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We prove a lower semicontinuity theorem, in BV setting, for multiple integrals of the calculus of
variations with quasi convex integrands. The key result is a deep analysis on the behaviour of an L;—
convergent sequence in BV. More precisely, we links up a local mean-value convergence of the gradients
with the local oscillation of the surfaces and a suitable localization of a sequential Jensen’s-type inequality.
The present result extends to BV setting the lower semicontinuity theorem due to Fonseca-Miiller [26]
and improves our previous result given in [7] for convex integrands.

1. Introduction

We discuss here the lower semicontinuity of multiple integrals of the calculus of variations

/QF(x, u(z), Du(z)) dz (1)

with respect to L;—convergence in BV setting, for quasi convex integrands. Here Dz
denotes the “essential gradient” of the BV function wu, i.e. the density of the absolutely
continuous part of the distributional derivative with respect to Lebesgue measure.

For a survey on the lower semicontinuity of quasi-convex integrands in Sobolev’s spaces
we refer to Dacorogna [23], where also a wide list of references can be found.

More recently, integral functional with quasi-convex integrands was studied (in various
settings), among the others, by Ambrosio - Dal Maso [4], Fonseca - Miiller [26, 27],
Ambrosio [3], Maly [29] and Fonseca - Leoni [25].

The approach we propose in the present paper is based on two main results.

The first deals with the behaviour of the gradients of an L;—convergent sequence (Lemma
2 in [19], see also Proposition 3.7 in [7]):

a sequence up : Q) — R, QCR, ke N, in WbH' which L,-converges to a BV
function wug satisfies the following mean-value condition

lim lim D ug(z) dz = D ug(xo) a.e. in (mv)
h—0k—oc B(mo,h)
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where

]i(zo’h) u(z)dx = [meas(B(xo,h))]—l/ u(z) da.

B(JJO ,h)

We wish to recall that mean-value condition (mv) revealed a key property in order to deal
with lower semicontinuity in BV setting.

The second important result is our characterization of the lower semicontinuity of a se-
quence of integrals fQ fr(x)dr, k € N expressed by means of the following local
condition (called lower mean-value):

lim inf lim inf ][ fr(z)dx > fo(xo) a.e. in . (Imv)
B(.’Eo,h)

h—0 k—o00

By virtue of the (mv)-condition of the gradients, a specific characterization for integrals
of type (1) can be deduced from this general result, in terms of a suitable localization of
a sequential Jensen’s-type inequality (see Theorems 4.3, 4.4).

lim inf lim inf {][ F(z,ug(xo), Dug(x))dx — F (xo, uo(xo),][ Duy(z) dx) } > 0.
B(wo,h B(

h—0 k—+o0 ) xo,h)
(Js)

In the present research we analyze the behaviour of a sequence in BV thoroughly.
Precisely, we get the following result which links up (mv)—condition on the gradients
with the local oscillation of the surfaces and (Js)—inequality under mild assumptions on
the integrand (see Lemma 5.2).

Lemma 1.1. Assume that (ug) is a sequence in W™ which has equibounded variation
and Lq,—converges to a BV function ug. Then for a.e. xy € Q) there exists a sequence
(Ungk)ken of subsets in B(zo, h) such that

. . meas (U k)
1 1 1 d
(1) Hm i s (B, 1))

(2) lim lim sup |ug(z) — uo(zo)| = 0;
h—0 k_)ooerh,k

=1;

(mv) lim lim Duy(x) dxz = Dug(zo).
h—0 k—oo U

Moreover if we assume that F : R — R s quasi conver and 0 < F(v) < C(1 +
lv]), v €R™ then the following Jensen’s-type inequality holds

liminf lim inf
h—0 k—00

][ F (Duy(z)) de — F ( Dug(x) d:v)] > 0. (Js)

As an application of this lemma, we prove the following lower semicontinuity theorem.
Theorem 1.2 (Main result). Let 2 be a bounded open set and let A C R™ be closed.
Assume that (ug)ren 15 a sequence in WH1(Q,R") such that

(i) up(z) € Aae, keN;
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(ii))  (uk)ken has equibounded variation and L-converges to some wug that belongs to
BV (Q,R").

