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15 av. René Cassin, 97715 Saint Denis Messag. Cedex, France.
email: hbonnel@univ-reunion.fr

Received November 24, 1998
Revised manuscript received April 19, 2000

The aim of this paper is to present several versions of vector variational principles related to some type
of metrically consistent ε- efficiency and to the approximate necessary first order efficiency condition.

Keywords: Vector optimization, multicriteria optimization, ε-efficiency, stationary sequences, Kuhn-
Tucker sequences, minimizing sequences, Pareto optimizing sequences, weakly efficient sequences, convex
analysis, variational analysis, Ekeland variational principle

1. Introduction

For a scalar convex function a point which is “almost minimizingÔ is not necessarily an
“almost stationaryÔ one, as we can see considering the convex smooth function (see [11])
f : R2 → R, f(x1, x2) = exp(x2

1 − x2) and the sequence n 7→ xn = (n, n2 + ln
√
n). We

have f(xn) = 1/
√
n → 0 = inf f but ∇f(xn) = (2

√
n, −1/

√
n) 6→ (0, 0).

Relations between stationary and minimizing sequences have been considered in [11, 20]
for constrained scalar mathematical programming problems, where it is also shown the
following, which is immediate from Ekeland variational principle.

Theorem 1.1. Let f : Rn → R be a continuously differentiable function. Then for any
minimizing sequence (xk), there exists a nearby sequence (yk) such that

(i) lim
k→+∞

(xk − yk) = 0, (ii) lim
k→+∞

f(yk) = inf
x∈Rn

f(x), (iii) lim
k→+∞

∇f(yk) = 0.

The aim of this paper is to present some generalizations of the above result to nonsmooth
vector optimization problems in infinite dimension spaces.

For a scalar minimization problem the optimal value inf f(Rn) is a singleton (eventually
−∞). A different situation occurs in a vector minimization problem where the set of
“optimalÔ values (which is the “infimalÔ set) may be infinite and sometimes unbounded.
There are several way to define an approximate efficient solution. We introduce some types
of ε-efficiency (with ε a positive scalar) which are metrically consistent in the sense that
each ε−efficient solution is located in an ε-neighborhood of the infimal set. Approaching
the infimal set in an asymptotic manner we consider the asymptotically weakly Pareto
optimizing (called also asymptotically weakly efficient) sequences. On the other hand the
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approximate necessary first order weakly-efficiency condition leads us to define the notion
of weakly scalarly stationary (or weakly Kuhn-Tucker) sequence.

2. Preliminaries

2.1. The infimal set

Let Y be a topological space endowed with a partial order relation denoted ≤C (C is a
subset of Y related to the order relation).

Let T ⊂ Y. Denote
min(T |C) = {a ∈ T | a ≤C x, ∀x ∈ T}

MIN(T |C) = {a ∈ T | ∀x ∈ T, x ≤C a =⇒ x = a}.

Changing ≤C in ≥C we obtain the sets max(T |C) and MAX(T |C). Also

inf(T |C) = max({x ∈ Y| x ≤C y, ∀y ∈ T}|C),

and in the same way sup(T |C) is the least upper bound of T .

Note that the above subsets may be empty, and min(T |C), inf(T |C), max(T |C), sup(T |C)
contain no more than one element. Remark also that their definition does not use the
topological structure of Y .
The minimal set MIN(T |C) (resp. the maximal set MAX(T |C)) is also called Pareto
or efficient set when dealing with a minimization (resp. maximization) problem. The
efficient set may be infinite or even unbounded.

The chronic fault of the sets inf(T |C) and sup(T |C) is that they may be “farÔ from T
(e.g. if Y = R2, C = R2

+, y ≤C y′ ⇐⇒ y′ − y ∈ C and T is the unit (closed or open)
disk, then infT = {(−1, −1)} and supT = {(1, 1)} which are located at the Euclidean
distance of

√
2 − 1 > 0 from T ). That is why we will consider the infimal set (see also

[18] or [24]) as follows:

INF(T |C) = {a ∈ T̄ | ∀x ∈ T, x ≤C a =⇒ x = a},

where T̄ stands for the closure of the set T (and reversing the order we define the supremal
set SUP(T |C)). This set coincides with MIN(T |C) (resp. MAX(T |C)) if T is closed.
Moreover

min(T |C) ⊂ MIN(T |C); MIN(T̄ |C) ⊂ INF(T |C); MIN(T |C) ⊂ INF(T |C)

and it is possible to have strictly inclusions. If min(T |C) is not empty (hence is a single-
ton), then we have min(T |C) = inf(T |C) = MIN(T |C). Note also that we may have

inf(T |C) 6⊂ INF(T |C).

