ weakly,

and if there exists a finite positive measure µ̄ such that µ(t) is absolutely continuous with
respect to µ̄ for every t ∈ [0, 1], then for every u ∈ U and y ∈ Y we have

Γseq(U
−, Y −) lim

h→∞
Fh(u, y) =

∫ 1

0

f̌
(

t, y(t), u(t), y′(t)
)

dt+ χ
y(0) = y0

where the integrand f̌ is obtained in the following way: setting for every (t, y, λ, γ, v) ∈
[0, 1]×Rn×Rm×Γ×Rn

ϕ(t, y, λ, γ, v) = f(t, y, λ, γ) + χ{v = g(t, y, λ, γ), λ ∈ K}

and denoting by

ϕ∗(t, y, λ∗, γ, v∗) = sup{λ∗λ+ v∗v − ϕ(t, y, λ, γ, v) : λ ∈ Rm, v ∈ Rn}

the Fenchel duality transform of the function ϕ with respect to the variables λ and v, the
others being frozen, then

f̌(t, y, λ, v) = sup{λ∗λ+ v∗v −
∫

Γ

ϕ∗(t, y, λ∗, γ, v∗)µ(t)(dγ) : λ∗ ∈ Rm, v∗ ∈ Rn}. (30)

This expression for the integrand f̌ is summarized in formula (2). The whole section is
devoted to prove the theorem. First of all we recall that if ϕ : Rd →]−∞,+∞] is a proper
function (i.e. such that ϕ(x) < +∞ for at least one point x ∈ Rd) then the conjugate of
ϕ is the function defined on Rd by

ϕ∗(x∗) = sup
{

x∗x− ϕ(x) : x ∈ Rd
}

.

If ϕ is a proper function defined on a proper subset of Rd then we denote by ϕ∗ the
conjugate of the extension of ϕ to Rd by +∞. We recall that ϕ∗ is convex and lower
semicontinuous and that ϕ = ϕ∗∗ for every proper, convex, lower semicontinuous function
ϕ. We denote moreover by

∆d = {(α0, . . . , αd) ∈ Rd+1 : αj ≥ 0 and
d

∑

j=0

αj = 1}

the d-simplex of Rd, and recall that if M is a subset of Rd then

co(M) = {
d

∑

j=0

αjxj : (α0, . . . , αd) ∈ ∆d, x0, . . . , xd ∈ M}

is the convex hull of M . If ϕ is the indicator function of M then ϕ∗∗ is the indicator of
the closed convex hull, co(M), of M .
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Assume, from now on, the hypotheses (a), (b), (c), (d), (e) of Section 3. Let µ(t) be the
weak limit of the chattering parameter functions δρh(t). For every (t, y) ∈ [0, 1] × Rn we
set

E(t, y) = {(λ, v, γ) ∈ Rm × Rn × Γ : v = g(t, y, λ, γ), λ ∈ K}

and consider the functional defined on Rm × Rn by

qt,y(λ, v) =

(∫

Γ

χ∗
E(t,y)

(λ∗, v∗, γ)µ(t)(dγ)

)∗

(λ, v)

= sup
(λ∗,v∗)∈Rm×Rn

{

λ∗λ+ v∗v −
∫

Γ

max
λ∈K

{λ∗λ+ v∗g(t, y, λ, γ)}µ(t)(dγ)
}

.
(31)

Let now set Q(t, y) = {(λ, v) : qt,y(λ, v) = 0}. Since qt,y ≥ 0, then

Q(t, y) = {(λ, v) : qt,y(λ, v) ≤ 0}. (32)

Set finally

Λ =
{

(u, y) ∈ U × Y :
(

u(t), y′(t)
)

∈ Q(t, y(t)) a.e. t ∈ [0, 1], y(0) = y0}. (33)

Proposition 7.2. Let Fh be as in (9). Then the following proposition holds

Γseq(U
−, Y −) lim

h→∞
Fh(u, y) < +∞ ⇒ (u, y) ∈ Λ.