Let F:Qx AxR"™ — R be a Carathéodory function such that for a.e. xq € Q0 the

following conditions are satisfied

(i) F(--,v)/14 |v]| is lower semicontinuous in (xg,uo(xo)), uniformly with respect
to w;

(iv)  F(zo,uo(xo),-) 1is quasi convex;

(v) 0 < F(x,up(zo),v) < C(1+|v|), veR™.

Then ug(x) € A, a.e. and

liminf/ﬂF(m,uk(x),Duk(x))dacZ/F(ac,uo(x),l)uo(x)) dx.

k—o0 0

For the sake of comparison with the literature on the subject, we wish to mention that the
present result can be considered as an extension to BV-setting of the lower semicontinuity
theorem by Fonseca-Miiller [26] with an improvement of the assumptions on F'(-,-,v).

Moreover the interest of the present research remains even in the particular case of a
convex integrand (see Section 6). In fact, for functional of type (1), we can here remove
the Lipschitz-type condition we had assumed on F(z,-,v) in [7].

The results of this paper were extended by Comparato [21] to integral functionals

/Q F, Uw)(2), (£ u)(z)) de 2)

where U and £ are continuous operators.

These integrals were already studied in [7] for convex integrands, in BV-setting.

Finally, we wish to mention that the present research finds applications to closure theorems
and existence results for optimal control problems ([10, 11]) which are connected with the
study of a variational model for the plastic deformation of beams and plates under loads
of different types [5, 6, 18, 20, 31, 32, 33].

2. Preliminaries

We denote by N the set of all integers k& > 1, and by R™, Rj the set of positive or
non-negative real numbers respectively.

Let v,n and m be given integers. Let (2 C R” be a bounded open set.

According to standard notations, we denote by L;(£2, R™) the space of summable func-
tions x:Q — R™, by WL(Q,R™) the Sobolev space of functions = € Li(Q,R™)
whose distributional derivatives are summable functions, and by BV (2, R™) the space
of functions z € Ly (2, R™) which are of bounded variation in the sense of Cesari [6a].
Moreover, let WhH°(Q, R™) be the space of functions which are essentially bounded
together with their distributional derivatives, let C§°(£2, R™) be the space of C'* func-
tions with compact support and let WO1 (2, R™) denote the closure of C§°(2, R™) in
Whee(Q, R™).
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Let M denote the space of the measurable functions f : €2 — R whose negative part
f~ is summable.

Given a BV function wu, we denote by Du = (‘W 1=1,...,m, j= 1,...,1/) the

Ox;?
“essential gradient” i.e. the density of the absolutely continuous part of the distributional
derivative with respect to the Lebesgue measure and call Du the gradient of wu.

Given a point zy € ) and a constant h > 0, we put
Bu(zo) ={z € R": 2o —h <zo; <x0; +h, j=1,...,v}.

In the case the point z; is clearly determined, we briefly write Bp(zo) = Bh.

We will adopt the following notation, given a function z: Rt x Nx Rt — R" and a
point ¢ € Rt such that

lim liminf liminf 2*(h, k,s) = lim li li ‘(h k., s) = 2 =1,...
lim liminf liminf 2*(h, k, 5) = lim im sup H?_i}lpzk(aas) 2 i=1,...,n

we briefly put

lim lim lim z(h,k,s) = z.
h—0 k—oo s—t

For (:R" x N— R", we put

lim lim C(h, k) = (.

h—0 k—o0

when similar equalities as above hold.

3. The mean-value and lower mean-value conditions

We recall the definition of mean-value and lower mean-value conditions we introduced in
[8, 9] respectively (see also [7]).