Example 2.1. Let Y = R2 with the norm topology, and C = R2
+, y ≤C y′ ⇐⇒ y′−y ∈ C.

(1) For T = [0, 1[×]0, 1[ we have

min(T |C) = MIN(T |C) = ∅, MIN(T̄ |C) = inf(T |C) = {(0, 0)}

and INF(T |C) = [0, 1]× {0}.
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(2) For T = {(cos t, sin t)| t ∈ [0, π[} we have

min(T |C) = ∅, MIN(T |C) = {(1, 0)},

min(T̄ |C) = MIN(T̄ |C) = inf(T |C) = {(−1, 0)}, INF(T |C) = {(1, 0), (−1, 0)}.
(3) For T = {(x1, x2)| x2

1 + x2
2 < 1} we have

min(T |C) = MIN(T |C) = ∅, inf(T |C) = {(−1,−1)},

INF(T |C) = {(cos t, sin t)| t ∈ [π,
3π

2
]} = MIN(T̄ |C).

2.2. The weakly infimal set in the policy space

Throughout this paper Y denotes a real Banach space (the “policy spaceÔ) endowed with
a closed convex pointed1 cone C (i.e.,C = C̄, R+C + R+C ⊂ C and C ∩ −C = {0}).
This cone defines a (partial) order relation in Y given by : x ≤C y ⇐⇒ y − x ∈ C
compatible with vector addition and positive scalar multiplication. Thus Y is a (partially)
ordered Banach space. We will assume that the interior intC is not empty. The cone
C0 = intC ∪{0} defines another partial order relation x ≤C0 y ⇐⇒ y−x ∈ C0, and when
x ≤C0 y, x 6= y we put x <C y, i.e.

x <C y ⇐⇒ y − x ∈ intC.

We will also denote by B the closed unit ball in any normed vector space. If S ⊂ Y , and
y ∈ Y , we denote d(y, S) = infz∈S ‖y − z‖, with the convention d(y, ∅) = +∞.

Let T ⊂ Y . Since we are interested by vector minimization problems, in the sequel we will
study only the (weakly) minimal or infimal sets, but obviously reversing the inequality
(or replacing C by −C) we may obtain analogous properties for the (weakly) maximal or
supremal sets.

We will define the weakly efficient (or minimal) set by

MINw(T |C) = MIN(T |C0) = {y ∈ T | 6 ∃z ∈ T : z <C y}
= {y ∈ T | − y + T ⊂ Y \ (− intC)}.

It is easy to see the following.

Remark 2.2. MINw(T |C) contains MIN(T |C), and if T is closed, then MINw(T |C) is
closed.

Also, we define the weakly infimal set by

INFw(T |C) = INF(T |C0) = {y ∈ T̄ | 6 ∃z ∈ T : z <C y}
= {y ∈ T̄ | − y + T ⊂ Y \ (− intC)}.

It is obvious that
INF(T |C) ⊂ INFw(T |C).

1Some results of this paper hold even when C is not pointed, but to simplify the presentation we make
this hypothesis.
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Proposition 2.3.
INFw(T |C) = MINw(T̄ |C),

(hence INFw(T |C) is closed) and

MINw(T |C) ⊂ INFw(T |C) ⊂ bdT,

where bdT is the boundary of T .

Proof. The inclusion MINw(T̄ |C) ⊂ INFw(T |C) being obvious, let us prove the converse.
Since Y \ intC is closed, for each y ∈ INFw(T |C) we have y − T̄ = y − T ⊂ Y \ intC,
hence y ∈ MINw(T̄ |C).

The inclusion MINw(T |C) ⊂ INFw(T |C) is obvious. Let y ∈ INFw(T |C). If y /∈ bdT
it follows that y ∈ intT . Hence for sufficiently small ε > 0 we have y + εB ⊂ T . Take
v ∈ intC∩B. It follows that y−εv <C y with y−εv ∈ T contradicting y ∈ INFw(T |C).

It is easy to adapt some existence results known for the efficient set (see e.g. [19, Chapter
2, section 3]), in the case of the weakly infimal set. Thus, we can state the following.

