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A notion of multiconvex relation as a union of a finite number of convex relations is introduced. For a
particular case of multiconvex process, that is, a union of a finite set of convex processes, we define the
notions of the joint and the generalized spectral radius in the same manner as for matrices. We prove
the equivalence of these two values if all component processes are positive, bounded, and closed.
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1. Introduction

The dynamics of economic growth is often modeled by conic set-valued maps with convex
graphs, that is, by convex processes, see for example [1, 2, 7, 9, 12, 14]. These processes
are usually assumed to be defined on the entire cone Rn

+ = {x ∈ Rn : xi ≥ 0, i = 1, . . . , n}
and increasing with respect to this cone. In mathematical theory of economic dynamics
these special convex processes are called superlinear mappings [7].

In many situations, however, a choice exists between several alternative schemes of eco-
nomic development; each one is modeled by its own convex process (or superlinear map-
ping) Sj. Detailed economic motivation is given in Section 7 below.

Since the graphs of all processes contain the origin, the graph of the process S = ∪j=1,...,kSj

is a star-shaped with respect to zero set in Rn
+×Rn

+. If the components Sj are general
set-valued mappings with convex graphs, S will be called a multiconvex mapping or mul-
ticonvex relation. The dynamics of the model is described by the sequence of iterations
Sm of the relation S.

The dynamical behavior of the sequence {Sm} is characterized by the totality of its
trajectories {x0, x1, . . . }, (xi, xi+1) ∈ S for i = 0, 1, . . . . We study the maximal rate of
growth of trajectories in terms of two kinds of spectral radii. We extend the notions of the
joint and the generalized spectral radius from systems of matrices (multilinear relations
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on the whole space), [3, 4, 5, 6], to multiconvex relations, and prove that they are equal
to each other for a wide class of positive processes.

The paper is a direct continuation of [15], where main attention has been paid to the limit
behavior of compact relations, star-shaped with respect to zero.

2. Star-shaped and multiconvex relations

We consider set-valued mappings from Rn to Rn, also called relations. Any relation S is
identified with its graph {(x, y) ∈ Rn×Rn : y ∈ S(x)}, so in the sequel we will use the
same notation S for the relation and its graph and, for example, speak about unions of
relations meaning unions of their graphs. The domain of S is the set dom(S) = {x ∈ Rn :
S(x) 6= ∅}.
A trajectory (finite or infinite) of the relation S is a sequence of points {. . . xi, xi+1, . . . }
in Rn such that

xi+1 ∈ S(xi)

for all admissible indices i.

Definition 2.1. A composition of two relations P and S in Rn×Rn is a relation PS
defined as

PS(x) = P (S(x)) = {z ∈ Rn : ∃y ∈ S(x) such that z ∈ P (y)}.

We will study iterations Sm of a single relation or of a sequence of different relations
Sjm . . . Sj1 .

The notion of star-shapedness is a generalization of convexity. We will consider a class of
zero-centered star-shaped relations and its important subclass of conic relations.

Definition 2.2. A set S in a linear space L is called star-shaped with respect to zero
(respectively, conic) if αS ⊆ S for any 0 ≤ α ≤ 1 (for any 0 ≤ α < ∞).

A relation P is called star-shaped with respect to zero (conic) if its graph is star-shaped
with respect to zero (conic) in Rn×Rn.

Definition 2.3. A relation S ⊆ Rn×Rn is convex if its graph is convex. A convex conic
relation is called a convex process [11].

As is known, the composition of two convex (conic) relations is again a convex (conic)
relation. Now we introduce the central notion of this paper.

Definition 2.4. A multiconvex relation S in Rn is a multivalued mapping from Rn to Rn

whose graph is a union of graphs of a finite number of convex relations Sj, j = 1, . . . , k
(we will write S = ∪j=1,...,kSj).

Note that, for any trajectoryX = {. . . , xi, xi+1, . . . } of a multiconvex relation, there exists
an appropriate product of component relations . . . Sji+1Sji . . . such that X is a trajectory
of this product, that is,

xi+1 ∈ Sji+1(xi), for all i.
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In particular, any periodic trajectory {x1, . . . , xm, x1, . . . } is a trajectory of some periodic
sequence of component relations Sj1 ,. . . ,Sjm . In this case, the point x1 is a fixed point
of the convex relation Sjm . . . Sj1 . Any multiconvex relation S = ∪j=1,...,kSj satisfying
0 ∈ Sj(0) for j = 1, . . . , k, is star-shaped with respect to zero.

