Quasi Convex Integrands and Lower Semicontinuity in BV

Primo Brandi

Department of Mathematics and Informatics, University of Perugia, Via L. Vanvitelli 1, 06123 Perugia, Italy mateas@unipg.it

Anna Salvadori

Department of Mathematics and Informatics, University of Perugia, Via L. Vanvitelli 1, 06123 Perugia, Italy mateas@unipg.it

Received December 28, 1998 Revised manuscript received April 7, 2001

We prove a lower semicontinuity theorem, in BV setting, for multiple integrals of the calculus of variations with quasi convex integrands. The key result is a deep analysis on the behaviour of an L_{1-} convergent sequence in BV. More precisely, we links up a local mean-value convergence of the gradients with the local oscillation of the surfaces and a suitable localization of a sequential Jensen's-type inequality. The present result extends to BV setting the lower semicontinuity theorem due to Fonseca-Müller [26] and improves our previous result given in [7] for convex integrands.

1. Introduction

We discuss here the lower semicontinuity of multiple integrals of the calculus of variations

$$\int_{\Omega} F(x, u(x), \mathcal{D}u(x)) dx \tag{1}$$

with respect to L_1 -convergence in BV setting, for quasi convex integrands. Here $\mathcal{D}x$ denotes the "essential gradient" of the BV function u, i.e. the density of the absolutely continuous part of the distributional derivative with respect to Lebesgue measure.

For a survey on the lower semicontinuity of quasi-convex integrands in Sobolev's spaces we refer to Dacorogna [23], where also a wide list of references can be found.

More recently, integral functional with quasi-convex integrands was studied (in various settings), among the others, by Ambrosio - Dal Maso [4], Fonseca - Müller [26, 27], Ambrosio [3], Malỳ [29] and Fonseca - Leoni [25].

The approach we propose in the present paper is based on two main results.

The first deals with the behaviour of the gradients of an L_1 -convergent sequence (Lemma 2 in [19], see also Proposition 3.7 in [7]):

a sequence $u_k: \Omega \to \mathbb{R}^n$, $\Omega \subset \mathbb{R}^{\nu}$, $k \in \mathbb{N}$, in $W^{1,1}$ which L_1 -converges to a BV function u_0 satisfies the following mean-value condition

$$\lim_{h \to 0} \lim_{k \to \infty} \int_{B(x_0, h)} \mathcal{D} u_k(x) dx = \mathcal{D} u_0(x_0) \qquad a.e. \ in \ \Omega$$
 (mv)

370 P. Brandi, A. Salvadori / Quasi convex integrands and lower semicontinuity in BV

where

$$\int_{B(x_0,h)} u(x) \, dx = [\text{meas}(B(x_0,h))]^{-1} \int_{B(x_0,h)} u(x) \, dx.$$

We wish to recall that mean-value condition (mv) revealed a key property in order to deal with lower semicontinuity in BV setting.

The second important result is our characterization of the lower semicontinuity of a sequence of integrals $\int_{\Omega} f_k(x) dx$, $k \in \mathbb{N}$ expressed by means of the following local condition (called *lower mean-value*):

$$\liminf_{h \to 0} \liminf_{k \to \infty} \int_{B(x_0, h)} f_k(x) dx \ge f_0(x_0) \quad \text{a.e. in } \Omega.$$
 (lmv)

By virtue of the (mv)-condition of the gradients, a specific characterization for integrals of type (1) can be deduced from this general result, in terms of a suitable localization of a sequential Jensen's-type inequality (see Theorems 4.3, 4.4).

$$\liminf_{h \to 0} \liminf_{k \to +\infty} \left\{ \int_{B(x_0,h)} F(x, u_0(x_0), \mathcal{D}u_k(x)) \, dx - F\left(x_0, u_0(x_0), \int_{B(x_0,h)} \mathcal{D}u_k(x) \, dx\right) \right\} \ge 0.$$
(Js)

In the present research we analyze the behaviour of a sequence in BV thoroughly. Precisely, we get the following result which links up (mv)-condition on the gradients with the local oscillation of the surfaces and (Js)-inequality under mild assumptions on the integrand (see Lemma 5.2).

Lemma 1.1. Assume that $(u_k)_k$ is a sequence in $W^{1,\infty}$ which has equibounded variation and L_1 -converges to a BV function u_0 . Then for a.e. $x_0 \in \Omega$ there exists a sequence $(U_{h,k})_{k \in \mathbb{N}}$ of subsets in $B(x_0,h)$ such that

(1)
$$\lim_{h\to 0} \lim_{k\to \infty} \frac{\operatorname{meas}(U_{h,k})}{\operatorname{meas}(B(x_0,h))} = 1;$$

(2)
$$\lim_{h\to 0} \lim_{k\to\infty} \sup_{x\in U_{h,k}} |u_k(x) - u_0(x_0)| = 0;$$

(mv)
$$\lim_{h\to 0} \lim_{k\to \infty} \int_{U_{h,k}} \mathcal{D}u_k(x) dx = \mathcal{D}u_0(x_0).$$

Moreover if we assume that $F: \mathbb{R}^{\nu n} \to \mathbb{R}$ is quasi-convex and $0 \le F(v) \le C(1 + |v|)$, $v \in \mathbb{R}^{\nu n}$, then the following Jensen's-type inequality holds

$$\liminf_{h \to 0} \liminf_{k \to \infty} \left[\int_{U_{h,k}} F(\mathcal{D}u_k(x)) \ dx - F\left(\int_{U_{h,k}} \mathcal{D}u_k(x) \ dx \right) \right] \ge 0. \tag{Js}$$

As an application of this lemma, we prove the following lower semicontinuity theorem.

Theorem 1.2 (Main result). Let Ω be a bounded open set and let $A \subset \mathbb{R}^{\nu+n}$ be closed. Assume that $(u_k)_{k\in\mathbb{N}}$ is a sequence in $W^{1,1}(\Omega,\mathbb{R}^n)$ such that

(i) $u_k(x) \in A \text{ a.e.}, k \in \mathbb{N};$

(ii) $(u_k)_{k\in\mathbb{N}}$ has equibounded variation and L_1 -converges to some u_0 that belongs to $BV(\Omega, \mathbb{R}^n)$.

Let $F: \Omega \times A \times \mathbb{R}^{\nu n} \to \mathbb{R}$ be a Carathèodory function such that for a.e. $x_0 \in \Omega$ the following conditions are satisfied

- (iii) $F(\cdot, \cdot, v)/1 + |v|$ is lower semicontinuous in $(x_0, u_0(x_0))$, uniformly with respect to v;
- (iv) $F(x_0, u_0(x_0), \cdot)$ is quasi convex;
- (v) $0 \le F(x_0, u_0(x_0), v) \le C(1 + |v|), \quad v \in \mathbb{R}^{\nu n}.$

Then $u_0(x) \in A$, a.e. and

$$\liminf_{k \to \infty} \int_{\Omega} F(x, u_k(x), \mathcal{D}u_k(x)) dx \ge \int_{\Omega} F(x, u_0(x), \mathcal{D}u_0(x)) dx.$$

For the sake of comparison with the literature on the subject, we wish to mention that the present result can be considered as an extension to BV-setting of the lower semicontinuity theorem by Fonseca-Müller [26] with an improvement of the assumptions on $F(\cdot,\cdot,v)$.