Definition 3.1. We say that a sequence (vg)k>o in Lq(Q2, R™) satisfies the mean value
(mv) condition at a point zo € Q provided

ess lim lim vg(x)dx = vo(x). (mv)
h—0 k—oo By,

We say that (vg)g>o satisfies (mv) condition on Q if (mv) holds at a.e. point zy € Q.

Definition 3.2. We say that a sequence (fi)r>0 in M satisfies the lower mean value
(Imv) condition at a point z, € Q provided

ess liminf},_,o lign inf][ fr(z)dz > fo(xo). (lmv)
-0 Jp,

We say that (fi)r>o satisfies (Imv) condition on € if (Imv) holds at a.e. point zy € €.

Of course (mv) implies (Imv), moreover we recall some important results on (mv) condi-
tions that will be used in what follows (for the detail and other results see [8]).
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Proposition 3.3. If v, — vy weakly in Li(2,R™), then the sequence (vg)k>o satisfies
(mv) on €.

The converse is not true in general (see [7, Remark 3.5]).

Proposition 3.4. Let (ug)ren be a sequence in WHH(Q,R™) which L,-converges to a
function uy € BV (Q,R").

Then there erists a subsequence of the gradients (Dus,)r>0 which satisfies (mv) on (.

Following the proof of Theorem 5.1 in [7], the following result can be proved.
Lemma 3.5. Let (vg)ren be a bounded sequence in Ly (2, R™). Then, for a.e. xy € S

h—0 k—o0

ess lim lim sup][ lvg(z)] de < +o00.
By,

Proof. Let I = [a,b]” = 117_,[a%, '] D Q be a given interval. Let us consider the sequence
or: I > R k€N defined by

o) = [ il

Note that the functions (¢g)reny are absolutely continuous in the sense of Vitali and
have equi-bounded Vitali variation. Thus, by Helly’s theorem, there exists a function
¢o : I — R which has bounded Vitali variation and such that (for a suitable subsequence)

O — o pointwise.

By virtue of Proposition 3.8 in [7], we get that the superficial derivatives (D*¢x)k>0
satisfy (mv) condition in [a, b]”. Since D*¢i(z) = |vk(x)| a.e. in 2, the lemma follows
immediately. O

4. Characterizations of lower semicontinuity

The main property of (Imv) condition is the following general characterization of lower
semicontinuity (see Theorem 11 in [9]).

Theorem 4.1. Let (fi)ken be a sequence in M and assume that there exists a function
A € Ly such that fi(z) > Mx), a.e. in Q.

Then the following conditions are equivalent

(i) (fr)k>o satisfies (Imv) on
(ii)  for every measurable set E C Q, which has nonempty interior and boundary with
null measure, the lower semicontinuity condition holds

limioglf/Efk(x) de/EfO(x) dx.

k—

Let us introduce the following generalization of Jensen’s inequality.
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Definition 4.2. We shall say that a function f : R™ — R satisfies the sequential
localized Jensen’s inequality at the point xy € Q with respect to a sequence (vg)gen in
LY(Q,R™) provided

ess liminf lim inf{ . Floe(z))dz — f (]{9 h v () daﬁ)} > 0. (Js)

h—0 k—o0
We shall say that f satisfies (Js) on © provided (Js) holds at a.e. point zy € €.

The following result is an easy consequence of Theorem 4.1.

Theorem 4.3. Assume that (vg)ren i L'(Q,R™) satisfies (mv) on Q and f:R™ —
R is continuous in vy (xo)-

Then the following conditions are equivalent

(i)  the sequence fi, = f(vk(-)), k>0, satisfies (Imv) in zo € Q;
(il) f satisfies (Js) in xo € Q with respect to the sequence (vg)gen-

Proof. Note that (mv) condition and the continuity of f ensure that for a.e. zy € Q

essl%m kli%o f (ﬁh vg(z) d:v) = f(vo(z0))-
0

Condition (Js) is trivially satisfied by convex integrands. For quasi convex integrands
(see [23]) the following result holds.

