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Some properties of closed sets which generalize concepts of Convex Analysis are compared and character-
ized. Some of them have a global character and are concerned with controlling the lack of monotonicity
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sets satisfying an external sphere condition, with locally uniform radius.
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1. Introduction

Let H be a Hilbert space, and let K ⊂ H be a closed set. Many concepts of tangent and
normal vectors to K were defined in the past (see, e. g., [3, 14, 27, 31]), with different
– and, possibly, conflicting – purposes. In particular, Clarke’s definition privilegiates
regularity properties of the cones as multivalued mappings: for example, Clarke normal
cone N c

K(·) at x ∈ K always admits a (multivalued) upper-hemicontinuous selection. On
the other hand, normals in the sense of Bouligand satisfy some geometrical properties that
genuine normal vectors should be expected to enjoy. Since a unifying concept does not
exist, in order to exclude pathologies it is natural to assume that Clarke and Bouligand
cones coincide. Several properties implying the above one are already present in the
literature, or can be defined. This paper deals with the comparison and the investigation
of some of them, mainly in infinite dimensional spaces. All the known regularity properties
are enjoyed by both convex and smooth sets, and are born as generalizations of various
characterizations of convexity.

We consider, among others, the following regularity properties: 1) Clarke regularity, i.e.
Clarke and (strong) Bouligand normal cones coincide; 2) sleekness, i.e. the (strong)
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Bouligand tangent cone is lower semicontinuous; 3) σ-regularity, i.e. Clarke and (weak)
Bouligand cones coincide; 4) ϕ-convexity, i.e. K satisfies an external sphere condition,
with locally uniform radius. All of these properties are shown to be different in infinite
dimensional spaces, while 1)÷ 3) are equivalent in Rd. Moreover, the chain of implications
4) ⇒ 3) ⇒ 2) ⇒ 1) holds. A fifth property, called property (ω), is also defined and
studied. It is intermediate between 3) and 4), and is connected with the closedness of
the graph of the boundary of the normal cone and with a kind of local monotonicity.
Moreover, property (ω) is closely related with regularity and uniqueness of trajectories of
the Moreau process for a class of non-convex sets, which are studied in the paper [16], and
it is shown to be equivalent to the o(1)-convexity introduced by Shapiro (see [32]). Other
properties, such as the equality between strong and weak Bouligand cones or between
Clarke and proximal normal cone are also briefly studied. Some of the above concepts are
also investigated, sometimes under different names, in the related paper [9], by Bounkhel
and Thibault, where a thorough analysis of some regularity conditions for closed subsets
of Banach spaces is performed.

The above listed regularity properties can be understood through variational inequalities
characterizing them. More precisely, it is well known that an equivalent condition for the
convexity of sets is the (monotonicity) relation

〈z − x, y − x〉 ≤ 0 , (1)

valid for all x, y ∈ K and for all z ∈ H such that x is the projection of z into K.
Most of the properties 1) ÷ 4), together with the property (ω), can be characterized
through a variational inequality of the same nature of (1): there exists a suitable function
ω : K ×K → R+ such that for all x, y ∈ K, for all normal vectors v ∈ H to K at x, it
holds

〈v, y − x〉 ≤ ω(x, y) ‖v‖ ‖y − x‖ . (2)

The function ω in (2) controls the lack of monotonicity of the normal cone. We show
that 1) ÷ 4), as well as the property (ω), can be characterized by means of different
properties of the function ω, concerning its regularity and its asymptotic behavior around
the diagonal of K ×K. In particular, asking ω to be upper semicontinuous outside the
diagonal, and limK3y→x ω(x, y) = 0, is equivalent – in finite dimensional spaces – to the
σ-regularity of K; requiring ω to be continuous and ω(x, x) = 0 for all x ∈ K means (by
definition) the property (ω), while ω(x, y) = ϕ(x, y) ‖y − x‖ together with the continuity
of ϕ characterizes ϕ-convexity. In other words, we allow the right-hand side of (2) being
positive, contrarily to (1), but we require that it tends to zero with a suitable - and
suitably uniform - order as y → x. One can see from its variational characterization that
σ-regularity is a first order condition, which means – roughly speaking – that if some
x in the boundary of K is a corner point, then the corner must be outwards. Instead
ϕ-convexity is of a second order nature; in particular, it implies that all normals are
proximal. It turns out that some properties which hold globally for convex sets are still
valid - but only in some neighborhood - for ϕ-convex sets. For example, it is well known
(see, e.g., [5]) that a closed subset of a Hilbert space is convex if and only if the metric
projection into it is globally nonempty, single valued and continuous. On the other hand,
it was proved in [10] that the metric projection into a ϕ-convex set K is locally nonempty,
unique and Lipschitz continuous; as a consequence the distance from K is of class C1,1

loc

in a neighborhood of K. We show here the converse implication, hence characterizing as
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ϕ-convex those sets which are locally proximally smooth. Similar results were obtained
in [15, 29]. We present here some different, and possibly simpler, proofs.