Moreover the interest of the present research remains even in the particular case of a convex integrand (see Section 6). In fact, for functional of type (1), we can here remove the Lipschitz-type condition we had assumed on $F(x,\cdot,v)$ in [7].

The results of this paper were extended by Comparato [21] to integral functionals

$$\int_{\Omega} F(x, (\mathcal{U} u)(x), (\mathcal{L} u)(x)) dx \tag{2}$$

where \mathcal{U} and \mathcal{L} are continuous operators.

These integrals were already studied in [7] for convex integrands, in BV-setting.

Finally, we wish to mention that the present research finds applications to closure theorems and existence results for optimal control problems ([10, 11]) which are connected with the study of a variational model for the plastic deformation of beams and plates under loads of different types [5, 6, 18, 20, 31, 32, 33].

2. Preliminaries

We denote by \mathbb{N} the set of all integers $k \geq 1$, and by \mathbb{R}^+ , \mathbb{R}_0^+ the set of positive or non-negative real numbers respectively.

Let ν , n and m be given integers. Let $\Omega \subset \mathbb{R}^{\nu}$ be a bounded open set.

According to standard notations, we denote by $L_1(\Omega, \mathbb{R}^m)$ the space of summable functions $x:\Omega\to\mathbb{R}^m$, by $W^{1,1}(\Omega,\mathbb{R}^m)$ the Sobolev space of functions $x\in L_1(\Omega,\mathbb{R}^m)$ whose distributional derivatives are summable functions, and by $BV(\Omega,\mathbb{R}^m)$ the space of functions $x\in L_1(\Omega,\mathbb{R}^m)$ which are of bounded variation in the sense of Cesari [6a]. Moreover, let $W^{1,\infty}(\Omega,\mathbb{R}^m)$ be the space of functions which are essentially bounded together with their distributional derivatives, let $C_0^\infty(\Omega,\mathbb{R}^m)$ be the space of C^∞ functions with compact support and let $W_0^{1,\infty}(\Omega,\mathbb{R}^m)$ denote the closure of $C_0^\infty(\Omega,\mathbb{R}^m)$ in $W^{1,\infty}(\Omega,\mathbb{R}^m)$.

Let \mathbb{M} denote the space of the measurable functions $f:\Omega\to\mathbb{R}$ whose negative part f^- is summable.

Given a BV function u, we denote by $\mathcal{D}u = \left(\frac{\partial u^i}{\partial x_j}, i = 1, ..., m, j = 1, ..., \nu\right)$ the "essential gradient" i.e. the density of the absolutely continuous part of the distributional derivative with respect to the Lebesgue measure and call $\mathcal{D}u$ the gradient of u.

Given a point $x_0 \in \Omega$ and a constant h > 0, we put

$$B_h(x_0) = \{x \in \mathbb{R}^{\nu} : x_{0j} - h \le x_{0j} \le x_{0j} + h, \ j = 1, ..., \nu\}.$$

In the case the point x_0 is clearly determined, we briefly write $B_h(x_0) = B_h$.

We will adopt the following notation, given a function $z: \mathbb{R}^+ \times \mathbb{N} \times \mathbb{R}^+ \to \mathbb{R}^n$ and a point $t \in \mathbb{R}^+$ such that

$$\lim_{h\to 0} \liminf_{k\to \infty} \liminf_{s\to t} z^i(h,k,s) = \lim_{h\to 0} \limsup_{k\to \infty} \limsup_{s\to t} z^i_k(h,k,s) = z^i_0 \qquad i=1,\dots,n$$

we briefly put

$$\lim_{h \to 0} \widetilde{\lim}_{k \to \infty} \widetilde{\lim}_{s \to t} z(h, k, s) = z_0.$$

For $\zeta: \mathbb{R}^+ \times \mathbb{N} \to \mathbb{R}^n$, we put

$$\lim_{h \to 0} \widetilde{\lim}_{k \to \infty} \zeta(h, k) = \zeta_0.$$

when similar equalities as above hold.

3. The mean-value and lower mean-value conditions

We recall the definition of mean-value and lower mean-value conditions we introduced in [8, 9] respectively (see also [7]).

Definition 3.1. We say that a sequence $(v_k)_{k\geq 0}$ in $L_1(\Omega, \mathbb{R}^m)$ satisfies the mean value (mv) condition at a point $x_0 \in \Omega$ provided

$$\operatorname{ess\,lim}_{h\to 0} \widetilde{\lim}_{k\to \infty} \int_{B_h} v_k(x) dx = v_0(x_0). \tag{mv}$$

We say that $(v_k)_{k>0}$ satisfies (mv) condition on Ω if (mv) holds at a.e. point $x_0 \in \Omega$.

Definition 3.2. We say that a sequence $(f_k)_{k\geq 0}$ in \mathbb{M} satisfies the lower mean value (lmv) condition at a point $x_0 \in \Omega$ provided

ess
$$\liminf_{h\to 0} \liminf_{k\to \infty} \int_{B_k} f_k(x) dx \ge f_0(x_0).$$
 (lmv)

We say that $(f_k)_{k\geq 0}$ satisfies (lmv) condition on Ω if (lmv) holds at a.e. point $x_0\in\Omega$.

Of course (mv) implies (lmv), moreover we recall some important results on (mv) conditions that will be used in what follows (for the detail and other results see [8]).

373

Proposition 3.3. If $v_k \to v_0$ weakly in $L_1(\Omega, \mathbb{R}^m)$, then the sequence $(v_k)_{k \geq 0}$ satisfies (mv) on Ω .

The converse is not true in general (see [7, Remark 3.5]).

Proposition 3.4. Let $(u_k)_{k\in\mathbb{N}}$ be a sequence in $W^{1,1}(\Omega,\mathbb{R}^n)$ which L_1 -converges to a function $u_0 \in BV(\Omega,\mathbb{R}^n)$.

Then there exists a subsequence of the gradients $(\mathcal{D}u_{s_k})_{k>0}$ which satisfies (mv) on Ω .

Following the proof of Theorem 5.1 in [7], the following result can be proved.

Lemma 3.5. Let $(v_k)_{k\in\mathbb{N}}$ be a bounded sequence in $L_1(\Omega,\mathbb{R}^m)$. Then, for a.e. $x_0\in\Omega$

$$\operatorname{ess \ lim \ } \lim\sup_{k\to\infty} \int_{B_h} |v_k(x)| \, dx < +\infty.$$

Proof. Let $I = [a, b]^{\nu} = \prod_{i=1}^{\nu} [a^i, b^i] \supset \Omega$ be a given interval. Let us consider the sequence $\phi_k : I \to \mathbb{R}, \ k \in \mathbb{N}$ defined by

$$\phi_k(x) = \int_{[a,x]^{\nu}} |v_k(\xi)| d\xi.$$

Note that the functions $(\phi_k)_{k\in\mathbb{N}}$ are absolutely continuous in the sense of Vitali and have equi-bounded Vitali variation. Thus, by Helly's theorem, there exists a function $\phi_0: I \to \mathbb{R}$ which has bounded Vitali variation and such that (for a suitable subsequence)

$$\phi_k \longrightarrow \phi_0$$
 pointwise.

By virtue of Proposition 3.8 in [7], we get that the superficial derivatives $(D^*\phi_k)_{k\geq 0}$ satisfy (mv) condition in $[a,b]^{\nu}$. Since $D^*\phi_k(x)=|v_k(x)|$ a.e. in Ω , the lemma follows immediately.