Proof. By formula (12), the Γ-limit is finite if and only if

min{ ˜F (µ, ν, y) : ν ∈ B(u)} < +∞

and by definition of ˜F this implies that there exists ν ∈ B(u) such that (µ, ν, y) ∈ ˜Λ.
Then for almost every t ∈ [0, 1]

y′(t) =

∫

Γ

[

∫

K

g
(

t, y(t), λ, γ
)

ν(t, γ)(dλ)
]

µ(t)(dγ)

u(t) =

∫

Γ

[

∫

K

λ ν(t, γ)(dλ)
]

µ(t)(dγ)

and substituting into the expression (31) of qt,y(t)
(

u(t), y′(t)
)

we obtain for a.e. t ∈ [0, 1]

qt,y(t)
(

u(t), y′(t)
)

= sup
λ∗, v∗

{

∫

Γ

[

∫

K

(

λ∗λ+ v∗g
(

t, y(t), λ, γ
)

)

ν(t, γ)(dλ)+

−max
λ∈K

{λ∗λ+ v∗g
(

t, y(t), λ, γ
)

}
]

µ(t)(dγ)
}

≤ 0

that is (u, y) ∈ Λ.

In the sequel we shall omit, for simplicity when not essential, the indication of the variables
t and y. In this way the construction of the set Q becomes

Q = {(λ, v) : q(λ, v) ≤ 0}
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where

q(λ, v) =

(∫

Γ

χ∗
E
(λ∗, v∗, γ)µ(dγ)

)∗

(λ, v)

and
E = {(λ, v, γ) ∈ Rm × Rn × Γ : v = g(λ, γ), λ ∈ K}.

In the same way we set

E ′ = {(λ, γ, v, z) ∈ Rm×Γ×Rn×R : v = g(λ, γ), z = f(λ, γ), λ ∈ K}

q′(λ, v, z) =

(∫

Γ

χ∗
E′ (λ

∗, v∗, z∗, γ)µ(dγ)

)∗

(λ, v, z)

Q′ = {(λ, v, z) : q′(λ, v, z) ≤ 0}.

(34)

For (λ, v) ∈ Q let Q′
λ,v = {z ∈ R : (λ, v, z) ∈ Q′} that is the (λ, v)-section of the set Q′.

Remark 7.3. Q′
λ,v 6= ∅ for every λ, v ∈ Q. Indeed, a straightforward computation shows

that whenever λ, v ∈ Q thenQ′ contains at least one among
(

λ, v,
∫

Γ
minλ∈K f(λ, γ)µ(dγ)

)

and
(

λ, v,
∫

Γ
maxλ∈K f(λ, γ)µ(dγ)

)

.

Lemma 7.4. Let M ′(t, y) be the set defined by

M ′ =
{

(λ, v, z)∈K×Rm×R : there exists λ(·) ∈ M(Γ;K) such that

λ =

∫

Γ

λ(γ)µ(dγ), v =

∫

Γ

g
(

λ(γ), γ
)

µ(dγ), z =

∫

Γ

f
(

λ(γ), γ
)

µ(dγ)
}

.
(35)

The following equalities hold

Q′(t, y) = coM ′(t, y) = coM ′(t, y).

Proof. First of all, let us prove that for every λ∗ ∈ Rm, v∗ ∈ Rn, z∗ ∈ R and for every
fixed y ∈ Rn and every t ∈ [0, 1] the following equality holds

sup
λ∈M(Γ;K)

{

∫

Γ

(

λ∗λ(γ) + v∗g
(

t, y, λ(γ), γ
)

+ z∗f
(

t, y, λ(γ), γ
)

)

µ(t)(dγ)
}

=

=

∫

Γ

max
λ∈K

{λ∗λ+ v∗g(t, y, λ, γ) + z∗f(t, y, λ, γ)}µ(t)(dγ).
(36)

The inequality ≤ is trivial. To prove the opposite, let us consider the marginal function

V (γ) = max
λ∈K

{λ∗λ+ v∗g(t, y, λ, γ) + z∗f(t, y, λ, γ)}

and the marginal set-valued map

S(γ) = {λ ∈ K : V (γ) = λ∗λ+ v∗g(t, y, λ, γ) + z∗f(t, y, λ, γ)}.

By Theorem 6 of Aubin and Cellina [5], Sec. 2, Ch. 1, V is a continuous real function on
Γ, and S is upper semicontinuous. By the continuity of f and g with respect to λ, for
every γ the sets S(γ) are closed and non empty. By Proposition 2 of [5], Sec. 1, Ch. 1, the
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map S has a closed graph and therefore it admits a measurable selection (see Castaing
and Valadier [14], Theorem III.30), that is there exists a measurable function λ : Γ → K
such that

V (γ) = λ∗λ(γ) + v∗g(t, y, λ(γ), γ) + z∗f(t, y, λ(γ), γ) for every γ ∈ Γ.