Definition 2.5. A multiconvex process in Rn×Rn is a set-valued map whose graph is a
union of graphs of a finite number of convex processes.

Definition 2.6. A multiconvex process is called multilinear if all Si are single-valued
linear maps, each one restricted to a convex cone dom(Si) = Ki ⊆ Rn.

3. Norms and spectral radii

For conic relations, a notion of norm is defined:

Definition 3.1. Given a norm ‖ · ‖ in Rn, the corresponding norm of a conic relation
S ∈ Rn×Rn is defined as

‖S‖ = sup
‖x‖=1, y∈S(x)

‖y‖

if dom(S) 6= {0} and ‖S‖ = +∞ if dom(S) = {0} and S(0) 6= {0}. If dom(S) = {0} and
S(0) = {0}, we set ‖S‖ = 0.

Obviously,
‖SP‖ ≤ ‖S‖ · ‖P‖ (1)

for any pair S, P of conic relations. A conic relation S is bounded if ‖S‖ < ∞.

In the sequel we will only consider bounded relations. The following assertion is well
known.

Proposition 3.2. A convex process S with closed graph is bounded if and only if S(0) =
{0} and if and only if it is compact-valued, that is, if S(x) is a compact set for each
x ∈ dom(S).

Proof. Each set S(x) is closed, hence, if it is not compact, then it is unbounded and
‖S‖ = +∞.

Vice-versa, if ‖S‖ = +∞, there exist sequences {xi} and {yi} in Rn such that xi → 0 as
i → ∞, ‖yi‖ = 1, i = 1, 2, . . . , and yi ∈ S(xi), i = 1, 2, . . . . Choosing a subsequence, we
conclude that S(0) 6= {0} and, hence, S(0) is unbounded.

In the same manner as for matrices, let us define the notion of spectral radius for conic
relations:

ρ(S) = lim sup
m→∞

(‖Sm‖)
1
m . (2)

In other words, ρ(S) is the maximal average growth rate of long trajectories of S in the
following sense.

Proposition 3.3. Let S be a conic relation and let λ be a real number, λ ≥ 0. Then
ρ(S) ≤ λ, if and only if, for any λ1 > λ, there exists an N such that, for any m ≥ N and
for any trajectory x0, . . . , xm of S, the relation

‖xm‖ ≤ λm
1 ‖x0‖
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holds.

Note also that the value of ρ(S) does not depend on a particular norm ‖ · ‖ in Rn.

Proposition 3.4. For any bounded relation S,

ρ(S) = lim
m→∞

(‖Sm‖)
1
m = inf

m=1,2,...
(‖Sm‖)

1
m .

Proof. As follows from (1), the sequence pm = ln ‖Sm‖ satisfies the inequality pa+b ≤
pa + pb. Suppose γ > infm

pm
m

and choose m such that γ = pm
m

+ ε, ε > 0. We get, for any
integer K > 0, pmK ≤ mK(γ− ε). Taking into account pmK+l ≤ pmK + pl, 0 ≤ l < m, we
get

pN ≤ N(γ − ε) + C

for C = max{p0, . . . , pm−1} and for all integer N > 0. Thus

lim sup
N>0

pN
N

≤ γ

and the required assertion follows.

If S is a multiconvex process, ρ(S) will be also called the joint spectral radius of the
system {Sj} of component convex processes, compare [4, 13]. The definition of the joint
spectral radius does not depend on the representation of S as a union of convex processes
Sj, while the following one, generally, does.