4. Characterizations of lower semicontinuity

The main property of (lmv) condition is the following general characterization of lower semicontinuity (see Theorem 11 in [9]).

Theorem 4.1. Let $(f_k)_{k\in\mathbb{N}}$ be a sequence in \mathbb{M} and assume that there exists a function $\lambda \in L_1$ such that $f_k(x) \geq \lambda(x)$, a.e. in Ω .

Then the following conditions are equivalent

- (i) $(f_k)_{k>0}$ satisfies (lmv) on Ω ;
- (ii) for every measurable set $E \subset \Omega$, which has nonempty interior and boundary with null measure, the lower semicontinuity condition holds

$$\liminf_{k \to \infty} \int_E f_k(x) \, dx \ge \int_E f_0(x) \, dx.$$

Let us introduce the following generalization of Jensen's inequality.

Definition 4.2. We shall say that a function $f: \mathbb{R}^m \to \mathbb{R}$ satisfies the *sequential localized Jensen's inequality* at the point $x_0 \in \Omega$ with respect to a sequence $(v_k)_{k \in \mathbb{N}}$ in $L^1(\Omega, \mathbb{R}^m)$ provided

ess
$$\liminf_{k \to \infty} \left\{ \oint_{B_k} f(v_k(x)) dx - f\left(\oint_{B_k} v_k(x) dx\right) \right\} \ge 0.$$
 (Js)

We shall say that f satisfies (Js) on Ω provided (Js) holds at a.e. point $x_0 \in \Omega$.

The following result is an easy consequence of Theorem 4.1.

Theorem 4.3. Assume that $(v_k)_{k\in\mathbb{N}}$ in $L^1(\Omega, \mathbb{R}^m)$ satisfies (mv) on Ω and $f: \mathbb{R}^m \to \mathbb{R}$ is continuous in $v_0(x_0)$.

Then the following conditions are equivalent

- (i) the sequence $f_k = f(v_k(\cdot)), k \ge 0$, satisfies (lmv) in $x_0 \in \Omega$;
- (ii) f satisfies (Js) in $x_0 \in \Omega$ with respect to the sequence $(v_k)_{k \in \mathbb{N}}$.

Proof. Note that (mv) condition and the continuity of f ensure that for a.e. $x_0 \in \Omega$

ess
$$\lim_{h\to 0} \widetilde{\lim}_{k\to \infty} f\left(\int_{B_h} v_k(x) dx\right) = f(v_0(x_0)).$$

Condition (Js) is trivially satisfied by convex integrands. For quasi convex integrands (see [23]) the following result holds.

Theorem 4.4. Assume that $f: \mathbb{R}^{\nu n} \to \mathbb{R}$ satisfies the assumptions

- (i) it is quasi convex;
- (ii) $f(v) \le C(1+|v|), \quad v \in \mathbb{R}^{\nu n}.$

Let $(u_k)_{k\in\mathbb{N}}$ be a sequence in $W^{1,1}(\Omega,\mathbb{R}^n)$ and let $u_0\in BV(\Omega,\mathbb{R}^n)$ be such that

(iii) $(u_k)_{k\in\mathbb{N}}$ has equibounded variation and L_1 -converges to u_0 .

Then f satisfies (Js) in Ω with respect to the sequence $(\mathcal{D}u_k)_{k\in\mathbb{N}}$.

We omit the proof since this result can also be considered as a corollary of main Theorem 5.3, by virtue of Theorems 4.1 and 4.3.

5. The main lower semicontinuity result

Before stating the main lower semicontinuity result, let us prove two lemmas that will be usefull in what follows.

Lemma 5.1. Let $B = B(x_0, r) \subset \Omega$ be a given ball, let $(u_k)_{k \in \mathbb{N}}$ be a sequence in $W^{1,\infty}(B, \mathbb{R}^n)$ and let $u_0 \in BV(B, \mathbb{R}^n)$ be such that

(i)
$$\mathcal{D}u_0(x_0) \text{ exists and } \lim_{h\to 0} \int_{B_h} \frac{|u_0(x)|}{h} dx = 0;$$

(ii)
$$\sup_{k \in \mathbb{N}} \int_{B} |\mathcal{D}u_{k}(x)| dx = W < +\infty.$$

Then there are three functions $\alpha, \beta:]0, \overline{h}[\to \mathbb{R}^+ \quad and \quad t:]0, \overline{h}[\times \mathbb{N} \to \mathbb{R}^+, \quad with 0 < \overline{h} \leq r\nu^{-\frac{1}{2}} \quad such \ that$

(1)
$$\alpha(h) \le t(h, k) \le \beta(h)$$
 for every $(h, k) \in]0, \overline{h}[\times \mathbb{N};$

(2)
$$\lim_{h\to 0} \int_{B_h} \frac{|u_0(x)|}{\alpha(h)} dx = 0 \qquad \lim_{h\to 0} \frac{\beta(h)}{h} = 0 \qquad \lim_{h\to 0} \frac{\beta(h)}{\alpha(h)} = +\infty.$$

Moreover, for every $(h, k) \in]0, \overline{h}[\times \mathbb{N}]$ and every $\alpha(h) \leq s < t = t(h, k)$ there exists a function

$$\begin{split} w^k_{s,t}: B \to \mathbb{R}^n & in \quad W^{1,\infty}(B,\mathbb{R}^n) \quad such \ that \\ w^k_{s,t}(x) = u_k(x) & in \quad \{x: \ |u_k(x)| \le s\} \qquad \quad w^k_{s,t}(x) = 0 \quad in \quad \{x: \ |u_k(x)| \ge t\} \end{split}$$

and with the property that

(3)
$$\operatorname{ess\,sup}_{x \in B} |w_{s,t}^k(x)| \le t$$
 for every $0 < h < \overline{h}, \quad k \in \mathbb{N};$

(4) ess
$$\lim_{h\to 0} \widetilde{\lim}_{k\to +\infty} \widetilde{\lim}_{s\to t} \int_{B_k} \mathcal{D}w_{s,t}^k(x) dx = 0;$$

(5)
$$\underset{h \to 0}{\text{ess lim}} \ \widetilde{\lim}_{k \to +\infty} \ \widetilde{\lim}_{s \to t^{-}} \ [(\text{meas}(B_h))]^{-1} \int_{B_h \cap \{x: \ s \le |u_k(x)| \le t\}} |\mathcal{D}w_{s,t}^k(x)| \, dx = 0.$$

Proof. Let $0 < \overline{h} \le r\nu^{-\frac{1}{2}}$ be fixed and put $\mathcal{D}_0 = \mathcal{D}u_0(x_0)$.

Denote by $\Theta:]0,\overline{h}[\to\mathbb{R}^+$ the function

$$\Theta(h) = h^2 + \int_{B_h} |u_0(x)| \, dx$$

and consider the functions $\alpha, \beta:]0, \overline{h}[\to \mathbb{R}^+$ defined by

$$\alpha(h) = \sqrt{h \Theta(h)}$$
 $\beta(h) = \sqrt[3]{h^2 \Theta(h)}$

By virtue of assumption (i) we have

$$\lim_{h \to 0} \frac{\beta(h)}{h} = 0 \tag{5.1}$$

$$\lim_{h \to 0} \frac{\Theta(h)}{\alpha(h)} = 0 \tag{5.1'}$$

$$\lim_{h \to 0} \frac{\beta(h)}{\alpha(h)} = +\infty \tag{5.1"}$$

hence condition (2) holds moreover, it is not restrictive to assume that

$$0 < \alpha(h) < \beta(h) < h$$
 for every $h \in]0, \overline{h}].$ (5.2)

Let $k \in \mathbb{N}$ and $h \in]0, \overline{h}]$ be fixed.