Then we have
∫

Γ

V (γ)µ(t)(dγ)=

∫

Γ

(

λ∗λ(γ) + v∗g
(

t, y, λ(γ), γ
)

+ z∗f
(

t, y, λ(γ), γ
)

)

µ(t)(dγ)

≤ sup
λ∈M(Γ;K)

{

∫

Γ

(

λ∗λ(γ) + v∗g
(

t, y, λ(γ), γ
)

+ z∗f
(

t, y, λ(γ), γ
)

)

µ(t)(dγ)
}

that is the desired inequality. By (36), for every (λ, v, z) ∈ Rm×Rn×R, we get

χ
coM ′(t,y)

(λ, v, z) =

= sup
λ∗,v∗,z∗

{

λ∗λ+ v∗v + z∗z+

− sup
λ∈M(Γ;K)

{

∫

Γ

(

λ∗λ(γ) + v∗g
(

t, y, λ(γ), γ
)

+ z∗f
(

t, y, λ(γ), γ
)

)

µ(t)(dγ)
}

}

= sup
λ∗,v∗,z∗

{

λ∗λ+ v∗v + z∗z+

−
∫

Γ

max
λ∈K

{

λ∗λ+ v∗g
(

t, y, λ, γ
)

+ z∗f
(

t, y, λ, γ
)}

µ(t)(dγ)
}

= qt,y(λ, v).

By the properties of f and g it follows that M ′(t, y) is a compact subset of Rm×Rn×R,
so that coM ′(t, y) = coM ′(t, y).

Let’s define now

f̌(λ, v)=

(∫

Γ

(

f(λ∗, γ) + χ{v∗ = g(λ∗, γ), λ∗ ∈ K}

)∗
µ(dγ)

)∗

(λ, v) =

= sup
(λ∗,v∗)∈Rm×Rn

{

λ∗λ+ v∗v −
∫

Γ

max
λ∈K

{λ∗λ+ v∗g(λ, γ)− f(λ, γ)}µ(dγ)
}

.
(37)

The following lemma, similar to Lemma 7.7 of [22], states the most useful properties of
the function f̌ .

Lemma 7.5. We have

f̌(λ, v) ≤ b for every (λ, v, b) ∈ Q′; (38)

f̌(λ, v) = infQ′
λ,v for every (λ, v) ∈ Q; (39)

(

λ, v, f̌(λ, v)
)

∈ Q′ for every (λ, v) ∈ Q. (40)

Namely, if v =
∫

Γ

[ ∫

Rm g(λ, γ) ν(γ)(dλ)
]

µ(dγ) and b =
∫

Γ

[ ∫

Rm f(λ, γ) ν(γ)(dλ)
]

µ(dγ),
from (38) we obtain

f̌(λ, v) ≤
∫

Γ

[

∫

Rm

f(λ′, γ) ν(γ)(dλ′)
]

µ(dγ) (41)
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for any measurable family {ν(γ)}γ∈Γ of probability measures over Rm satisfying

∫

Γ

[

∫

Rm

λ′ ν(γ)(dλ′)
]

µ(dγ) = λ.

Finally
f̌(λ, v) = +∞ if and only if (λ, v) 6∈ Q. (42)

Proof. Let (λ, v, b) ∈ Q′. This means that

0 ≥ q′(λ, v, b) = sup
λ∗,v∗,z∗

{

λ∗λ+ v∗v + z∗b−
∫

Γ

max
λ∈K

{λ∗λ+ v∗g(λ, γ) + z∗f(λ, γ)}µ(dγ)
}

which implies λ∗λ+ v∗v + z∗b ≤
∫

Γ
maxλ∈K{λ∗λ+ v∗g(λ, γ) + z∗f(λ, γ)}µ(dγ) for every

λ∗ ∈ Rm, v∗ ∈ Rn, z∗ ∈ R, so that, taking z∗ = −1, we get

λ∗λ+ v∗v − b ≤
∫

Γ

max
λ∈K

{λ∗λ+ v∗g(λ, γ)− f(λ, γ)}µ(dγ)

for every λ∗ ∈ Rm and v∗ ∈ Rn, and (38) follows from the definition of f̌ . Let us prove (39).
By (38) we have f̌(λ, v) ≤ infQ′

λ,v. Assume by contradiction that f̌(λ, v) < infQ′
λ,v; then

(

λ, v, f̌(λ, v)
)

6∈ Q′. By definition of Q′ and Q we have q′
(

λ, v, f̌(λ, v)
)