Theorem 4.4. Assume that f:R"™ — R satisfies the assumptions

(i) it is quasi conver;
(i) f(0)<CO+])), veR™

Let (up)ren be a sequence in WHH(Q,R™) and let ug € BV (Q,R") be such that
(i) (ug)gen has equibounded variation and Li—converges to uy.

Then [ satisfies (Js) in Q with respect to the sequence (Duy)gen-

We omit the proof since this result can also be considered as a corollary of main Theorem
5.3, by virtue of Theorems 4.1 and 4.3.

5. The main lower semicontinuity result

Before stating the main lower semicontinuity result, let us prove two lemmas that will be
usefull in what follows.

Lemma 5.1. Let B = B(zo,7) C Q be a given ball, let (ug)ren be a sequence in
Whe(B,R") and let ug € BV (B,R") be such that

(i)  Dug(xo) exists and lim [uo ()]

h—0 Bh h/ dx - O;
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(ii) sup / |Duy(z)|de =W < +o0.
kEN JB

Then there are three functions a, B:)0,h[— R* and t:)0,h[xN — R, with
0<h< rv=3 such that

(1)  «a(h) <t(h,k) < B(h) for every (h, k) €]0, h[xN;

[ @), B(h) _ B(h) _
2) i:f%]ihmd“” pme =0 im ) T e

Moreover, for every (h,k) €]0,h[xN and every a(h) < s <t =t(h,k) there exists a
function

wt :B—R" in WH*(B,R") such that
wy () = up(z) in {z: |u(z)| < s} wy(x) =0 in {z: |Jug(z)] >t}
and with the property that

(3) ess sup |wft(iv)| <t forevery 0<h<h, keN,
rEB

(4) esslim lim lim 4 Dw”,(z)dz =0;
h—0 k—+o00 s—t By ’

(5) esslim lim lim [(meas(By))]

/ [Dwk,(z)| dx = 0.
h—0  k—+0o s—t- Bpn{z: s<|uk(z)|<t} ’

Proof. Let 0 <h <rv~3 be fixed and put Dy = Dugy(xy).
Denote by © :]0, h[— R* the function

O(h) =h*++ |uo(z)| dz

By,

and consider the functions «, 3 :]0, h[— Rt defined by

a(h) = /1 O(h) B(h) = /12 O(h).

By virtue of assumption (i) we have

=0 o
. % _ Y
by 1 = 6)
B0 :
ilzlgtl) alh) * (5:17)

hence condition (2) holds moreover, it is not restrictive to assume that

0<alh)<pBh)<h for every h €]0, hl. (5.2)

Let k€ N and h €]0,h] be fixed.
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For every t € [a(h),B(h)] and every 0<s<t, let ¢s; € C([0,1],Rf) be a cut off
function such that

Psp(C)=1 if 0<(¢<s $s(C) =0 if (=1

C
ess sup|g,(C)] <
¢efo.1] t—s

bl

where C' is a constant. Let w!,: B — R* be the function defined by

wea (@) = bs(ur(z)]) - ux(@).

Note that w¥, € W"*(B,R") and a.e. in B we have

wi ()] <t (5-3)
[Dw; ()] < tfs | Dlug ()] | - ue(@)] + [Dux(2)] (5.4)
Dwf,t(:c) = Duy(z) if |ug(z)| < s, 'Dwf,t(x) =0 if |ug(z)| >t.  (5.5)

Since wf, € W"'(B,R*), forae. 0<h' <h and i=1,....,n, j=1,...,v

/ Dwff(m) dac:/
By B

(wbi (e = 1,€) — whia] + 1, €)| de

J
h!