For every $t \in [\alpha(h), \beta(h)]$ and every 0 < s < t, let $\phi_{s,t} \in \mathcal{C}_0^{\infty}([0,1], \mathbb{R}_0^+)$ be a cut off function such that

$$\phi_{s,t}(\zeta) = 1$$
 if $0 \le \zeta \le s$ $\phi_{s,t}(\zeta) = 0$ if $\zeta \ge t$
$$\operatorname*{ess\,sup}_{\zeta \in [0,1]} |\phi'_{s,t}(\zeta)| \le \frac{C}{t-s},$$

where C is a constant. Let $w_{s,t}^k: B \to \mathbb{R}^n$ be the function defined by

$$w_{s,t}^k(x) = \phi_{s,t}(|u_k(x)|) \cdot u_k(x).$$

Note that $w_{s,t}^k \in W^{1,\infty}(B,\mathbb{R}^n)$ and a.e. in B we have

$$|w_{s,t}^k(x)| \le t \tag{5.3}$$

$$|\mathcal{D}w_{s,t}^k(x)| \le \frac{C}{t-s} |\mathcal{D}|u_k(x)| |\cdot|u_k(x)| + |\mathcal{D}u_k(x)|$$

$$(5.4)$$

$$\mathcal{D}w_{s,t}^k(x) = \mathcal{D}u_k(x)$$
 if $|u_k(x)| < s$, $\mathcal{D}w_{s,t}^k(x) = 0$ if $|u_k(x)| > t$. (5.5)

Since $w^k_{s,t} \in W^{1,1}(B,\mathbb{R}^n)$, for a.e. 0 < h' < h and $i = 1, \ldots, n$, $j = 1, \ldots, \nu$

$$\int_{B_{h'}} \mathcal{D}w_{s,t}^{k,i}(x) \, dx = \int_{B_{h'}^j} \left[w_{s,t}^{k,i}(x_0^j - h', \xi) - w_{s,t}^{k,i}(x_0^j + h', \xi) \right] \, d\xi$$

where $B_{h'}^j = \prod_{l=1,\dots,\nu,\ l\neq j} [x_0^l-h',x_0^l+h']$ and taking (5.3) into account of we get

$$\left| \int_{B_{h'}} \mathcal{D} w_{s,t}^{k,i}(x) \, dx \right| \leq \frac{\operatorname{meas}(B_{h'}^j)}{\operatorname{meas}(B_{h'})} \, 2t \leq \frac{t}{h'} \leq \frac{\beta(h')}{h'}.$$

Thus by the arbitrariness of h' we have

$$\left| \oint_{B_h} \mathcal{D}w_{s,t}^{k,i}(x) \, dx \right| \le \frac{\beta(h)}{h} \tag{5.6}$$

which gives (4) by virtue of (5.1).

Let us prove now that, for a.e. $t \in [\alpha(h), \beta(h)]$, we have

$$\lim_{s \to t} \int_{B_h \cap \{x: \ s \le |u_k(x)| \le t\}} |\mathcal{D}u_k(x)| \, dx = 0 \tag{5.7}$$

$$\limsup_{s \to t} \frac{1}{t - s} \int_{B_h \cap \{x: \ s \le |u_k(x)| \le t\}} |\mathcal{D}u_k(x)| \cdot |u_k(x)| \, dx \le \\
\le t H_{\nu - 1} \left(\{ x \in B_h : |u_k(x)| = t \} \right) \tag{5.8}$$

where $H_{\nu-1}$ denotes the Hausdorff measure.

Note that, since $\mathcal{D}u_k$ is bounded and u_k is summable in B_h , then we get respectively

$$\int_{B_h \cap \{x: \ s \le |u_k(x)| \le t\}} |\mathcal{D}u_k(x)| \, dx \le C_k \cdot \text{meas } (B_h \cap \{x: \ s \le |u_k(x)| \le t\})$$

where C_k is a constant depending on k, and

$$\lim_{s \to t} \operatorname{meas} (B_h \cap \{x : s \le |u_k(x)| \le t\}) = 0 \quad \text{for a.e. t}$$

which gives (5.7); moreover, the coarea formula (see [34]) ensures

$$\int_{s}^{t} H_{\nu-1} \left(\left\{ x \in B_{h} : |u_{k}(x)| = \tau \right\} \right) d\tau = \int_{B_{h} \cap \left\{ x : s \le |u_{k}(x)| \le t \right\}} |\mathcal{D}|u_{k}(x)| |dx$$

hence we deduce

$$\frac{1}{t-s} \int_{B_h \cap \{x: \ s \le |u_k(x)| \le t\}} |\mathcal{D}|u_k(x)| |\cdot |u_k(x)| \, dx \le \int_s^t t \, H_{\nu-1} \left(\{x \in B_h: \ |u_k(x)| = \tau \} \right) \, d\tau$$

and (5.8) follows by Lebesgue density theorem.

Note that still from the coarea formula, putting

$$\lambda = \operatorname*{ess \ inf}_{t \in [\alpha(h), \beta(h)]} t H_{\nu-1} \left(\{ x \in B_h : |u_k(x)| = t \} \right),$$

we have

$$\int_{B_h} |\mathcal{D}|u_k(x)| |dx = \int_{\mathbb{R}_0^+} H_{\nu-1} \left(\left\{ x \in B_h : |u_k(x)| = \tau \right\} \right) d\tau \ge$$

$$\ge \int_{\alpha(h)}^{\beta(h)} \frac{\lambda}{\tau} d\tau = \lambda \log \frac{\beta(h)}{\alpha(h)}. \quad (5.9)$$

Now, let $t = t(h, k) \in [\alpha(h), \beta(h)]$ be chosen in such a way that (5.7), (5.8) hold and (see (5.9)) in such a way that

$$\lambda \le t H_{\nu-1} \left(\{ x \in B_h : |u_k(x)| = t \} \right) \le \int_{B_h} |\mathcal{D}|u_k(x)| |dx / \log \frac{\beta(h)}{\alpha(h)}.$$

Passing to the limits for $h \to 0$ and $k \to +\infty$ and taking Lemma 3.5 and (5.1") into account, we obtain

$$\operatorname{ess \ lim \ lim \ sup}_{h \to 0} \ [\operatorname{meas}(B_h)]^{-1} \ t \ H_{\nu-1} \ (\{x \in B_h : \ |u_k(x)| = t\}) \le$$

$$\leq \operatorname{ess \ lim \ lim \ sup}_{h \to 0} \ \left[\int_{B_h} |\mathcal{D}|u_k(x)| \, |\, dx \, / \, \log \frac{\beta(h)}{\alpha(h)} \right] = 0. \quad (5.10)$$

From (5.8) and (5.10) we deduce that

$$\operatorname{ess \, lim}_{h \to 0} \, \widetilde{\lim}_{k \to +\infty} \, \widetilde{\lim}_{s \to t} \, \frac{[\operatorname{meas}(B_h)]^{-1}}{t - s} \int_{B_h \cap \{x: \ s \le |u_k(x)| \le t\}} |\mathcal{D}|u_k(x)| \, | \cdot |u_k(x)| \, dx = 0. \tag{5.11}$$

378 P. Brandi, A. Salvadori / Quasi convex integrands and lower semicontinuity in BV Moreover, by (5.4) it follows

$$\begin{split} & \int_{B_h \cap \{x: \ s \leq |u_k(x)| \leq t\}} \left| \mathcal{D} w_{s,t}^k(x) \right| \ dx \leq \\ & \leq \frac{C}{t-s} \int_{B_h \cap \{x: \ s \leq |u_k(x)| \leq t\}} \left| \mathcal{D} |u_k(x)| \right| \cdot |u_k(x)| \ dx + \int_{B_h \cap \{x: \ s \leq |u_k(x)| \leq t\}} |\mathcal{D} u_k(x)| \ dx \end{split}$$

and by virtue of (5.11) and (5.7), we have (5).