Proposition 2.4. Let T be such that, for some y ∈ T , the set Ty = (y − C) ∩ T̄ is

C-complete i.e., Ty contains no decreasing net (yα)α∈I such that Ty ⊂
⋃

α∈I

(T \ (yα − C)).

Then INFw(T |C) is not empty.

Remark 2.5. If the set Ty is compact then it is C-complete.

Let us consider the set

C+ = {λ ∈ Y ∗| 〈λ, y〉 ≥ 0 ∀y ∈ C},

where Y ∗ is the topological dual of the space Y and 〈·, ·〉 stands for the duality product.

Theorem 2.6. Assume intC+ 6= ∅ and let T ⊂ Y be such that there exists λ ∈ intC+,
bounded from below on T . Then, for every y ∈ T \INFw(T |C), there exists z ∈ INFw(T |C)
such that z <C y.

Proof. We need first the following.

Lemma 2.7. Suppose intC+ not empty and let λ ∈ intC+. Then

inf
y∈C, ‖y‖=1

〈λ, y〉 ≥ d(λ, Y ∗ \ C+).

Proof. For each positive number r < α = d(λ, Y ∗ \ C+) we have λ + rB ⊂ C+. Let
y ∈ C, ‖y‖ = 1. According to the Hahn-Banach theorem, there exists e ∈ Y ∗, ‖e‖ = 1,
such that 〈e, y〉 = 1. Thus 0 ≤ 〈λ − re, y〉, hence r ≤ 〈λ, y〉. Letting r → α− we obtain
the result.

Now, we go back to the proof of the theorem. This can be done using “Phelps’ extem-
ization principleÔ (see [1, Theorem 2.5.]), but thanks to one of the referees, we can give a
direct proof.
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Let λ and y as stated in the theorem. There exists y′ ∈ T such that y′ <C y. Let us show
that the section Ty′ = (y′ − C) ∩ T̄ is C-complete. Indeed, if (yα) is a decreasing net in
Ty′ , then (〈λ, yα〉) is a decreasing, bounded from below net in R, hence it is fundamental.
According to the previous Lemma, for every e ∈ C \ {0}, we have

〈λ, e〉 ≥ ‖e‖ · d(λ, Y ∗ \ C+).

This implies that (yα) is fundamental, hence it has a limit, say ȳ ∈ Ty′ . This shows that the
family (Ty′ \ (yα −C)) cannot cover Ty′ , hence Ty′ is C-complete. Thus INFw(Ty′|C) 6= ∅,
and since INFw(Ty′|C) ⊂ INFw(T |C), any z ∈ INFw(Ty′|C) satisfies the conclusion of the
theorem.

2.3. The extended space Y

We will briefly recall some results presented in [8].

In the real convex analysis, we allow the values +∞, −∞ in order to handle convex
functions defined on the whole space X, and for other practical reasons. For the same
reasons we will extend the space Y to a topological partially ordered space Y = Y ∪
{+∞C ,−∞C} where +∞C and −∞C are two distinct elements not belonging to Y (some
other results about the extended space can be found in [9, 22]).

A neighborhood of +∞C (−∞C) in Y is a set N , (−N resp.) such that {+∞C}∪(y+C) ⊂
N for some y ∈ Y . Then the topology τ̄ of Y is defined by

τ̄ = τ ∪ {O ⊂ Y | O is a neighborhood of +∞C or of −∞C

and O \ {+∞C , −∞C} ∈ τ},

where τ is the topology of Y . Thus, the imbedding Y ⊂ Y is continuous, and Y is dense
in Y .

The algebraic operations are extended in the same way as in the convex analysis (see [8]).
Note that +∞C −∞C = +∞C ; 0 · ∞C = 0Y .

We will extend the relations ≤C , ≤C0 and <C to Y by

∀y ∈ Y, −∞C ≤C y ≤ +∞C , −∞C ≤C0 y ≤ +∞C , −∞C <C y <C +∞C .

Note that, despite the analogy with the extended real line R̄, the space Y is in general
not compact (even in the case Y = R2 and C = R2

+).

Remark 2.8. Following our definition, a sequence (yn)n ⊂ Y tends to +∞C in Y iff
for every y ∈ Y there exists some n0 such that, for all n ≥ n0 we have y ≤C yn. Also
yn → −∞C iff −yn → +∞C .