where BJ, = [[ [zh— R, 2} + 1] and taking (5.3) into account of we get
I=1,0, 1]
. B}, t W
][ Dubi(z) ds| < 22 Bu) o, o ¢ B
By ’ meas(By) b R
Thus by the arbitrariness of h’ we have
; h
’Dwff(m) dz| < % (5.6)
By,
which gives (4) by virtue of (5.1).
Let us prove now that , for a.e. t € [a(h), B(h)], we have
lim |Duy(z)|dz =0 (5.7)
I Bunta: s<fur(@)l <t}
fimsup—— [ [Due(a)|  up(z)| dz <
sot L= 8 Jpnfer s<ju(@)<t)

<tH, 1 ({z € By : |ug(x)| =t}) (5.8)

where H,_; denotes the Hausdorff measure.
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Note that, since Duy is bounded and wu; is summable in Bj, then we get respectively

/ Dug(z)] dz < Cy - meas (Ba 1 {z: s < |ux(z)| < £})
Bpn{z: s<|ug(z)|<t}

where Cj 1is a constant depending on k, and

limmeas (B, N{z: s < |ug(z)| <t})=0  forae. t

s—t
which gives (5.7); moreover, the coarea formula (see [34]) ensures
t
/ H, 1{z € By: |ug(z)|=71}) dr = / | D|ug(z)| | dz
s Bpn{z: s<|uy(z)|<t}
hence we deduce

=),
t—s BpN{x: s<|ug(x)|<t}

| Dug(z)]| - |ug(x)| dz S][ tH, 1({z € B : |ug(z)| =7}) dr

and (5.8) follows by Lebesgue density theorem.

Note that still from the coarea formula, putting

A= essinf tH, { ({x € By : |ug(z) =1t}),
g int tH vi lul) = t})

we have
| D|ug(z)| | dx = / H, ({z € By: |ug(z)|=71}) dr >
By, RY

PN o B0
Z /a(h) ; dr = A log m (59)

Now, let ¢t = t(h,k) € [a(h),B(h)] be choosen in such a way that (5.7), (5.8) hold and
(see (5.9)) in such a way that
p(h)

AN<tH, 1 ({zx € By : |ug(z)| =1t}) < /B | D|ug(z)| | dx / log a(h)’

Passing to the limits for A~ — 0 and k& — +oo and taking Lemma 3.5 and (5.1”) into
account, we obtain

ess l%m limsup [meas(By)] "' t H,_1 ({x € By : |ug(z)| =1t}) <

- k—+o0

p(h)
a(h)

< ess lim lim sup [][ | D|ug(x)| | dz / log =0. (5.10)
By,

h=0  kstoo

From (5.8) and (5.10) we deduce that

—_ B!
ess lim lim limM

Dlug(x)|| - |ug(x)|dxr = 0. 5.11
slim i BT [ D@ ) 511
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Moreover, by (5.4) it follows

/ |Dwf,t(x)| dr <
Bpn{z: s<|ug(z)|<t}

C /
S t

| Dlux(z)] | -Iuk(x)\dﬂc+/ | Dug ()| dz

Bpn{z: s<|ug(z)|<t}

and by virtue of (5.11) and (5.7), we have (5). O

Lemma 5.2. Let (ug)ren be a sequence in WH®(Q,R*) and let uy € BV (,R") be
such that

(1) (uk)ken converges to wuy in Ly (2, R™)
(ii) sup / |Dug(x)| de =W < +o0.
keN Jo
Then for a.e. zy € Q and for
m(x) = ug(xg) + (Dug(xo), z — xo), z €K and Uy = up —m, k>0,

the following results hold.
There ezists a function t:)0,1[xN — R*  such that ’lzin(l)t(h,, k) =0 for every k€N,
—

and
.. .meas(ByN{r: |ug(z) <t})
(1) lim liminf =1
h0 koo meas(By,) ’
(2) esslim lim Dug(z) dx = Dug(zo)
W20 ko0 JBun(a: Jin(a)|<t)
(3) sup [uk(z) — uo(o)| < ¢+ [Dug(zo)| - h