Definition 3.5. For a multiconvex process S = ∪j=1...kSj, its generalized spectral radius
is defined as

Ýρ(S) = sup
m=1,2...

sup
j1,...,jm

(ρ(Sjm . . . Sj1))
1
m . (3)

For any finite sequence {j1, . . . , jm}, we have

ρ(Sjm . . . Sj1) ≤ ρ(Sm)

because Sjm . . . Sj1 ⊆ Sm (in the sense of graphs). Hence,

(ρ(Sjm . . . Sj1))
1
m ≤ ρ(S),

which, in turn, implies
Ýρ(S) ≤ ρ(S). (4)

In other words, the maximal growth rate for all periodic products of convex processes of
the form . . . (Sjm . . . Sj1)(Sjm . . . Sj1) is less or equal to the overall growth rate ρ(S).

An important theorem on the equivalence of the joint and the generalized spectral radii
for multilinear relations defined on the whole Rn has been formulated as a conjecture in
[4] and proved in [3], see also [5, 6].

Theorem 3.6. Let S be a multilinear relation

S(x) = {M1x, . . . ,Mkx} (5)

defined on the whole Rn by a finite family of n×n-matrices Mj. Then

ρ(S) = Ýρ(S).
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Suppose now that the matrices Mj are positive, that is, all their elements are nonnegative.
Consider the restriction S+ of the relation (5) to Rn

+ = {x ∈ Rn : xi ≥ 0, i = 1, . . . , n}.
Proposition 3.7. Let S be a multilinear relation (5) with positive matrices Mi. If ‖x‖
in Rn is chosen as

‖x‖ =
n

∑

i=1

|xi|,

then ‖S+‖ = ‖S‖.

Proof. First, let k = 1. For any x ∈ Rn, let us reverse the sign of its negative components.
This operation will not change the norm of x; the norm of M1x cannot decrease because
M1 is positive. In the case of a finite number of matrices, the required statement follows
now from ‖S‖ = maxj=1,...,k ‖Mj‖.

As a consequence, we get the following result.

Theorem 3.8. Let {M1, . . . ,Mk} be a finite family of positive n×n-matrices, and let S+

be the corresponding multilinear relation on Rn
+. Then

ρ(S+) = Ýρ(S+).

Proof. Owing to Theorem 3.6, it suffices to prove that

ρ(S+) = ρ(S), Ýρ(S+) = Ýρ(S), (6)

where S is the relation (5).

Since Mj are positive matrices, we have Sj(Rn
+) ⊆ Rn

+ and, hence,

(Sjm)+ . . . (Sj1)+ = (Sjm . . . Sj1)+ (7)

for any finite product Sjm . . . Sj1 . Proposition 3.7 and (7) imply

‖(Sjm)+ . . . (Sj1)+‖ = ‖Sjm . . . Sj1‖.

Now, equations (6) and, hence, the statement of the theorem follow directly from the
definitions of the joint and the generalized spectral radii.

Theorem 3.6 cannot be automatically transferred to general convex processes, or even to
general multilinear relations (not necessarily defined on the whole Rn), as the following
example shows.

Example 3.9. Let K1 = {(x, y) ∈ R2 : y ≥ 0} and K2 = {(x, y) ∈ R2 : y ≤ 0}. Consider
a system of two linear relations S1, S2 defined on K1, K2 respectively and suppose that
Si is a rotation on a fixed angle αi such that the triplet {α1, α2, π} is linearly independent
over the field of rational numbers, that is, the equality

r0π + r1α1 + r2α2 = 0

for some rational coefficients ri implies ri = 0, i = 1, 2, 3.

Since K1 ∪K2 = R2, any finite trajectory of S = S1 ∪ S2 can be prolonged indefinitely.
Obviously, ‖xi‖ = ‖x0‖ for any trajectory of S. Hence the joint spectral radius of the
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system is equal to 1. However, for any fixed finite sequence of relations Sj1 , . . . , Sjm ,
ji ∈ {1, 2}, and for its any nontrivial trajectory {xi}, the subsequence {x0, xm, x2m, . . . }
must be dense on the circle {y ∈ R2 : ‖y‖ = ‖x0‖}, which is impossible because xkm ∈ Kj1

for all k = 0, 1, . . . . Therefore, the spectral radius of the convex relation Sjm . . . Sj1 equals
0, and hence the same is true for the generalized spectral radius of S itself.

4. Positive multiconvex relations and processes

Definition 4.1. A convex relation S is positive if its graph belongs to Rn
+×Rn

+ and
dom(S) = Rn

+. A positive closed convex conic relation is called a superlinear mapping.