> 0 and q(λ, v) ≤ 0
that is

sup
λ∗,v∗,z∗

{λ∗λ+ v∗v + z∗f̌(λ, v)−
∫

Γ

max
λ∈K

{λ∗λ+ v∗g(λ, γ) + z∗f(λ, γ)}µ(dγ)} > 0 (43)

and

sup
λ∗,v∗

{λ∗λ+ v∗v −
∫

Γ

max
λ∈K

{λ∗λ+ v∗g(λ, γ)}µ(dγ)} ≤ 0. (44)

From (43) it follows that there exists ε > 0, λ∗ ∈ Rm, v∗ ∈ Rn, z∗ ∈ R such that

λ∗λ+ v∗v + z∗f̌(λ, v) ≥
∫

Γ

max
λ∈K

{λ∗λ+ v∗g(λ, v) + z∗f(λ, v)}µ(dγ) + ε. (45)

From (44)) and (45) it follows immediately that z∗ 6= 0. Let us show that in fact z∗ < 0.
By Remark 7.3, there exists b ∈ R such that (λ, v, b) ∈ Q′; then

λ∗λ+ v∗v + z∗b ≤
∫

Γ

max
λ∈K

{λ∗λ+ v∗g(λ, γ) + z∗f(λ, γ)}µ(dγ)

and combining with (45) we get z∗(f̌(λ, v) − b) > 0 which, by (38), implies z∗ < 0.
Dividing by |z∗| in (45) we have

λ∗λ

|z∗|
+

v∗v

|z∗|
− f̌(λ, v) ≥

∫

Γ

max
λ∈K

{λ
∗λ

|z∗|
+

v∗g(λ, γ)

|z∗|
− f(λ, γ)}µ(dγ) + ε

|z∗|
.

Setting s∗ = λ∗/|z∗|, w∗ = v∗/|z∗|, we have

f̌(λ, v) +
ε

|z∗|
≥ s∗λ+ w∗v −

∫

Γ

max
λ∈K

{s∗λ+ w∗g(λ, γ)− f(λ, γ)}µ(dγ)
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which contradicts the definition of f̌(λ, v) and therefore proves (39) and (40). The proof
of (41) is straightforward. It remains to prove (42). If (λ, v) ∈ Q, by Remark 7.3 there
exists b ∈ R such that (λ, v, b) ∈ Q′, then, by (38), f̌(λ, v) ≤ b < +∞. Conversely,
suppose that (λ, v) 6∈ Q, that is q(λ, v) > 0. Then, by the definition of q, there exist
λ∗ ∈ Rm, v∗ ∈ Rn, such that

λ∗λ+ v∗v −
∫

Γ

max
λ∈K

{λ∗λ+ v∗g(λ, γ)}µ(dγ) > 0.

Then, by setting a = λ∗λ+ v∗v and b =

∫

Γ

max
λ∈K

{λ∗λ+ v∗g(λ, γ)}µ(dγ), we have b < a. If

λ∗
n = nλ∗ and v∗n = nv∗, we have, by definition of f̌

f̌(λ, v) ≥ sλ∗
n + wv∗n −

∫

Γ

max
λ∈K

{λ∗
nλ+ v∗ng(λ, γ)− f(λ, γ)}µ(dγ)

≥ na−
∫

Γ

max
λ∈K

{λ∗
nλ+ v∗ng(λ, γ)}µ(dγ) +

∫

Γ

min
λ∈K

f(λ, γ)µ(dγ)

≥ n(a− b) +

∫

Γ

min
λ∈K

f(λ, γ)µ(dγ).

and passing to the limit as n → +∞ we get f̌(λ, v) = +∞.

Consider the following functionals defined on U×Y :

J̌(u, y) =

∫ 1

0

f̌
(

t, y(t), u(t), y′(t)
)

dt, F̌ (u, y) = J̌(u, y) + χ
Λ
(u, y) (46)

where Λ is defined as in (33).

Theorem 7.6. Let Fh and F̌ be as in (9) and in (46). Then for each (u, y) ∈ U×Y

Γseq(U
−, Y −) lim

h→∞
Fh(u, y) = F̌ (u, y).

To prove the theorem we make use of the following measurable selection lemma (see
Warga [28], Theorem I.7.10).