Lemma 5.2. Let $(u_k)_{k\in\mathbb{N}}$ be a sequence in $W^{1,\infty}(\Omega,\mathbb{R}^n)$ and let $u_0\in BV(\Omega,\mathbb{R}^n)$ be such that

 $(u_k)_{k\in\mathbb{N}}$ converges to u_0 in $L_1(\Omega,\mathbb{R}^n)$

(ii)
$$\sup_{k \in \mathbb{N}} \int_{\Omega} |\mathcal{D}u_k(x)| \, dx = W < +\infty.$$

Then for a.e. $x_0 \in \Omega$ and for

$$\pi(x) = u_0(x_0) + \langle \mathcal{D}u_0(x_0), x - x_0 \rangle, \quad x \in \Omega \quad and \quad \tilde{u}_k = u_k - \pi, \quad k \ge 0,$$

the following results hold.

There exists a function $t:]0,1[\times \mathbb{N} \to \mathbb{R}^+$ such that $\lim_{h\to 0} t(h,k) = 0$ for every $k \in \mathbb{N}$, and

(1)
$$\lim_{h\to 0} \liminf_{k\to \infty} \frac{\operatorname{meas}(B_h \cap \{x : |\tilde{u}_k(x)| \le t\})}{\operatorname{meas}(B_h)} = 1;$$

$$(2) \quad \underset{h \to 0}{\operatorname{ess \ lim}} \quad \widetilde{\lim}_{k \to \infty} \quad \underset{h \to 0}{\operatorname{meas}}(B_h)$$

$$(3) \quad \underset{B_h \cap \{x: \ |\tilde{u}_k(x)| \le t\}}{\operatorname{sup}} \quad |u_k(x) - u_0(x_0)| \le t + |\mathcal{D}u_0(x_0)| \cdot h$$

(3)
$$\sup_{B_h \cap \{x: \ |\tilde{u}_k(x)| \le t\}} |u_k(x) - u_0(x_0)| \le t + |\mathcal{D}u_0(x_0)| \cdot h$$

where t = t(h, k).

Moreover let $F: \mathbb{R}^{\nu n} \to \mathbb{R}$ be an integrand which satisfies the conditions

- (iii) is quasi convex;
- (iv) $0 \le F(v) \le C(1+|v|), v \in \mathbb{R}^{\nu n}$

then for a.e. $x_0 \in \Omega$, the following result holds

$$(4) \quad \liminf_{h \to 0} \liminf_{k \to \infty} \left[\int_{B_h \cap \{x: \ |\tilde{u}_k(x)| \le t\}} F\left(\mathcal{D}u_k(x)\right) \ dx - F\left(\int_{B_h \cap \{x: \ |\tilde{u}_k(x)| \le t\}} \mathcal{D}u_k(x) \ dx \right) \right] \ge 0.$$

Proof. Let $x_0 \in \Omega$ be fixed in such a way that the derivative $\mathcal{D}u_0(x_0)$ exists and (see |24|)

$$\lim_{h \to 0} \oint_{B_{\epsilon}} \frac{|u_0(x) - u_0(x_0) - \langle \mathcal{D}u_0(x_0), x - x_0 \rangle|}{|x - x_0|} dx = 0.$$
 (5.12)

Put

$$\mathcal{D}_0 = \mathcal{D}u_0(x_0), \quad \pi(x) = u_0(x_0) + \langle \mathcal{D}_0, x - x_0 \rangle, \quad x \in \Omega \quad \text{and} \quad \tilde{u}_k = u_k - \pi, \quad k \ge 0,$$

note that $\tilde{u}_k \in \mathcal{C}^{\infty}(\mathbb{R}^{\nu}, \mathbb{R}^n), k \in \mathbb{N}$ and

$$\tilde{u}_k \longrightarrow \tilde{u}_0 \text{ in } L_1$$
 (5.13)

379

$$\sup_{k \in \mathbb{N}} \int_{\Omega} |\mathcal{D}\tilde{u}_k| \, dx = \tilde{W} = W + \mathcal{D}_0 \, \operatorname{meas}(\Omega)$$
 (5.13')

Let $B(x_0, r) \subset \Omega$ and let $0 < \overline{h} < r\nu^{-\frac{1}{2}}$ be given.

Let $t:]0, \overline{h}[\times \mathbb{N} \to \mathbb{R}^+]$ be the function given by virtue of Lemma 5.1 and, for every $k \in \mathbb{N}, \ 0 < h < \overline{h}$ and 0 < s < t = t(h, k) we denote by $w_{s,t}^k: B \to \mathbb{R}^n$ the function given in Lemma 5.1, relative to \tilde{u}_k i.e.

$$w_{s,t}^k(x) = \phi_{s,t}(|\tilde{u}_k(x)|) \cdot \tilde{u}_k(x).$$

We recall that $w_{s,t}^k \in W^{1,\infty}(B,\mathbb{R}^n)$ and

$$w_{s,t}^k(x) = \tilde{u}_k(x) \quad \text{if} \quad |\tilde{u}_k(x)| \le s, \qquad w_{s,t}^k(x) = 0 \quad \text{if} \quad |\tilde{u}_k(x)| \ge t$$
 (5.14)

$$\mathcal{D}w_{s,t}^{k}(x) = \mathcal{D}u_{k}(x) - \mathcal{D}_{0} \text{ if } |\tilde{u}_{k}(x)| < s, \qquad \mathcal{D}w_{s,t}^{k}(x) = 0 \text{ if } |\tilde{u}_{k}(x)| > t.$$
 (5.14')

Of course we have

$$\frac{\operatorname{meas} (B_h \cap \{x : |\tilde{u}_k(x)| > t\})}{\operatorname{meas}(B_h)} < \frac{1}{\alpha(h)} \int_{B_h} |\tilde{u}_k(x)| \, dx$$

and hance we deduce from (5.13) that for every $0 < h < \overline{h}$

$$\limsup_{k \to \infty} \frac{\operatorname{meas} (B_h \cap \{x : |\tilde{u}_k(x)| > t\})}{\operatorname{meas}(B_h)} \le \int_{B_h} \frac{|\tilde{u}_0(x)|}{\alpha(h)} dx$$

and by virtue of (2) in Lemma 5.1 we get

$$\lim_{h \to 0} \limsup_{k \to \infty} \frac{\operatorname{meas}(B_h \cap \{x : |\tilde{u}_k(x)| > t\})}{\operatorname{meas}(B_h)} = 0$$

which proves (1).