Remark 2.9. We have also that yn → +∞C (or yn → −∞C) and yn ∈ Y implies
‖yn‖ → +∞. Of course, the converse is false.

For T ⊂ Y , T̄ stands for the closure in the space Y , and to simplify the notation, we put
MINT = MIN(T |C), MINw T = MINw(T |C), INFw T = INFw(T |C) etc. Note that, if
T 6= {+∞C}, then

INFw T = {y ∈ T̄ | − y + T ⊂ Y \ (− intC ∪ {−∞C})}.
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All the results about the (weakly) minimal or infimal set presented in the previous section
in the space Y , hold for the space Y too, excepting the relation INFw(T |C) ⊂ bdT .
Moreover, according to the definition, we obtain easily the following.

Proposition 2.10. The following statements are equivalent:

(i) −∞C ∈ INFw(T ).

(ii) INFw(T ) = {−∞C}.
(iii) ∃(yn) ⊂ T yn → −∞C.

(iv) −∞C ∈ T̄ .

Proposition 2.11. Let T ⊂ Y ∪ {+∞C} such that −∞C /∈ T̄ and T 6= {+∞C}. Then

INFw T = INFw(T \ {+∞C}),

and these sets coincide with the weakly infimal set associated to T \ {+∞C} in the space
Y .

Proposition 2.12. Let (yn) be a sequence in Y . Then

λ ∈ C+ \ {0}, yn → +∞C =⇒ 〈λ, yn〉 → +∞. (1)

Proof. Let e ∈ intC. Then for any λ ∈ C+ \ {0} we have 〈λ, e〉 > 0 (otherwise, let r > 0
such that e + rB ⊂ C; we have λ(e + rB) = rλ(B) ⊂ R+, λ(−B) = λ(B) wich implies
λ = 0). For any k ∈ R+ there exists some n0 ∈ N such that ke ≤ yn for all n > n0. Thus
k〈λ, e〉 ≤C 〈λ, yn〉.

We will extend each element λ ∈ C+ \ {0} to a function (denoted λ too) λ : Y → R̄
putting

〈λ,+∞C〉 = +∞; 〈λ,−∞C〉 = −∞.

We will denote

Λ = {λ : Y → R̄| λ|Y ∈ C+; ‖λ|Y ‖ = 1; λ(−∞C) = −∞, λ(+∞C) = +∞}.

Notice also the following converse of Proposition 2.12.

Proposition 2.13. Let C be a polyhedral convex pointed cone with non empty interior
(thus Y must be a finite dimensional space!). Then, for any sequence (yn) ⊂ Y such that

∀λ ∈ Λ, 〈λ, yn〉 → +∞,

we have
yn → +∞C .

Proof. Since C+ is a polyhedral cone (see [23]), there exists {λ1, . . . , λp} ⊂ Λ such that

C+ = {
p

∑

i=1

αiλi| (α1, . . . , αp) ∈ Rp
+}.

Let e ∈ intC. For each i ∈ {1, . . . , p} there exists ni ∈ N such that

〈λi, yn〉 ≥ 〈λi, e〉, ∀n > ni.
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Let n0 = max(n1, . . . , np). Then

∀λ ∈ C+, n > n0, 〈λ, yn〉 ≥ 〈λ, e〉.

This implies
∀n > n0, e ≤C yn,

hence yn → +∞C .

2.4. Extended values vector optimization problem

Unless otherwise stated, X stands for a reflexive Banach space. Let us consider a map
F : X → Y . We will denote by dom(F ) the effective domain of F , i.e.

dom(F ) = {x ∈ X| F (x) 6= +∞C}.

We say that F is proper if dom(F ) 6= ∅ and F (x) 6= −∞C , ∀x ∈ dom(F ).

For the vector “minimizationÔ problem:

(VMP ) “minimizeÔ F (x), x ∈ X

we say that a ∈ X is a weakly Pareto solution if

F (a) ∈ MINw F (X),

i.e., there is no x ∈ X such that F (x) <C F (a). The weakly Pareto (or efficient) set will
be denoted by Ew = F−1(MINw F (X)). Note that, if F : X → Y is continuous, then Ew

is closed.

Note also that, if −∞C ∈ F (X), then Ew = F−1({−∞C}).
Let F : X → Y be a map.

Definition 2.14. We say that F is C-convex if

∀θ ∈ [0, 1], ∀x, x′ ∈ X, F ((1− θ)x+ θx′) ≤C (1− θ)F (x) + θF (x′).