Lemma 7.7. Let K be a compact metric space, and Φ : [0, 1] × K → Rn a measurable
function, continuous with respect to the second variable for almost every t ∈ [0, 1]. Let
g : [0, 1] → Rn be measurable and such that

g(t) ∈ Φ(t,K) = {y ∈ Rn : y = Φ(t, λ), λ ∈ K} for a.e. t ∈ [0, 1].

Then there exists a measurable function v : [0, 1] → K such that

g(t) = Φ(t, v(t)) for a.e. t ∈ [0, 1].

Proof of Theorem 7.6. Let (u, y) 6∈ Λ; by Theorem 7.2 and by definition of F̌ we have

Γseq(U
−, Y −) lim

h→∞
Fh(u, y) = F̌ (u, y) = +∞.
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Let now (u, y) ∈ Λ; by (41) we have

F̌ (u, y) ≤
∫ 1

0

[

∫

Γ

[

∫

Rm

f
(

t, y, λ, γ
)

ν(t, γ)(dλ)
]

µ(t)(dγ)
]

dt

for every ν ∈ B(u), so that inequality

F̌ (u, y) ≤ Γseq(U
−, Y −) lim

h→∞
Fh(u, y)

follows directly by (12). Let us prove the opposite inequality. By definition of Λ (see (33))
and by (40), we have

(

u(t), y′(t), f̌(t, y(t), u(t), y′(t))
)

∈ Q′(t, y(t)) a.e. t ∈ [0, 1]. (47)

By Lemma 7.4 we have

Q′(t, y) = coM ′(t, y) for every (t, y) ∈ [0, 1]×Rn (48)

where M ′(t, y) is defined as in (35). Then, by (47) and (48) we have

(

u(t), y′(t), f̌(t, y(t), u(t), y′(t))
)

∈ coM ′(t, y(t)) a.e. t ∈ [0, 1]. (49)

Consider now the function

Φ(t, v) =
m+n+1
∑

j=0

αj

(

Φb(t, νj),Φg(t, νj),Φf (t, νj)
)

where
v =

(

α0, · · · , αm+n, ν0(·), · · · , νm+n(·)
)

∈ ∆m+n×M(Γ;P(K))m+n+1

and

Φb(t, νj) =

∫

Γ

[

∫

K

λ νj(γ)(dλ)
]

µ(t)(dγ),

Φg(t, νj) =

∫

Γ

[

∫

K

g
(

t, y(t), λ, γ
)

νj(γ)(dλ)
]

µ(t)(dγ),

Φf (t, νj) =

∫

Γ

[

∫

K

f
(

t, y(t), λ, γ
)

νj(γ)(dλ)
]

µ(t)(dγ).

(50)

In view of the application of Lemma 7.7 we have to look at v as an element of a space K
with a compact metric which ensures continuity of Φ with respect to v. To this aim, let
us consider the linear mapping

Dµ̄ :M(Γ;P(K))→ P([0, 1]×Γ×K)
ν 7→ Dµ̄(ν)

defined in Section 3. Substituting µ(t)(dγ) with
dµ(t)

dµ̄
(γ)µ̄(dγ) in (50) and using (8),

we can observe that Φ(t, v) depends only on the Dµ̄-equivalence class of the controls νj.
Therefore v can be eventually considered as an element of the set

K = ∆m+n×
(

M(Γ;P(K))/kerDµ̄

)m+n+1
.
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As Γ is compact then the space P([0, 1]×Γ×K) with the topology d of weak convergence
of probability measures is metric and compact. Moreover, with an argument similar to
that used in the proof of (27), one can prove that Dµ̄ has a closed range. Then the inverse
image topology on M(Γ;P(K)) is compact but, as Dµ̄ may be not injective, it may be
not metrizable. Nevertheless, on M(Γ;P(K))/kerDµ̄ the quotient topology is compact
and metrizable, a metric dµ being given by

dµ([ν1], [ν2]) := d(Dµ̄(ν1), Dµ̄(ν2)).

With this topology on M(Γ;P(K))/kerDµ̄ and the norm topology of Rm+n+1 on ∆m+n

the function Φ is continuous with respect to variable v (see Remark 3.2). Hence the
selection Lemma 7.7 applies and there exist measurable functions αj(t) and νj(t, ·) with
(

α0(t), . . . , αn+m+1(t)
)

∈ ∆m+n+1 and νj ∈ M([0, 1]×Γ,P(K)), j = 0, . . . ,m+ n+ 1 such
that for almost every t ∈ [0, 1]

u(t) =
m+n+1
∑

j=0

αj(t)

∫

Γ

[

∫

K

λ νj(t, γ)(dλ)
]

µ(t)(dγ)

y′(t) =
m+n+1
∑

j=0

αj(t)

∫

Γ

[

∫

K

g
(

t, y(t), λ, γ
)

νj(t, γ)(dλ)
]

µ(t)(dγ)

f̌
(

t, y(t), u(t), y′(t)
)

=
m+n+1
∑

j=0

αj(t)

∫

Γ

[

∫

K

f
(

t, y(t), λ, γ
)

νj(t, γ)(dλ)
]

µ(t)(dγ).