Bpn{z: |dx(z)|<t}
where t =t(h,k).
Moreover let F : R'™ — R be an integrand which satisfies the conditions

(iii) s quasi conver;
(iv) 0<F(w)<CQ1+|), veR™

then for a.e. xy € , the following result holds

(4) liminf lim inf |:][ F (Dug(z)) d:L"—F<][ Duyg(x) da:)] >0.
h=0 k=00 | /B, n{z: |ay(z)/<t} Byn{z: [ag(z)|<t}

Proof. Let o € Q be fixed in such a way that the derivative Dug(zo) exists and (see
[24])

lim - [H0() = uo(20) — (Duo(20),  — 20)|
h=0 Jp, |z — o]

dz = 0. (5.12)

Put

Do = Dug(wo), 7(x) =uo(wo) + (Do, x — o), v €Q and U =ur—m, k>0,
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note that a4 € C*(R",R"), k € N and

Uy — U in Ly (513)
sup / Diy| dz = W = W + Dy meas () (5.13)
keEN JQ

Let B(zo,7) CQ andlet 0 <k <rv~2 be given.

Let ¢ :]0,h[xN — R* be the function given by virtue of Lemma 5.1 and, for every
keN, 0<h<h and 0<s<t=t(hk) wedenote by wf,: B—R" the function
given in Lemma 5.1, relative to 4y i.e.

wia () = bs([iin(2)]) - U (@).
We recall that w¥, € W"*(B,R"*) and
w¥ (z) = dg(z) if |Gx(z)] < s, wh(z) =0 if |ik(z)| > ¢ (5.14)
Dwf}t(x) = Duy(z) — Do if |ax(z)| < s, Dwf,t(x) =0 if |ug(x)] >t (5.14")
Of course we have

meas (B, N{x : |tx(z)| > t}) 1 ~
meas(By) < a(h) ]{Bh ()] da

and hance we deduce from (5.13) that for every 0 <h < h

meas (ma{x:|ﬂk(x)|>t})<][ [io(@)]

lim sup o(h)

k00 meas(By,)

and by virtue of (2) in Lemma 5.1 we get

lim lim sup meas (B, N {z : [Ux(z)| > t})

=0
b0 koo meas(By)

which proves (1).
Taking (5.14’) and (1) into account, from (4) and (5) in Lemma 5.1, we deduce that

lim lim lim{meas(B,)] / Duy(z) dz = D,. (5.15)
h—0 k—oo s—t Bhﬂ{z: \ﬂk(x)|<s}
Moreover (5.7) in Lemma 5.1 ensures that for every k€ N and 0 < h <h

lim |Duy(z) — Dyl dx =0

$20 ) Bunfa: s<|ag(x)| <t}

and hence we have

|Duy(z)| dx = 0. (5.16)

lim lim lim [meas(B,)] /
h—0 k—oo s—t Bpn{z: s<|ag(z)|<t}
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By virtue of (5.15), (5.16) and (1), we deduce (2).
Condition (3) is an immediate consequence of the definition of the function .

Now note that

][ F (Duy(z)) dx >
Bpn{w: |ag(z)[<t}

meas(By,) o )
= meas (B N {x : |ig(x)| < t}) ]{ghF (Dwg (z) + Do) do +

1 / &
- - F (Dw} (x) + Do) dz (5.17)
meas (B, N {x : |Ux(2)| < 1}) Jounie: i (@)>s) ( ! 0)

From (1) above and (1) of Lemma 5.1 we deduce that

e . meas(Bp,)
ess lim liminf lim inf -
h—0 koo  s—t meas (B, N{x: |ug(z)] < t})

][ F (Dw?,(z) + Dy) dz >
By, ’

> F(Dy) (5.18)
Moreover, by assumption (iv) it follows that

1 / k
- F (Dw],+ Dy) dx <
meas (Br (& TN 2D St ey ot T 0
meas (B, N{x: |ig(x)| > s})