Taking (5.14') and (1) into account, from (4) and (5) in Lemma 5.1, we deduce that

$$\lim_{h \to 0} \widetilde{\lim}_{k \to \infty} \widetilde{\lim}_{s \to t} [\operatorname{meas}(B_h)]^{-1} \int_{B_h \cap \{x: |\tilde{u}_k(x)| < s\}} \mathcal{D}u_k(x) \, dx = \mathcal{D}_0.$$
 (5.15)

Moreover (5.7) in Lemma 5.1 ensures that for every $k \in \mathbb{N}$ and $0 < h < \overline{h}$

$$\lim_{s \to t} \int_{B_h \cap \{x: \ s \le |\tilde{u}_k(x)| \le t\}} |\mathcal{D}u_k(x) - \mathcal{D}_0| \, dx = 0$$

and hence we have

$$\lim_{h \to 0} \widetilde{\lim}_{k \to \infty} \widetilde{\lim}_{s \to t} \left[\operatorname{meas}(B_h) \right]^{-1} \int_{B_h \cap \{x: \ s \le |\tilde{u}_k(x)| \le t\}} |\mathcal{D}u_k(x)| \, dx = 0. \tag{5.16}$$

380 P. Brandi, A. Salvadori / Quasi convex integrands and lower semicontinuity in BV

By virtue of (5.15), (5.16) and (1), we deduce (2).

Condition (3) is an immediate consequence of the definition of the function \tilde{u}_k . Now note that

$$\int_{B_{h}\cap\{x: |\tilde{u}_{k}(x)|\leq t\}} F\left(\mathcal{D}u_{k}(x)\right) dx \geq \frac{\max(B_{h})}{\max(B_{h}\cap\{x: |\tilde{u}_{k}(x)|\leq t\})} \int_{B_{h}} F\left(\mathcal{D}w_{s,t}^{k}(x) + \mathcal{D}_{0}\right) dx + \frac{1}{\max(B_{h}\cap\{x: |\tilde{u}_{k}(x)|\leq t\})} \int_{B_{h}\cap\{x: |\tilde{u}_{k}(x)|> s\}} F\left(\mathcal{D}w_{s,t}^{k}(x) + \mathcal{D}_{0}\right) dx \quad (5.17)$$

From (1) above and (1) of Lemma 5.1 we deduce that

ess
$$\lim_{h\to 0} \liminf_{k\to \infty} \liminf_{s\to t} \frac{\operatorname{meas}(B_h)}{\operatorname{meas}(B_h \cap \{x : |\tilde{u}_k(x)| \le t\})} \int_{B_h} F\left(\mathcal{D}w_{s,t}^k(x) + \mathcal{D}_0\right) dx \ge$$

$$\ge F\left(\mathcal{D}_0\right) \quad (5.18)$$

Moreover, by assumption (iv) it follows that

$$\frac{1}{\text{meas } (B_{h} \cap \{x : |\tilde{u}_{k}(x)| \leq t\})} \int_{B_{h} \cap \{x : |\tilde{u}_{k}(x) \geq s\}} F\left(\mathcal{D}w_{s,t}^{k} + \mathcal{D}_{0}\right) dx \leq \\
\leq C(1 + \mathcal{D}_{0}) \frac{\text{meas } (B_{h} \cap \{x : |\tilde{u}_{k}(x)| \geq s\})}{\text{meas } (B_{h} \cap \{x : |\tilde{u}_{k}(x)| \leq t\})} + \\
+ \frac{C \text{meas}(B_{h})}{\text{meas } (B_{h} \cap \{x : |\tilde{u}_{k}(x)| \leq t\})} \left(\text{meas}(B_{h})\right]^{-1} \int_{B_{h} \cap \{x : |\tilde{u}_{k}(x)| \geq s\}} |\mathcal{D}w_{s,t}^{k}(x)| dx\right)$$

and taking (1) above and (5) in Lemma 5.1 into account we get

ess
$$\lim_{h\to 0} \widetilde{\lim}_{k\to\infty} \widetilde{\lim}_{s\to t} \frac{1}{\operatorname{meas}(B_h \cap \{x: |\tilde{u}_k(x)| \le t\})} \int_{B_h \cap \{x: |\tilde{u}_k(x)| \ge s\}} F\left(\mathcal{D}w_{s,t}^k(x) + \mathcal{D}_0\right) dx = 0.$$

$$(5.19)$$

By virtue of the continuity of F, we deduce from (2) that

$$\operatorname{ess \, lim}_{h \to 0} \ \widetilde{\lim}_{k \to \infty} F \left(\int_{B_h \cap \{x: \ |\tilde{u}_k(x)| \le t\}} \mathcal{D}u_k(x) \right) \, dx = F \left(\mathcal{D}_0 \right). \tag{5.20}$$

Thus (4) follows from (5.17)–(5.20).

We are ready now to state and prove our main result.

Theorem 5.3 (Lower semicontinuity). Assume that $A \subset \mathbb{R}^n$ is closed.

Let $(u_k)_{k\in\mathbb{N}}$ be a sequence in $W^{1,1}(\Omega,\mathbb{R}^n)$ and let $u_0\in BV(\Omega,\mathbb{R}^n)$ be such that

- (i) $u_k(x) \in A \text{ a.e.}, k \in \mathbb{N};$
- (ii) $(u_k)_{k\in\mathbb{N}}$ has equibounded variation and L_1 -converges to u_0 .

Let $F: \Omega \times A \times \mathbb{R}^{\nu n} \to \mathbb{R}$ be a Carathèodory function such that for a.e. $x_0 \in \Omega$ the following conditions are satisfied

- (iii) $F(\cdot, \cdot, v)/1 + |v|$ is lower semicontinuous in $(x_0, u_0(x_0))$, uniformly with respect to v;
- (iv) $F(x_0, u_0(x_0), \cdot)$ is quasi convex;
- (v) $0 \le F(x_0, u_0(x_0), v) \le C(1 + |v|), \quad v \in \mathbb{R}^{\nu n}.$

Then $u_0(x) \in A$, a.e. and

$$\liminf_{k \to \infty} \int_{\Omega} F(x, u_k(x), \mathcal{D}u_k(x)) dx \ge \int_{\Omega} F(x, u_0(x), \mathcal{D}u_0(x)) dx.$$

Proof. Following the idea adopted by Acerbi - Fusco [1] and successively by Fonseca - Müller [26, 27], it is not restrictive to assume that the sequence $(u_k)_{k\in\mathbb{N}}$ lies in $W^{1,1}(\Omega,\mathbb{R}^n)\cap C^0(\Omega,\mathbb{R}^n)$.