Setting

ν(t, γ) =
m+n+1
∑

i=0

αj(t)νj(t, γ)

we have ν ∈ B(u), (µ, ν, y) ∈ ˜Λ, and

F̌ (u, y) =

∫ 1

0

f̌
(

t, y, u, y′
)

dt

=

∫ 1

0

[

∫

Γ

[

∫

Rm

f
(

t, y, λ, γ
)

ν(t, γ)(dλ)
]

µ(t)(dγ)
]

dt

≥ min
{

˜F (µ, ν, y) : ν ∈ B(u)
}

.

Proof of Theorem 7.1. Thanks to Theorem 7.6, the proof is reduced to show that

F̌ (u, y) = J̌(u, y) + χ
y(0) = y0

for each (u, y) ∈ U×Y. (51)

The indication of the variables (t, y), which was previously omitted, becomes now essential.
We shall consider the set Q(t, y) defined in (32) and the set Q′(t, y) defined in (34) but
with the suitable indication of the variables t and y. By applying Lemma 7.5 to these
sets we obtain in particular

f̌(t, y, λ, v) = +∞ ⇐⇒ (λ, v) 6∈ Q(t, y)
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i.e., by definition of the set Λ,

f̌
(

t, y(t), u(t), y′(t)
)

= +∞ a.e. t ∈ [0, 1], y(0) = y0 ⇐⇒ (u, y) 6∈ Λ.

Hence we get (51).

8. Remarks and examples

In [10] Buttazzo and Cavazzuti studied the variational convergence of sequences of optimal
control problems by considering state equations where the state and the control variable
was separated, in the sense that the function g was taken to be of the form

g(t, y, λ, γ) = a(t, y, γ) +B(t, y, γ) · b(t, λ, γ) (52)

where
a : [0, 1]×Rn×Γ → Rn

B : [0, 1]×Rn×Γ → Rnk

b : [0, 1]×Rm×Γ → Rk

was measurable functions measurable in t and continuous in y, λ and γ satisfying condi-
tions of type (d), (e) (Section 3). Let us recall here a slightly simplified version of some
results of [10] which will be compared with those obtained in the previous sections. Let

f : [0, 1]×Rn×K×Γ → [0,+∞[

be a function satisfying conditions of type (a), (b), (c) and let g be as in (52) where the
functions a, B and b are assumed to be continuous in y, λ and γ. Let

˜f(t, y, λ, z, γ) = f(t, y, λ, γ) + χ
z = b(t, λ, γ)

, λ ∈ K. (53)

Let ρh be a sequence of parameter functions taking values in the compact metric space Γ
and such that, as h → ∞

˜f ∗(·, y, λ∗, z∗, ρh(·)) → ϕ̃(·, y, λ∗, z∗) weakly in L1(0, 1)

a(·, y, ρh(·)) → a(·, y) weakly* in L∞(0, 1;Rn)

B(·, y, ρh(·)) → B(·, y) strongly in L1(0, 1;Rn)

(54)

for every y ∈ Rn, λ∗ ∈ Rm, z∗ ∈ Rk.

Under such assumptions Buttazzo and Cavazzuti proved that

Γseq (U
−, Y −) lim

h→∞
Fh(u, y) =

= inf
{

∫ 1

0

ϕ̃∗(t, y(t), u(t), z
)

dt : y′(t) = a(t, y) +B(t, y)z, y(0) = y0

}

=

∫ 1

0

f
(

t, y(t), u(t), y′(t)
)

dt+ χ
y(0) = y0

where the function f is defined by

f(t, y, λ, v) = inf
z∈Rk

{

ϕ̃∗(t, y, λ, z) : v = a(t, y) +B(t, y)z
}

. (55)
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Under the additional assumptions that B(t, y, γ) = B(t, y), that is B does not depend on
γ we shall prove that, when (ρh) weakly converge to a limit parametrized measure µ(t),
then

f
(

t, y, λ, v
)

= f̌
(

t, y, λ, v
)

for a.e. t ∈ [0, 1] and every y ∈ Rn, λ ∈ K, v ∈ Rn (56)

where f̌ is defined as in (30). This means that f and f̌ provide the same integral repre-
sentation of the Γ-limit.