< C(1+Do) meas (B, N{z: |uk(z)| < t}) ’

C meas(By,) (meas(Bh)]_l /

+ =
meas (B, N {z: |ik(z)| < t}) Byn{z: |ag(x)[>s)

‘Dwf,t(:c)‘ d:c)

and taking (1) above and (5) in Lemma 5.1 into account we get

PO 1
ess lim lim lim — ][ F Dwf z) +Dy) dz = 0.
h=0  k—oo sotmeas (B, N {z : [Ux(z)] < 1})Jp,nia: jig(2)>s) (Dua() 0)

(5.19)

By virtue of the continuity of F, we deduce from (2) that
ess lim lim F <][ Duk(x)) dz = F (Do) . (5.20)

W0 koeo N Bunia: Jax(a)| <t}

Thus (4) follows from (5.17)—(5.20). O

We are ready now to state and prove our main result.
Theorem 5.3 (Lower semicontinuity). Assume that A C R" is closed.
Let (up)ren be a sequence in WHH(Q,R") and let ug € BV (Q,R") be such that

(i) ug(z) € A ae, keN;
(i1))  (ug)ken has equibounded variation and Ly—converges to ug.
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Let F:Qx AxR"™ — R be a Carathéodory function such that for a.e. xq € Q0 the
following conditions are satisfied

(i) F(-,-,v)/14 |v]| is lower semicontinuous in (xg,uo(zo)), uniformly with respect
to w;

(iv)  F(zo,uo(zo),-) 1is quasi convex;

(v) 0 < F(m,up(mg),v) < C(+|v|), veR™.

Then ug(z) € A, a.e. and

liminf/QF(x,uk(x),Duk(x))dxE/F(x,uo(az),Duo(az)) dx.

k—00 o)

Proof. Following the idea adopted by Acerbi - Fusco [1] and successively by Fonseca
- Miiller [26, 27], it is not restrictive to assume that the sequence (uy)gen lies in
WhHH(Q,R") N CO(Q, R™).

In fact WH(Q,R*) N C*°(Q,R") is dense in WH(Q,R") (see [2]). Thus, for every
k €N, let (vgm)men be asequence in WHH(Q,R")NC>(Q,R") which W!!—converges
to wg. Of course we may assume that

(Vk,m)men converges in L; and a.e. to  u

(Dvgm)men converges in L; and a.e. to  Duy. (5.21)

By virtue of the continuity of F(z,-,-) and the assumption (iv), it is easy (using Fatou’s
Lemma) to prove that

lim [ F(z,vgm(2), Dugm(x)) de = / F(z,ug(x), Dug(z)) dx. (5.22)

Finally, from (5.21), (5.22), by a standard diagonalization process, we get a sequence
(Vg e )ken in WH(Q,R") N C*®(Q,R") such that (v, x)ken has equibounded vari-
ation, L;—converges to uy and

lim | F(z,vm, k(2), Do, k() dz = lim inf/ F(z,ug(z), Dug(z)) dz.
Q

k—oo Jq k—o00

Thus, let us assume that u, € WH(Q,R*)NC%(Q,R*), k € N.
Let o € Q be fixed in such a way that assertions of Lemmas 3.5 and 5.2 hold.

Since F' is non-negative, we have

]{3 F(z,ug(x), Dug(z)) de >

meas(B, N{z : |ug(x)| < t}) ) Dula)) — Pl e (a . ’
> e L e = (). Do) — Fleo.wfeo), )] do

—l—][ F(zo,u0(xq), Dug(x)) dz — F (xo,uo(xo),][ Dug(x) dx) +
Bpn{z: |ig(x)|<t} B

nN{z: |ag(z)/ <t}

+F (xo,uo(xo),]im{x: i<t Duy(z) d:z:) — F(xo,uo(xo),Duo(xo))} . (5.23)
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Now, given ¢ > 0, from assumption ii), we deduce that a constant o = (g, ug,&) > 0
exists such that if |z — 2| <o and |u — ug(zo)| < o, then for every v € R*" one has