In fact $W^{1,1}(\Omega, \mathbb{R}^n) \cap C^{\infty}(\Omega, \mathbb{R}^n)$ is dense in $W^{1,1}(\Omega, \mathbb{R}^n)$ (see [2]). Thus, for every $k \in \mathbb{N}$, let $(v_{k,m})_{m \in \mathbb{N}}$ be a sequence in $W^{1,1}(\Omega, \mathbb{R}^n) \cap C^{\infty}(\Omega, \mathbb{R}^n)$ which $W^{1,1}$ -converges to u_k . Of course we may assume that

$$(v_{k,m})_{m\in\mathbb{N}}$$
 converges in L_1 and a.e. to u_k
 $(\mathcal{D}v_{k,m})_{m\in\mathbb{N}}$ converges in L_1 and a.e. to $\mathcal{D}u_k$. (5.21)

By virtue of the continuity of $F(x,\cdot,\cdot)$ and the assumption (iv), it is easy (using Fatou's Lemma) to prove that

$$\lim_{m \to \infty} \int_{\Omega} F(x, v_{k,m}(x), \mathcal{D}v_{k,m}(x)) dx = \int_{\Omega} F(x, u_k(x), \mathcal{D}u_k(x)) dx.$$
 (5.22)

Finally, from (5.21), (5.22), by a standard diagonalization process, we get a sequence $(v_{m_k,k})_{k\in\mathbb{N}}$ in $W^{1,1}(\Omega,\mathbb{R}^n)\cap C^\infty(\Omega,\mathbb{R}^n)$ such that $(v_{m_k,k})_{k\in\mathbb{N}}$ has equibounded variation, L_1 -converges to u_0 and

$$\lim_{k \to \infty} \int_{\Omega} F(x, v_{m_k, k}(x), \mathcal{D}v_{m_k, k}(x)) dx = \liminf_{k \to \infty} \int_{\Omega} F(x, u_k(x), \mathcal{D}u_k(x)) dx.$$

Thus, let us assume that $u_k \in W^{1,1}(\Omega, \mathbb{R}^n) \cap C^0(\Omega, \mathbb{R}^n), k \in \mathbb{N}$.

Let $x_0 \in \Omega$ be fixed in such a way that assertions of Lemmas 3.5 and 5.2 hold.

Since F is non-negative, we have

$$\int_{B_{h}} F(x, u_{k}(x), \mathcal{D}u_{k}(x)) dx \ge \frac{\int_{B_{h} \cap \{x : |\tilde{u}_{k}(x)| \le t\}} \left\{ \int_{B_{h} \cap \{x : |\tilde{u}_{k}(x)| \le t\}} [F(x, u_{k}(x), \mathcal{D}u_{k}(x)) - F(x_{0}, u_{0}(x_{0}), \mathcal{D}u_{k}(x))] dx + \int_{B_{h} \cap \{x : |\tilde{u}_{k}(x)| \le t\}} F(x_{0}, u_{0}(x_{0}), \mathcal{D}u_{k}(x)) dx - F\left(x_{0}, u_{0}(x_{0}), \int_{B_{h} \cap \{x : |\tilde{u}_{k}(x)| \le t\}} \mathcal{D}u_{k}(x) dx\right) + F\left(x_{0}, u_{0}(x_{0}), \int_{B_{h} \cap \{x : |\tilde{u}_{k}(x)| \le t\}} \mathcal{D}u_{k}(x) dx\right) - F(x_{0}, u_{0}(x_{0}), \mathcal{D}u_{0}(x_{0})) \right\}. \quad (5.23)$$

Now, given $\varepsilon > 0$, from assumption ii), we deduce that a constant $\sigma = \sigma(x_0, u_0, \varepsilon) > 0$ exists such that if $|x - x_0| \le \sigma$ and $|u - u_0(x_0)| \le \sigma$, then for every $v \in \mathbb{R}^{\nu n}$ one has

$$F(x, u, v) \ge F(x_0, u_0(x_0), v) - \varepsilon(1 + |v|). \tag{5.24}$$

Note that from (3) of Lemma 5.2, in $B_h \cap \{x : |u_k(x) - u_0(x_0)| \le t\}$, we get

$$|u_k(x) - u_0(x_0)| \le t + |\mathcal{D}u_0(x_0)| h$$

thus, by virtue of (5.24), it is not restrictive to assume that for h sufficiently small

$$\int_{B_h \cap \{x: \ |\tilde{u}_k(x)| \le t\}} \left[F(x, u_k(x), \mathcal{D}u_k(x)) - F(x_0, u_0(x_0), \mathcal{D}u_k(x)) \right] dx \ge \\
\ge -\varepsilon \left(1 + \int_{B_k} |\mathcal{D}u_k(x)| dx \right)$$

and from Lemma 5.2 we deduce that

$$\lim_{h \to 0} \inf \lim_{k \to \infty} \int_{B_h \cap \{x: \ |\tilde{u}_k(x)| \le t\}} \left[F(x, u_k(x), \mathcal{D}u_k(x)) - F(x_0, u_0(x_0), \mathcal{D}u_k(x)) \right] dx \ge 0.$$
(5.25)

Taking the continuity of $F(x_0, u_0(x_0), \cdot)$ into account, from (2) of Lemma 5.2, we get

$$\liminf_{h \to 0} \liminf_{k \to \infty} \left\{ F\left(x_0, u_0(x_0), \int_{B_h \cap \{x: |\tilde{u}_k(x)| \le t\}} \mathcal{D}u_k(x) \, dx \right) - F(x_0, u_0(x_0), \mathcal{D}u_0(x_0)) \right\} \ge 0.$$

$$(5.26)$$

Finally, from (5.23), (5.25), (5.26) and (1), (4) of Lemma 5.2 we obtain

ess
$$\lim_{h\to 0} \widetilde{\lim}_{k\to \infty} \int_{B_h} F(x, u_k(x), \mathcal{D}u_k(x)) dx \ge F(x_0, u_0(x_0), \mathcal{D}u_0(x_0)).$$

The assertion is then an immediate consequence of Theorem 4.1.

6. The convex case

Let us show how our main theorem reduces in the case of a convex integrand.

Following the proof of an analogous result given by Fonseca - Müller [26], the following lemma can be proved.

Lemma 6.1. Let $F: \Omega \times A \times \mathbb{R}^{n\nu} \to \mathbb{R}$ be a continuous function such for a.e. $x_0 \in \Omega$ and every $u_0 \in A$ it satisfies the conditions

- (i) $F(x_0, u_0, \cdot)$ is convex;
- (ii) $0 \le F(x_0, u_0, v) \le C(1 + |v|), \quad v \in \mathbb{R}^{\nu n}.$

Then for a.e. $x_0 \in \Omega$ and every $u_0 \in A$ the function

$$\frac{F(\cdot,\cdot,v)}{1+|v|}$$
 is lower semicontinuous in (x_0,u_0) , uniformly with respect to v .

In [22] the following approximation result was proved.

Lemma 6.2. Let $F: \Omega \times A \times \mathbb{R}^{n\nu} \to \mathbb{R}_0^+$ be a continuous function such that for a.e. $x_0 \in \Omega$ and every $u_0 \in A$ it satisfies the conditions

- (i) $F(x_0, u_0, \cdot)$ is convex;
- (ii) for every $\varepsilon > 0$ there exists $\delta = \delta(x_0, u_0, \varepsilon) > 0$ such that if $|x x_0| < \delta$, $|u u_0| < \delta$ and $v \in \mathbb{R}^{\nu n}$ then

$$F(x, u, v) \ge (1 - \varepsilon)F(x_0, u_0, v).$$

Then there exists a non decreasing sequence of continuous functions $F_j: \Omega \times \mathbb{R}^n \times \mathbb{R}^{\nu n} \to \mathbb{R}_0^+, j \in \mathbb{N}$, such that

- (1) $0 \le F_j(x, u, \cdot)$ is convex;
- (2) $0 \le F_j(x, u, v) \le C_j(1 + |v|);$
- (3) $F(x, u, v) = \sup_{j \in \mathbb{N}} F_j(x, u, v).$

By virtue of these results, the following result can be deduced from Theorem 5.3.