Definition 2.15. We say that F is C-semicontinuous if the level sets

L(F ;α) = {x ∈ X| F (x) ≤C α}

are closed for all α ∈ Y .

For each λ ∈ Λ, we will consider the function Fλ : X → R̄ given by

Fλ = λ ◦ F.

Definition 2.16. We say that F is positively lower semicontinuous (continuous) if for
any λ ∈ Λ, the function Fλ is lower semicontinuous (continuous resp.).

Remark 2.17.
• F is C-convex if and only if Fλ is convex for every λ ∈ C+ \ {0}.
• If F is C-convex then L(F ;α) is a convex set in X for all α ∈ Y .
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• If F is positively lower semicontinuous, then F is C-semicontinuous (because L(F ;α)
= ∩λ∈C+\{0}{x ∈ X| Fλ(x) ≤ 〈λ, α〉}).

• If F is C-convex the effective domain dom(F ) is a convex set.

Definition 2.18. Let F : X → Y be a C-convex map (GÝateaux differentiable, with
dom(F ) open resp.). A point a ∈ X (a ∈ dom(F ) resp.) is called weakly scalarly
stationary, if there exists λ ∈ Λ such that

0 ∈ ∂Fλ(a),

where

∂Fλ(a) = {x∗ ∈ X∗| Fλ(x)− Fλ(a) ≥ 〈x∗, x− a〉, ∀x ∈ X}

is the usual subdifferential of the extended real values convex function Fλ at a (the
GÝateaux derivative resp.).

We denote by Sw the set of the weakly scalarly stationary points.

Proposition 2.19.
(i) If F : X → Y is C-convex, then Ew = Sw.

(ii) If F : X → Y is GÝateaux differentiable with dom(F ) open, then Ew ⊂ Sw.

Proof. The part (i) has been proved in [8], and (ii) can be found in [6] for Fréchet
differentiable functions, and it is easy to generalize it for GÝateaux differentiable functions.

Let F : X → Y ∪ {+∞C} be a proper map.

We will denote

INFw (F ) = INFw(F (X)) = {y ∈ F (X)| F (X)− y ⊂ Y \ (− intC ∪ {−∞C})}

= {y ∈ F (X)| F (X) ∩ (y − intC) = ∅}.

Remark 2.20. It is easy to see that:

(i) F (Ew) = F (X) ∩ INFw(F ) ⊂ INFw(F ).

(ii) Ew = F−1(INFw(F )).

(iii) Ew may be empty while INFw(F ) is not empty ( see [6]).

Definition 2.21. The point a ∈ X is ε− weakly efficient if there exists e ∈ B, such that
F (a)− εe ∈ INFw(F ), where ε > 0.

Remark 2.22. Note that, for F (a) ∈ Y , we have that a is ε− weakly efficient iff
d(F (a); INFw(F )) ≤ ε.

Remark 2.23. In the literature we can find a different definition for the approximate
weakly efficiency. Thus (see [18, 16]), given a vector ~ε ∈ C (or ~ε ∈ Y ), a point x ∈ X is
an ~ε− weakly efficient solution if there is no x′ ∈ X such that F (x′) <C F (x) − ~ε. The
disadvantage of this definition is that the value F (x) may be far from the set INFw(F ).
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Example 2.24. Consider X = Y = R2 with the euclidean structure, C = R2
+, and

F : X → Y such that ∀(x1, x2) ∈ R2, F (x1, x2) = (x2
1 + x2

2, 10
8x2

2). Thus F (X) =
{(y1, y2) ∈ R2

+| y2 ≤ 108y1}. Hence INFw(F ) is the half-axis R+ · (1, 0). For the point
a = (0; 10−2), we have F (0; 10−2) = (10−4, 104), hence a is an ~ε− weakly efficient solution
with ~ε = (10−4, 0) but d(F (a); INFw(F )) = 104.

Definition 2.25. The point a ∈ X is ε− correct weakly efficient if there exists e ∈ C∩B,
such that F (a)− εe ∈ INFw(F ), where ε > 0.

Remark 2.26. It is obvious that every ε− correct weakly efficient point is also an ε−
weakly efficient point. Also, a point a ∈ X is weakly efficient ⇐⇒ a is ε− correct weakly
efficient for all ε > 0 ⇐⇒ a is ε− weakly efficient for all ε > 0.