F(z,u,v) > F(zq,uo(z0),v) — (1 + |v]). (5.24)
Note that from (3) of Lemma 5.2, in B, N {z : |ug(z) — uo(zo)| < t}, we get
|u(z) — uo(o)| < ¢+ [Duo(zo)| h

thus, by virtue of (5.24), it is not restrictive to assume that for h sufficiently small

][ ) [F(x, ug(x), Dug(z)) — F(zo, uo(xo), Dug(z))] dz >
Bpn{z: |dg(z)|<t}

- (1 +]{9h \Duk(az)|dx)

and from Lemma 5.2 we deduce that

h—0 k—00

lim inf lim inf ][ [P (2, us(z), Dug(x)) — F (w0, uo(0), Dug ()] dz > 0.
Bpn{z: |ax(z)|<t}

(5.25)
Taking the continuity of F'(xo,uo(z¢),-) into account, from (2) of Lemma 5.2, we get

lim inf lim inf {F (xo, uo(xo),][ Dug(x) da:) — F (o, uo(o), ’Duo(ajo))} >0.
By {m: |t (z)| <t}

h—0 k—00

(5.26)
Finally, from (5.23), (5.25), (5.26) and (1), (4) of Lemma 5.2 we obtain
ess lim lim F(z,ug(x), Dug(z)) dx > F(zo,uo(zo), Duo(zo)).
h—0 k—o0 B,
The assertion is then an immediate consequence of Theorem 4.1. O

6. The convex case
Let us show how our main theorem reduces in the case of a convex integrand.

Following the proof of an analogous result given by Fonseca - Miiller [26], the following
lemma can be proved.

Lemma 6.1. Let F:Qx AXR™ — R be a continuous function such for a.e. xy €
and every ug € A it satisfies the conditions

(i)  F(xo,uo,-) is conver;

(i) 0 < F(zo,u0,v) < C(1+|v]), veR™

Then for a.e. xy € Q and every ug € A the function
F(-,-,v)

TH is lower semicontinuous in (xg,ug), uniformly with respect to v.
v
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In [22] the following approximation result was proved.

Lemma 6.2. Let F:Q x AXxRY — Ry be a continuous function such that for a.e.
xg € ) and every uy € A it satisfies the conditions

(i)  F(zo,uq,-) is convex;
(ii) for everye > 0 there exists § = d(xo,ug,€) > 0 such that if |x —xo| < 6, lu—ug| <6
and v € R then
F(xa u, U) > (1 - E)F(.ﬁ(), anv)‘
Then there exists a non decreasing sequence of continuous functions
Fi: QxR"xR"™ - Rf,j €N, such that

(1) 0< Fj(z,u,-) is convex;

() 0= Fy(z,u,) < Gl + o))

(3) F(z,u,v)=sup Fj(z,u,v).
jeN

By virtue of these results, the following result can be deduced from Theorem 5.3.
Corollary 6.3 (Lower semicontinuity). Assume that A C R" s closed.

Let (ug)ren be a sequence in WHL(Q,R™) and let ug € BV (Q,R*) be such that
(i) up(z) € Aae, keN,;

(i1))  (uk)ken has equibounded variation and Li—converges to uy.

Let F:QxAxR"™ — R be a continuous function such that for a.e. xzy € Q the
following conditions are satisfied

(iii) F(zo,uo(wo),) 1is convex;
(iv) for every € > 0 there exists 6 = 6(xo, uo(zo),€) > 0 such that if |x — x| < 0,
lu —up(zo)| < 0 and every v € R*™ then

F(z,u,v) > (1 —e)F(xg, ug(xp), v).

Then we have that ug(x) € A, a.e. and

liminf/ﬂF(m,uk(x),Duk(x))dacZ/F(ac,uo(x),Duo(x)) dx.

k—00 0
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