Definition 4.2. A relation S is called increasing if for any pair x, y ∈ Rn
+ such that

x 5 y (that is, y − x ∈ Rn
+), there exists a vector h ∈ Rn

+ such that S(x) + h ⊆ S(y). In
particular, for any p ∈ S(x), there exists a q ∈ S(y) such that q = p (this property will
be denoted S(y) ≥ S(x)).

Lemma 4.3. Any compact-valued positive convex relation S with closed graph is increas-
ing.

Proof. The ray L = {x + α(y − x) : α ≥ 0} belongs to Rn
+, hence S(x + α(y − x)) is

nonempty for all α ≥ 0. Choose a point zα ∈ S(x + α(y − x)) for each α and then let
α → +∞. Since S is convex, we get

S(y) ⊇ (α− 1)S(x) + zα
α

. (8)

Owing to the compactness of S(y) and S(x), the vector-function zα/α is bounded and
thus has a limit point h = 0 as α → ∞. Again, the compactness of S(y) makes it possible
to pass to the limit in (8) as α → ∞ and to get the required statement.

The following assertion is a direct consequence of Lemma 4.3.

Lemma 4.4. If {x0, x1 . . . } is a trajectory of a positive compact-valued multiconvex rela-
tion S and x′

0 = x0, then there exists a trajectory {x′
0, x

′
1 . . . } of S majorizing {x0, x1, . . . },

that is, satisfying x′
i = xi, i = 0, 1, . . . .

Proof. If x′ = x and y ∈ S(x) then there exists a y′ ∈ S(x′) such that y′ = y, thus a
required trajectory can be extended indefinitely.

Definition 4.5. A multiconvex relation S = ∪j=1,...,kSj is called positive (compact-valued,
superlinear) if all the relations Sj are positive (compact-valued, superlinear).

Definition 4.6. A positive convex relation S is normal (see [7, 14]) if, for any x ∈ Rn
+,

(S(x)− Rn
+) ∩ Rn = S(x).

Definition 4.7. The normal hull of a convex relation S is defined as

Nh(S)(x) = (S(x)− Rn
+) ∩ Rn

+.

For a multiconvex relation, the normal hull is defined as the union of normal hulls of its
components.



A. Vladimirov, A. Rubinov / Dynamics of positive multiconvex relations 393

The following assertion is an immediate consequence of the definitions.

Proposition 4.8. The operation of taking the normal hull conserves positivity, bounded-
ness, and closedness of multiconvex relations.

Note also that, for any pair of increasing positive relations P , S we have

Nh(PS) = Nh(P )Nh(S).

Proposition 4.9. For a bounded positive multiconvex process S, the operation of taking
the normal hull conserves the values of both the joint and the generalized spectral radius.

Proof. As follows from Lemma 4.4, any monotone norm (say, the norm ‖x‖ =
∑n

i=1 |xi|)
is conserved by the operation of taking the normal hull. Since both values of spectral radii
are independent on the particular norm used in Rn, the required statement follows.

We will also need the following assertion.

Proposition 4.10. Any closed bounded positive multiconvex relation S(x) is Hausdorff
continuous on Rn

+.

Proof. In the case of a single normal convex relation this result is well known, we give a
proof for completeness.

The upper semicontinuity of S at x ∈ Rn
+ follows from the closedness of S. Suppose

now that there exists a point y ∈ S(x) and a sequence xi → x as i → ∞ such that
d(y, S(xi)) > ε > 0, i = 1, 2, . . . , where

d(x,A) = inf
y∈A

‖x− y‖.

Because of upper semicontinuity of S, there exists a p ∈ Rn, ‖p‖ = 1, such that

max
z∈S(x)

〈p, z〉 > lim sup
i→∞

max
z∈S(xi)

〈p, z〉.

This means that the support function sp(y) = maxz∈S(y)〈p, z〉 is not upper semicontinuous
at x on the set Rn

+. This is, however, impossible, because sp(y) is a concave function on
a polyhedral set Rn

+ in a finite-dimensional space.