Remark 2.27. If we assume that Fλ is bounded from below for some λ ∈ Λ ∩ intC+,
then using Theorem 2.6 (with T = F (X)\{+∞C}) and Proposition 2.11, we have that for
each a ∈ dom(F ), there exists y ∈ intC∪{0}, hence y ∈ C such that F (a)−y ∈ INFw(F ).
However, when d(F (a); INFw(F )) < ε, we cannot be sure that ‖y‖ ≤ ε. Of course, there
exists z ∈ INFw(F ) such that ‖F (a)− z‖ < ε, but not necessarily z ∈ C.

Example 2.28. Consider X = Y = R2 with the euclidean structure, C = R2
+, and F :

X → Y such that F (x) = x for all x ∈ T = {(x1, x2) ∈ R−×R| x2 ≥ −103; (x1+x2)·(x2−
106x1) = 0}, and F (x) = +∞C elsewhere. Thus INFw(F ) = INFw(T ) = {(t, −t)| t <
−10−3} ∪ {(−10−3, −103)} and the point (0; 0) is 10−3

√
2-weakly efficient but it is not

10−3
√
2-correct weakly efficient (it is ε−correct weakly efficient for ε ≥ 103

√
1 + 10−12).

Definition 2.29. A sequence (xn) in dom(F ) will be called:

(1) asymptotically weakly Pareto optimizing (a.w.p.) if

d(F (xn), INFw (F )) → 0 or F (xn) → −∞C

(2) correct asymptotically weakly Pareto optimizing (c.a.w.p.) if there exists a sequence
(εn) ⊂ R∗

+ such that

(i) lim
n→∞

εn = 0; (ii) ∀n, xn is εn− correct weakly efficient.

(3) weakly scalarly stationary (w.s.s.) if F is C-convex or F is GÝateaux differentiable
with dom(F ) open, and there exists a sequence (λn) ⊂ Λ verifying the following:

∀n ∈ N, ∃ξn ∈ ∂Fλn(xn) : ‖ξn‖X∗ → 0, (2)

which is equivalent to saying that

∀n ∈ N, ∂Fλn(xn) 6= ∅, d(0; ∂Fλn(xn)) → 0.

Remark 2.30. If (xn) is an a.w.p. sequence, then INFw(F ) 6= ∅ and we have two possi-
bilities:

(i) −∞C /∈ INFw(F ), and in this case d(F (xn), INFw(F )) → 0.

(ii) INFw(F ) = {−∞C}, and in this case F (xn) → −∞C .

Note that (i) is equivalent to the following:

(i’) there exists a sequence (εn) of positive real numbers tending to 0 such that, for all
n ∈ N, xn is εn− weakly efficient.
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3. An a.w.p. sequence is close to a w.s.s. one

3.1. A vector variational principle

Here we consider that X is a finite dimensional euclidean space identified with its dual.

Theorem 3.1. Let F : X → Y ∪ {+∞C} be a proper map, positively lower semicontin-
uous (l.s.c.) such that ∅ 6= INFw(F ) ⊂ Y .

Then, for any ε > 0, γ > 0 and a ∈ X such that d(F (a); INFw(F )) < ε there exists
a′ ∈ domF and e ∈ B ⊂ Y such that:

(i) ‖a− a′‖ ≤ γ,

(ii) a′ is a weakly efficient point for the map G : X → Y ∪ {+∞C}, given by

x 7→ G(x) = F (x)− εϕ(1− ‖x− a‖2

γ2
)e, (3)

where ϕ : R → R is an increasing, convex differentiable function such that

ϕ(R−) = {0}, ϕ′(1) ≤ 2, ϕ(1) = 1,

(for example ϕ(t) = 0, if t < 0; ϕ(t) = t2 if t ≥ 0.)

(iii) for any x ∈ domF :
‖F (x)−G(x)‖ ≤ ε. (4)

If in addition F is GÝateaux differentiable2 with domF open set, then

∃λ ∈ Λ, d(0; ∂Fλ(a
′)) ≤ 4

ε

γ
. (5)

Proof. Let y ∈ INFw(F ) such that ‖F (a)− y‖ < ε. Denote by e the vector verifying

F (a)− εe = y.