The following lemma will be useful.

Lemma 8.1. Let ˜f and ϕ̃ be the functions introduced in (53) and (54) and ρh → µ weakly
in M. Then the following equality holds for every y ∈ Rn and almost every t ∈ [0, 1]

ϕ̃(t, y, λ∗, z∗) =

∫

Γ

˜f ∗(t, y, λ∗, z∗, γ)µ(t)(dγ) ∀λ∗ ∈ Rm, ∀z∗ ∈ Rk. (57)

Proof. For every function ψ ∈ L∞(0, 1) we have that

∫ 1

0

ψ(t) ˜f ∗(t, y, λ∗, z∗, ρh(t)
)

dt =

∫ 1

0

[

∫

Γ

ψ(t) ˜f ∗(t, y, λ∗, z∗, γ) δρh(t)(dγ)
]

dt. (58)

Thanks to the continuity assumption with respect to y, λ and γ and the compactness of
Γ and K, the function (t, γ) → ψ(t) ˜f ∗(t, y, λ∗, z∗, γ) belongs to the space L1(0, 1;C0(Γ))
for every y, λ∗ and z∗. Hence, by Remark 3.2, the sequence in (58) converges to

∫ 1

0

ψ(t)
[

∫

Γ

˜f ∗(t, y, λ∗, z∗, γ)µ(t)(dγ)
]

dt

that is

˜f ∗(·, y, λ∗, z∗, ρh(·)) →
∫

Γ

˜f ∗(·, y, λ∗, z∗, γ)µ(·)(dγ) weakly in L1(0, 1)

and the claim follows by (54) and the uniqueness of the limit.

The proof of (56) relies now on an algebraic computation. Indeed, following the rules for
constructing the function f̌ given in the statement of Theorem 7.1

ϕ(t, y, λ, γ, v) = f(t, y, λ, γ) + χ{v = a(t, y) +B(t, y)b(t, λ, y), λ ∈ K}

so that

ϕ∗(t, y, λ∗, γ, v∗)= v∗a(t, y) + sup
λ∈K

{

λ∗λ+B(t, y)∗v∗b(t, λ, y)− f(t, y, λ, γ)
}

= v∗a(t, y)− ˜f ∗(t, y, λ∗, B(t, y)∗v∗, γ
)

where B(t, y)∗ denotes the transposed of the matrix B(t, y). Then, using Lemma 8.1, we
get

∫

Γ

ϕ∗(t, y, λ∗, γ, v∗)µ(t)(dγ)= v∗a(t, y) +

∫

Γ

˜f ∗(t, y, λ∗, B(t, y)∗v∗, γ
)

µ(t)(dγ)

= v∗a(t, y)− ϕ̃
(

t, y, λ∗, B(t, y)∗v∗
)
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so that the expression of f̌ is, in this case, given by

f̌(t, y, λ, v)= sup
(λ∗,v∗)∈Rm×Rn

{λ∗λ+ v∗(v − a(t, y))− ϕ̃
(

t, y, λ∗, B(t, y)∗v∗
)

}

= sup
v∗∈Rn

{

v∗(v − a(t, y)) + sup
λ∗∈Rm

{λ∗λ− ϕ̃
(

t, y, λ∗, B(t, y)∗v∗
)

}
}

= inf
z∈Rk

{

ϕ̃∗(t, y, λ, z) : B(t, y)z = v − a(t, y)}

= f(t, y, λ, v)

where the third equality of the chain comes by the application of Theorem I-22 of Castaing
and Valadier [14].

One of the most important features of [3] is that it deals with fully nonlinear constraints
in the sense that the state and control variables are not separable in the state equation.
Thanks to the work of Artstein, and to the representation Theorem 7.1, we are able to
write explicitely the Γ-limit of a sequence of problems with fully nonlinear state equations
depending on highly oscillating parameters. This fact is enlightened by the following
example which, due to this nonlinearity, cannot be developed into the framework of the
previous papers [10], [11], [12], [13], [20].