Corollary 6.3 (Lower semicontinuity). Assume that $A \subset \mathbb{R}^n$ is closed.

Let $(u_k)_{k\in\mathbb{N}}$ be a sequence in $W^{1,1}(\Omega,\mathbb{R}^n)$ and let $u_0\in BV(\Omega,\mathbb{R}^n)$ be such that

- (i) $u_k(x) \in A \text{ a.e.}, k \in \mathbb{N};$
- (ii) $(u_k)_{k\in\mathbb{N}}$ has equibounded variation and L_1 -converges to u_0 .

Let $F: \Omega \times A \times \mathbb{R}^{\nu n} \to \mathbb{R}$ be a continuous function such that for a.e. $x_0 \in \Omega$ the following conditions are satisfied

- (iii) $F(x_0, u_0(x_0), \cdot)$ is convex;
- (iv) for every $\varepsilon > 0$ there exists $\delta = \delta(x_0, u_0(x_0), \varepsilon) > 0$ such that if $|x x_0| < \delta$, $|u u_0(x_0)| < \delta$ and every $v \in \mathbb{R}^{\nu n}$ then

$$F(x, u, v) \ge (1 - \varepsilon)F(x_0, u_0(x_0), v).$$

Then we have that $u_0(x) \in A$, a.e. and

$$\liminf_{k\to\infty} \int_{\Omega} F(x, u_k(x), \mathcal{D}u_k(x)) dx \ge \int_{\Omega} F(x, u_0(x), \mathcal{D}u_0(x)) dx.$$

References

- [1] E. Acerbi, N. Fusco: Semicontinuity problems in the calculus of variations, Arch. Rat. Mech. Anal. 84 (1986) 125–145.
- [2] R. A. Adams: Sobolev Spaces, Academic Press, 1975.
- [3] L. Ambrosio: On the lower semicontinuity of quasi-convex integrals in SBV, J. Nonlinear Anal. 23 (1994) 405–425.
- [4] L. Ambrosio, G. Dal Maso: On the relaxation in $BV(\Omega, \mathbb{R}^m)$ of quasi-convex integrals, J. Funct. Anal. 109 (1992) 76–97.
- [5] P. Brandi, A. Salvadori: Non-smooth solutions in plastic deformation, Atti Sem. Mat. Fis. Univ. Modena 41 (1993) 483–490.

- [6] P. Brandi, A. Salvadori: A variational approach to problems of plastic deformation, Developments in Partial Differential Equations and Applications to Mathematical Physics, G. Buttazzo et al. (eds.), Plenum Press (1992) 219–226.
- [7] P. Brandi, A. Salvadori: On the lower semicontinuity in BV setting, J. Convex Analysis 1 (1994) 151–172.
- [8] P. Brandi, A. Salvadori: A mean value property for lower semicontinuity on BV, Atti Sem. Mat. Fis. Univ. Modena 43 (1995) 473–482.
- [9] P. Brandi, A. Salvadori: A characterization of lower semicontinuity, Atti Sem. Mat. Fis. Univ. Modena 44 (1996) 443–464.
- [10] P. Brandi, A. Salvadori: Closure theorems in BV setting, Progress in Partial Differential Equations: the Metz survey 4, Pitman Research Notes in Mathematics Series 345 (1996) 42–52.
- [11] P. Brandi, A. Salvadori: Existence theorems for discontinuous solutions in optimization problems, J. Nonlinear Anal. 30 (1997) 5463–5474.
- [12] L. Cesari: Sulle funzioni a variazione limitata, Ann. Scuola Nor. Sup. Pisad 5 (1936) 299–313.
- [13] L. Cesari: Seminormality and upper semicontinuity in optimal control, J. Opt. Theor. Appl. 6 (1970) 104–137.
- [14] L. Cesari: Optimization Theory and Applications, Springer-Verlag, 1983.
- [15] L. Cesari, P. Brandi, A. Salvadori: Discontinuous solutions in problems of optimization, Ann. Scuola Norm. Sup. Pisa 15 (1988) 219–237.
- [16] L. Cesari, P. Brandi, A. Salvadori: Existence theorems concerning simple integrals of the calculus of variations for discontinuous solutions, Arch. Rat. Mech. Anal. 98 (1987) 307–328.
- [17] L. Cesari, P. Brandi, A. Salvadori: Existence theorems for multiple integrals of the calculus of variations for discontinuous solutions, Ann. Mat. Pura Appl. 152 (1988) 95–121.
- [18] L. Cesari, P. Brandi, A. Salvadori: Existence theorems for multiple integrals with distributional constraints, Rapporto Tecnico Dip. Mat. Univ. Perugia 12 (1991).
- [19] L. Cesari, P. Brandi, A. Salvadori: Seminormality conditions in calculus of variations for BV solutions, Ann. Mat. Pura Appl. 162 (1992) 299–317.
- [20] L. Cesari, W. H. Yang: Serrin's integrals and second order problems of plasticity, Proc. Royal Soc. Edinburgh 107 (1991) 193–201.
- [21] S. Comparato: Lower semicontinuity for quasi convex functionals depending on nonlinear operators, Atti Sem. Mat. Fis. Univ. Modena 46 (1998) 641–652.
- [22] G. Dal Maso, C. Sbordone: Weak lower semicontinuity of polyconvex integrals: a borderline case, Mathematische Zeitschrift 218 (1995) 603–609.
- [23] B. Dacorogna: Direct Methods in the Calculus of Variations, Springer-Verlag, 1989.
- [24] Federer: Geometric Measure Theory, Springer-Verlag, 1969.
- [25] I. Fonseca, G. Leoni: Bulk and contact energies: nucleation and relaxation, preprint.
- [26] I. Fonseca, S. Müller: Quasi-convex integrands and lower semicontinuity in L^1 , SIAM J. Math. Anal. 23 (1992) 1081–1098.
- [27] I. Fonseca, S. Müller: Relaxation of quasi convex functionals in $BV(\Omega, \mathbb{R}^p)$ for integrands $f(x, u, \nabla u)$, Arch. Rat. Mech. Anal. 123 (1993) 1–49.
- [28] N. Fusco: Quasi convessità e semicontinuità per integrali multipli di ordine superiore, Arch. Rat. Mech. Anal. 84 (1986) 125–145.

- [29] J. Malỳ: Lower semicontinuity of quasi convex integrals, Manuscripta Math. 85 (1994) 419–428.
- [30] C. B. Morrey: Multiple Integrals in the Calculus of Variations, Springer-Verlag, 1986.
- [31] W. H. Yang: Minimization approach to limit solutions of plates, Computer Methods Applied Mechanics Engineering 28 (1981) 265–274.
- [32] W. H. Yang: A variational principle and an algorithm for limit analysis of beams and plates, Computer Methods Applied Mechanics Engineering 33 (1982) 575–582.
- [33] W. H. Yang: Calculus of variations and plasticity, Atti Sem. Mat. Fis. Univ. Modena 41 (1993) 209–225.
- [34] W. Ziemer: Weakly Differential Functions, Springer-Verlag, 1989.