If F (a) ∈ INFw(F ) take e = 0, a′ = a, and (i), (ii), (iii) follow immediately. So we will
suppose that F (a) /∈ INFw(F ), hence e ∈ B \ {0}. Obviously the function x 7→ −εϕ(1−
‖x−a‖2

γ2 ) is continuous onX. Thus the function G defined by (3) is positively l.s.c., hence C-

semicontinuous, which implies that the set L(G; y) is closed. Note also that a ∈ L(G; y)
because G(a) = y. Consider Ýλ ∈ Λ. The function GÝλ is l.s.c. as a sum of such functions,
hence it attains its minimum on the compact set (a+ γB) ∩ L(G; y) ⊂ domG = domF .
Thus there exists a′ ∈ (a+ γB) ∩ L(G; y) such that

GÝλ(a
′) = min

x∈(a+γB)∩L(G;y)
GÝλ(x).

Let x ∈ X such that G(x) <C G(a′). Since G(a′) ≤C y we must have x ∈ L(G; y). We
have GÝλ(x) < GÝλ(a

′) hence x /∈ (a+ γB) ∩ L(G; y). Thus x /∈ a+ γB which implies that
G(x) = F (x) <C G(a′) ≤C y contradicting the fact that y ∈ INFw(F ). Hence there is no
x ∈ X such that G(x) <C G(a′) which means that a′ is a weakly efficient point for G.
Thus (i) and (ii) have been proved.

2we denote the Gâteaux derivative of a function H at a by ∂H(a) or by H ′(a)
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(4) is obvious. Let F be GÝateaux differentiable with domF open set. Then G is GÝateaux
differentiable at any x ∈ domF , and

∀λ ∈ Λ, ∂Gλ(x) = ∂Fλ(x)−
2ε〈λ, e〉

γ2
ϕ′(1− ‖x− a‖2

γ2
)(x− a).

Thus, according to Proposition 2.19, 0 ∈ ∂Gλ(a
′) for some λ ∈ Λ, and (5) follows imme-

diately.

The following is obvious.

Corollary 3.2. Let F : X → Y ∪{+∞C} be GÝateaux differentiable, with domF an open
set.

If (ak) is an a.w.p. sequence then there exists a sequence (a′k) such that

(i) ‖ak − a′k‖ → 0,

(ii) (a′k) is a w.s.s. sequence.

(iii) Moreover, if F is uniformly continuous on domF , then (a′k) is also an a.w.p. se-
quence

3.2. Ekeland vector variational principle for ε−correct weakly efficient points

In this subsection we will see that much more can be said about an ε−correct weakly
efficient point. Let X be a reflexive Banach space, and F : X → Y ∪ {+∞}.
Theorem 3.3. Suppose that F is a proper, positively weakly l.s.c. map. Let ε > 0 and
let a ∈ X be any ε− correct weakly efficient point. Consider some e ∈ C ∩ B such that
F (a)− εe ∈ INFw(F ).

Then, for any γ > 0, there exists some b ∈ X such that :

(i) ‖a− b‖ ≤ γ,

(ii) b is a weakly efficient point for the perturbed function

x 7→ G(x) = F (x) +
ε

γ
‖x− b‖e,

(iii) F (b) ≤C F (a)− ε
γ
‖a− b‖e.

Proof. Consider the function x 7→ H(x) = F (x)− ε(1− ‖x−a‖
γ

)+e, where t+ = max(t, 0),

t ∈ R. Put y = H(a) = F (a)− εe. For each λ ∈ Λ, the scalar function Hλ is weakly l.s.c.

as a sum of weakly l.s.c. functions ( since 〈λ, e〉 ≥ 0 and x 7→ −ε(1 − ‖x−a‖
γ

)+ is weakly

l.s.c., because x 7→ ‖x − a‖ is weakly l.s.c. and t 7→ t+ is continuous and increasing).
Thus the level set L(H; y) is weakly closed, hence the set S = (a + γB) ∩ L(H; y) is
weakly compact. Then, for each λ ∈ Λ, the set arg minx∈S Hλ(x) is not empty. So, we
can choose b ∈ arg minx∈S Hλ(x). Obviously we have (i). To prove (ii), notice first that,
for any x ∈ S, we have Hλ(b) ≤ Hλ(x) which is equivalent to

Fλ(b) ≤ Fλ(x) +
ε〈λ, e〉

γ
(‖x− a‖ − ‖b− a‖).
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Since ‖x− a‖ − ‖b− a‖ ≤ ‖x− b‖, we obtain

∀x ∈ S, Gλ(b) ≤ Gλ(x). (6)

Let now consider x ∈ X such that

G(x) <C G(b). (7)

From (6) we have that x /∈ S. On the other hand, (7) is equivalent to

F (x) <C F (b)− ε

γ
‖x− b‖e. (8)

If x /∈ a+ γB, then

−‖x− b‖ ≤ −‖x− a‖+ ‖a− b‖ ≤ −γ + ‖a− b‖

hence, from (8),

F (x) <C F (b) +
ε

γ
(−γ + ‖a− b‖)e = H(b) ≤C y

contradicting the fact that y ∈ INFw(F ).