Finally, if each Sj is Hausdorff continuous, then so is the union S = ∪j=1,...,kSj.

5. Equivalence of spectral radii

Our main goal in this paper is to prove the following result.

Theorem 5.1. Let S = ∪j=1,...,kSj be a multivalued process, where all Sj are closed su-
perlinear mappings with Sj(0) = {0}. Then

ρ(S) = Ýρ(S).
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Proof. Suppose the contrary, that is,

ρ(S) > Ýρ(S).

Without loss of generality we can assume that ρ(S) > 1 and Ýρ(S) < 1; this can be
achieved by considering the process αS instead of S for an appropriate α > 0. Owing to
Proposition 4.9, we can also assume S to be normal.

Now, let us consider the set T of all finite trajectories X = {x1, . . . , xm} of S such that
‖x1‖ = 1. By assumption, for any N > 0, there exists a trajectory X in T such that
‖xm‖ ≥ N . Since Rn

+ has only a finite number of faces, we can assume that all x1 ∈ ri(F ),
where F is a non-zero face of Rn. Because of normality of S, we can choose F = Rn

+;
however, this will not be the case at the subsequent steps of the iteration procedure, see
below.

For x, y ∈ Rn
+, let us say that x dominates y (denote x ¿ y) if and only if y belongs to

the face of Rn
+ generated by x (see, for instance, [7]). Equivalently, x ¿ y if and only if

αx = y for some α > 0.

Consider the set F ′ of all x ∈ Rn such that some trajectory from x has a node y dominating
all z ∈ ri(F ). More precisely, x ∈ F ′ if and only if there exists an m ≥ 0 and a y ∈ Sm(x)
such that

y ¿ z for each z ∈ ri(F ). (9)

Here we define S0(x) = {x}. It follows directly from the definition that x 6∈ F ′ implies
S(x) ∩ F ′ = ∅.
Let us demonstrate that F ′ is relatively open in Rn

+. Indeed, suppose x ∈ F ′, that is, (9)
holds for some m ≥ 0. The map S(·) is Hausdorff continuous on Rn

+ (Proposition 4.10)
and, hence, Sm(·) is also Hausdorff continuous on Rn

+. Therefore, relation (9) holds for
all x′ in some neighborhood of x.

Denote G = Rn
+\F ′. The set G is closed and invariant for S, that is, S(x) ⊂ G for any

x ∈ G. Moreover, G is a union of some faces of Rn
+. Indeed, due to monotonicity of S,

we have y ∈ G whenever x ∈ G and x ¿ y.

Let us now prove that, for any ε > 0, there exists an Nε > 0 such that d( xm

‖xm‖ , G) < ε

whenever xm is the terminal point of a trajectory X ∈ T and ‖xm‖ > Nε.

Indeed, let us suppose the contrary. Then, for some ε > 0, there exists a sequence xi
mi

of
terminal points of trajectories from T such that limi→∞ ‖xi

mi
‖ = +∞ and

d

(

xi
mi

‖xi
mi
‖
, G

)

> ε.

Choosing a subsequence, if necessary, we get

lim
i→∞

xi
mi

‖xi
mi
‖
= x ∈ F ′.

Since (9) holds, there exists an α > 0 such that

αy ≥ w, for all w ∈ F, ‖w‖ = 1.
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Thus, for some neighborhood V of x and for any x′ ∈ V , there exists a y′ ∈ Sm(x′) such
that

2αy′ ≥ w, for all w ∈ F, ‖w‖ = 1.

Finally, if we choose xi
mi

such that ‖xi
mi
‖ > 2α and

xi
mi

‖xi
mi

‖ ∈ V , then there exists a

trajectory xi
1, . . . , x

i
mi
, y1, . . . , ym of S such that ym ≥ xi

1. Since S is assumed to be
normal, we can replace ym by xi

1 and, thus, construct a nontrivial periodic trajectory of
S, which is a contradiction to the assumption Ýρ(S) < 1.

Let us prove that ρ(S) ≥ 1, where

ρG(S) = lim sup
m→∞

(‖Sm‖G)
1
m

and
‖S‖G = sup

x∈G, ‖x‖=1, y∈S(x)
‖y‖.