Example 8.2. Let us consider a sequence of optimal control problems of the form

min
{

∫ 1

0

[ψ(t, y)u+ ϕ(t, y)] dt : (u, y) ∈ Λh}

where the functions ψ, ϕ : [0, 1]×R → [0,+∞) satisfy

|ψ(t, x)− ψ(t, y)| ≤ L(t)|x− y| for a suitable L ∈ L1(0, 1), (59)

|ϕ(t, y)| ≤ a(t) + b|y|p for suitable a ∈ L1(0, 1), b > 0 and p ≥ 1. (60)

and the set of the admissible pairs is given by

Λh = { (u, y) ∈ L∞(0, 1)×W 1,1(0, 1) :

: y′ = ρh(t) cos(uy), y(0) = 0, u(t) ∈ [−π

8
,
π

8
] a.e.}

where ρh is the h-th Rademacher function defined on [0, 1] by

ρh(t) =

{

1 if t ∈ [ n
2h
, n+1

2h
) with n even

−1 otherwise.

With the same notation of the previous section we can assume

U =
{

u ∈ L∞(0, 1) : u(t) ∈ [−π

8
,
π

8
] a.e. t ∈ [0, 1]

}

that is K = [−π
8
, π
8
]. In order to give the representation of

Γseq(U
−, Y −) lim

h→∞
Fh(u, y)
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where

Fh(u, y)= J(u, y) + χ
Λh
(u, y)

J(u, y)=

∫ 1

0

[

ψ(t, y)u+ ϕ(t, y)
]

dt

we note that hypotheses (59) and (60) ensure continuity to the cost functional J : U×Y →
[0,+∞) so that

Γseq(U
−, Y −) lim

h→∞
Fh(u, y) = J(u, y) + Γseq(U

−, Y −) lim
h→∞

χ
Λh
(u, y).

We can now apply Theorem 7.1 by taking f = 0, Γ = [−1, 1], and

g(t, y, λ, γ) = γ cos(λy).

The weak limit of the sequence of parameter functions ρh turns out to be the measure
(independent of t)

µ(t) =
δ−1 + δ1

2
.

and straightforward computations lead to

(∫

Γ

(

χ













v∗ = g(t, y, λ∗, γ)
λ∗ ∈ K

)∗
µ(t)(dγ)

)∗

(λ, v) = χ
Λ
(λ, v)

where

Λ = {(λ, v) ∈ R2 : |v| ≤ β(λ, y)}

and the function β is given by

β(λ, y) =































sin(|λ|y) sin[(λ+
π

8
)y] if λ ∈ [−π

8
,− π

16
]

sin2(
π

16
y) if λ ∈ [− π

16
,
π

16
]

sin(|λ|y) sin[(π
8
− λ)y] if λ ∈ [

π

16
,
π

8
]

Summarizing, the limit problem turns out to be

min{J(u, y) : |y′| ≤ β(u, y), y(0) = 0, u(t) ∈ [−π

8
,
π

8
] a.e. t ∈ [0, 1]}.

Acknowledgements. The author wish to thank Prof. Giuseppe Buttazzo for many helpful

discussions on the subject and an anonymous referee for his deep and very useful comments

and suggestions, from which the final version of the paper greatly benefited. This work was

supported by the project “Phase Transition and Surface Tension”, contract CHRX-CT94-0608

of the program HCM of the Commission of the European Communities.



L. Freddi / Γ-convergence and Chattering Limits in Optimal Control Theory 69

References

[1] Z. Artstein: Rapid oscillations, chattering systems, and relaxed controls, SIAM J. Control
Optim. 27 (1989) 940–948.

[2] Z. Artstein: A variational limit that yields chattering systems, Ann. Inst. H. Poincaré Anal.
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Anal. Non Linéaire 6 (1989) 151–160.

[11] G. Buttazzo, G. Dal Maso: Γ-convergence and optimal control problems, J. Optim. Theory
Appl. 38 (1982) 385–407.

[12] G. Buttazzo, L. Freddi: Sequences of optimal control problems with measures as controls,
Adv. Math. Sci. Appl. 2(1) (1993) 215–230.

[13] G. Buttazzo, L. Freddi: Optimal control problems with weakly converging input operators,
Discrete Contin. Dynam. Systems 1(3) (1995) 401–420.

[14] C. Castaing, M. Valadier: Convex analysis and measurable multifunctions, Lecture Notes
in Mathematics 8, Springer-Verlag, Berlin et al., 1977.

[15] G. Dal Maso: An introduction to Γ-convergence, Birkhäuser, Boston, 1993.
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