If x ∈ a+ γB, then (8) implies

H(x) + ε(1− ‖x− a‖
γ

)e <C H(b) + ε(1− ‖b− a‖+ ‖x− b‖
γ

)e,

and, since H(b) ≤C y, we obtain

H(x) <C y +
ε

γ
(‖x− a‖ − ‖b− a‖ − ‖x− b‖)e ≤C y.

It follows that x ∈ L(H; y), hence x ∈ S which is impossible.

In conclusion, there is no x ∈ X verifying (7), hence b is weakly efficient for G.

(iii) follows immediately from the fact that H(b) ≤C y.

Corollary 3.4. With the hypotheses and notations of Theorem 3.3, if we have in addition
that domF is an open set and F is GÝateaux differentiable on domF , then there exists
some λ ∈ Λ such that

‖(Fλ)
′(b)‖ ≤ ε

γ
. (9)

Proof. The set C1 = Y \ (− intC) is a closed cone (not convex), i.e. R+C1 ⊂ C1. Let
h ∈ X. Since b is weakly efficient for G, then for any positive real t sufficiently small such
that b+ th ∈ domF , we have that G(b+ th)−G(b) ∈ C1, hence

F (b+ th)− F (b)

t
+

ε‖h‖
γ

e ∈ C1.
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Letting t → 0+, we obtain that

F ′(b)h+
ε‖h‖
γ

e ∈ C1.

Consider the set

U = {F ′(b)h+
ε‖h‖
γ

e| h ∈ X}.

It is easy to see that U + C ⊂ C1, and U + C is a convex set. Then by the separation
theorem, there exists λ ∈ Y ∗ \ {0} such that

∀h ∈ X, c ∈ C, 〈λ, F ′(b)h+
ε‖h‖
γ

e〉 ≥ 〈λ,−c〉.

It follows that λ ∈ C+ (and dividing by ‖λ‖ we can suppose that λ ∈ Λ), and using the
fact that 〈λ, F ′(b)h〉 = (Fλ)

′(b)h = F ′
λ(b), we obtain

∀h ∈ bdB, (Fλ)
′(b)h+ ε

〈λ, e〉
γ

≥ 0.

Changing h in −h we obtain that

∀h ∈ bdB, |(Fλ)
′(b)h| ≤ ε

〈λ, e〉
γ

≤ ε

γ
,

which implies (9).

Corollary 3.5. With the hypotheses and notations of Theorem 3.3, if we have in addition
that F is C-convex, then there exists some λ ∈ Λ such that

d(0, ∂Fλ(b)) ≤
ε

γ
. (10)

Proof. It is easy to see that the function G is C-convex. Then, according to Proposition
2.19, we have that there exists some λ ∈ Λ such that 0 ∈ ∂Gλ(b). Thus 0 ∈ ∂Fλ(b)+

ε〈λ,e〉
γ

B

and (10) follows easily.

We obtain immediately the following.

Theorem 3.6. Let F be a proper, positively weakly l.s.c. map. If F is C-convex, or F
is GÝateaux differentiable with domF open, then given any c.a.w.p. sequence (ak), there
exists a sequence (bk) such that

(i) ‖ak − bk‖ → 0,

(ii) (bk) is w.s.s.,

(iii) F (bk) ≤C F (ak).

Remark 3.7. Unfortunately, in Theorem 3.6 we cannot be sure that the sequence (bk)
is a.w.p., unless F is C-convex and asymptotically well behaved as defined in [8], or F is
uniformly continuous on domF .
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Remark 3.8. It is important to note the differences with the vector variational principle
obtained by Loridan in [17], where the initial point (denoted a in our theorem) is an
ε solution of some scalarized problem. If the problem is nonconvex then there exists
(weakly) efficient points x such that F (x) is far from any ε solution of any scalarized
function Fλ, λ ∈ Λ.
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