Indeed, otherwise there exists an m′ > 0 such that

‖y‖ <
1

2
‖x‖ for all x ∈ G, y ∈ Sm′

(x). (10)

Since the mapping Sm is Hausdorff continuous and the set G1 = {x ∈ G : ‖x‖ = 1} is
compact, there exists an ε > 0 such that inequality (10) holds also for all x satisfying
d( x

‖x‖ , G) < ε. Let {x1, . . . , xm} be a trajectory from T and let xp be the first node of this

trajectory such that ‖xp‖ ≥ Nε‖ (if it exists). We have ‖xp‖ ≤ ‖S‖Nε and

d(
xp

‖xp‖
, G) < ε.

Then, from (10) we derive the inequality

‖xm′‖ ≤ 1

2
‖S‖m+1Nε

for any trajectory in T . This is, however, a contradiction with the assumption ρ(S) > 1.

Now, using multiplicative coefficients, if necessary, we conclude that ρ(S) = ρG(S). Anal-
ogously, ÝρG(S) is defined, and, obviously, the inequality ÝρG(S) ≤ Ýρ(S) holds.

Next, we repeat the argument verbatim for S on G instead of Rn
+ and either come to a

contradiction or find an invariant closed set G′ ⊂ G, G′ 6= G, such that, again, G′ consists
of whole faces of Rn

+ and ρG′(S) = ρG(S). This process must terminate at some step
because the number of faces of Rn

+ is finite, and, finally, we come to a contradiction.

6. Duality

The notion of the conjugate process to a convex process can be extended in a natural way
to multiconvex processes. Let us recall that, for a given superlinear normal mapping S
with S(0) = {0} its conjugate S∗ is defined by the relation

S∗ = {(x∗, y∗) ∈ R∗
n × Rn

∗ = |〈x, x∗〉 ≥ 〈y, y∗〉 for all (x, y) ∈ S},
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The conjugate mapping is superlinear and stable, that is,

S∗(y∗) + Rn
+ = S∗(y∗) for any y∗ ∈ Rn.

The inverse mapping S ′ = (S∗)−1 is called dual with respect to S.The mapping S ′ is
superlinear and S ′(0) = {0}.
Definition 6.1. The conjugate process to a multiconvex process S = ∪Sj, j = 1, . . . , k,
is the union S∗ = ∪S∗

j , j = 1, . . . , k.

We are going to link together spectral radii of the direct and the conjugate processes. We
define both the joint and the generalized spectral radii of the conjugate process using an
alternative definition of norm [10, 14]. Namely, for a stable mapping S∗,

‖S∗‖ = sup
x∈Rn

+,‖x‖=1

inf
y∈S∗(x)

‖y‖. (11)

Let us recall the formula [10]
(AB)∗ = B∗A∗. (12)

Next, we have to restrict the class of multiconvex processes under consideration in order
to use the rich duality theory developed for superlinear mappings ([10, 7].

Definition 6.2. A normal superlinear mapping S with S(0) = {0} is nonsingular if
S(Rn

+) ∩ int(Rn
+) 6= ∅. A multiconvex process S = ∪Sj is nonsingular if all Sj are nonsin-

gular convex processes.

It is clear that a normal superlinear mapping Sj with Sj(0) = 0 is singular if and only if
there exists a face F of Rn

+, other than Rn
+ itself, such that S(x) ⊆ F for any x ∈ Rn

+. An
obvious assertion follows:

Proposition 6.3. For a nonsingular multiconvex process S = ∪Sj, j = 1, . . . , k, all the
products Sjm . . . Sj1 are nonsingular.

For nonsingular processes, the equality ‖S‖ = ‖S∗‖ holds, and also

λ(S) = λ(S∗),

where
λ(S) = sup{λ > 0|λx ∈ S(x) for some nonzero x = 0}

(the von Neumann rate of growth) and

λ(S∗) = inf{λ > 0|λx ∈ S∗(x) for some x ½ 0}

(here x ½ 0 means xi > 0, i = 1, . . . , k).

Let us recall a classical theorem by R. T. Rockafellar [10]:

Theorem 6.4. Let S be a normal superlinear mapping with S(0) = {0}. Then

λ = lim
m→∞

‖Pm‖
1
m 5 ‖P‖

for both P = S and P = S∗.
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As an obvious consequence, we get

Corollary 6.5. The generalized spectral radius of a normal compact-valued positive mul-
ticonvex process is equal to that of its conjugate. The same is true for the joint spectral
radius.

A stable superlinear mapping Q is called nonsingular if 0 ∈ Q(x) only for x = 0. Recall
that we use the norm (11) for stable convex and multiconvex processes. Now, the central
result of this section follows directly from Theorem 5.1:

Theorem 6.6. The joint spectral radius ρ(Q) of a nonsingular stable multiconvex process
Q coincides with its generalized spectral radius Ýρ(Q).

Proof. It suffices to notice that any nonsingular stable multiconvex process Q is a con-
jugate to some nonsingular normal compact-valued positive multiconvex process S; this
follows from the same result for stable superlinear mappings [10].

Remark 6.7. We consider in this section only some simple results linking multiconvex
relations generated by superlinear mappings with conjugate multiconvex relations. Let
us mention some more advanced problems, which will be a topic of further research

(1) Much more interesting and complicated is the situation with singular processes and
their conjugate. The theory of rates of growth of a normal superlinear mapping S with
S(0) = {0} can be found in [7]. In particular it follows from results of [7] that the von
Neumann rate of growth of a dual mapping S ′ coincides with the so-called economical
rate of growth of the initial mapping S. These results can be extended for multiconvex
relations generated by superlinear mappings.

(2) The following definition [14, 8] plays a crucial role in construction of efficient trajecto-
ries generated by a normal superlinear mapping S with S(0) = {0}. A function q defined
on Rn

+ is called an efficient function of a normal superlinear mapping S with S(0) = {0} if
there exists a number α such that max{q(y) : y ∈ S(x)} = αq(x) for all x ∈ Rn

+. Efficient
functions are closely related to congugate mappings. Their analogues can be defined and
studied for multiconvex relations generated by superlinear mappings.

7. Economic interpretation

Positive convex relations are often used for modeling the production activity in mathemat-
ical economics. In particular, the well-known von Neumann type model (in other terms,
the von Neumann-Gale model; see, for example, [7] and references therein) is described by
a superlinear mapping. A pair (x, y) ∈ S, where S is a positive convex relation, is called
a technological process with input x and output y. Assume that the producer posesses
several positive convex relations S1, . . . , Sm, which describe different technologies. An
input vector x is called infinitely divisible between production mappings S1, . . . , Sm, if
every part of x can be used as an input vector for each of these mappings. If all inputs
are infinitely divisible then the production activity of the producer can be described by
the convolution S of mappings S1, . . . , Sm:

S(x) =

{

m
∑

i=1

S(xi) :
m
∑

I=1

xi = x, xi ≥ 0, i = 1, . . . ,m

}

.



398 A. Vladimirov, A. Rubinov / Dynamics of positive multiconvex relations

If S1, . . . , Sm are superlinear mappings then S is a superlinear mapping as well. A dynam-
ical model generated by the mapping S has been studied in detail (see [8] and references
therein).

The alternative to infinite divisibility is a complete indivisibility: each input vector can
be used only by one of the mapping S1, . . . , Sm. Let us give the simplest example of a
complete indivisibility. Assume that a producer has two technologies, both of them are
based on the same unit of equipment and the producer has only one such unit. If this
unit is used for one of technologies, it cannot be used for the other. Thus the producer
must choose one of these technologies every time. The case of complete indivisibility is
studied in this paper.

Models, which are intermediate between models with infinitely divisible and completely
indivisible inputs, require a special invistigation. Clearly, this investigation will be based
on the the technique, which was developed in the study of both models with infinitely
divisible and completely indivisible inputs.

Theorem 5.1 shows that the maximal rate of growth of the economy with completely
indivisible inputs can be approximated by growth rates of perodic finite sequences of
component processes, that is, it is possible to achieve any suboptimal rate of growth by
choosing some periodic rule of changing technologies. All these periodic sequences consist
of superlinear mappings and so the theory of von Neumann type production models (see
[7, 14, 8] and references therein) can be applied.
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