The paper is organized as follows: the relevant concepts of nonsmooth analysis can be
found in §2; §3 treats some geometrical properties of Fréchet and strong Bouligand nor-
mals; §4 ÷ §6 are concerned – respectively – with σ-regularity, the property (ω) and
ϕ-convexity; §7 is devoted to counterexamples.

2. Basic definitions

In a Hilbert space H, the polar of A ⊂ H is the set A0 = {v : 〈v, x〉 ≤ 1 ∀x ∈ A}. If A is
a cone, the polar set coincides with the negative polar A− := {y ∈ H : 〈y, x〉 ≤ 0 ∀x ∈
A}. Let y ∈ H; the projection of y into A is πA(y) := {x ∈ A : dA(y) = ‖y − x‖}, where
dA(y) := inf{‖y − z‖ : z ∈ A}. This set is always nonempty if A is weakly closed, and it
is a singleton if A is convex. We say that A is proximinal if πA(x) 6= ∅ for all x ∈ H, and
that A is Chebyshev if πA(x) is a singleton for all x ∈ H. The open (resp. closed) unit
ball in H is denoted by B (resp. B); coA is the convex hull, clA is the closure of A, and
bdA, intA its boundary and its interior, respectively. The domain of a multifunction Γ,
i.e. the set where it has nonempty values, is denoted by domΓ.

Let Γ : H → H be a multifunction. In what follows by w− lim supx′→x Γ(x
′) we mean the

sequential (s× w)-Hausdorff upper limit in H, i.e. the set of all vectors v ∈ H for which
there exist sequences xn → x strongly and vn → v weakly, such that vn ∈ Γ(xn).

The Bouligand and Clarke tangent cones to a set K ⊂ H at x ∈ K are, respectively,

T b
K(x) = {v : lim inf

h→0+
dK(x+ hv)/h = 0} ,

T c
K(x) = {v : lim

(h,x′)→(0,x),

h>0, x′∈K

dK(x
′ + hv)/h = 0} .

Oserve that T b
K(x) = {v : v = limn→∞ vn, and x+ hnvn ∈ K for some hn → 0+}. Along

with the Bouligand cone one considers its weak version T σ
K(x). By definition v ∈ T σ

K(x) iff
v is a weak limit of (yhn − x)/hn when hn → 0+ and yhn ∈ K. In finite dimension T b

K(x)
and T σ

K(x) of course coincide. It is known that T b
K(x) is closed, that T

c
K(x) is closed and

convex, and that T c
K(x) ⊆ T b

K(x) ⊆ T σ
K(x) for all x [3, Proposition 4.1.6]. Normal cones

can be defined as polars to tangent ones:

N b
K(x) = (T b

K(x))
0 , Nσ

K(x) = (T σ
K(x))

0 , N c
K(x) = (T c

K(x))
0, x ∈ K .

Both Bouligand and Clarke normal cones at x ∈ K contain proximal normals, i.e. vectors
of the form y − x, with x ∈ πK(y) (see, e.g., Proposition 4.1.2 in [3], p. 3 in [14], or p.
213 in [31]). We denote by Np

K(x) the cone generated by proximal normals. It enjoyes
the following property (see Proposition 1.5 (a) in [14, p.25]):

v belongs to Np
K(x) if and only if there exists σ = σ(x, v) such that

〈v, y − x〉 ≤ σ‖y − x‖2 ∀y ∈ K . (3)
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It follows also that if x ∈ πK(y) then

πK(z) = {x} ∀z ∈ {tx+ (1− t)y : t ∈ (0, 1]} . (4)

It is useful to recall the following representation of Clarke normal cone [3, Theorem 4.4.4]

N c
K(x) = cl co ÑK(x), x ∈ K , (5)

where

ÑK(x) := w−lim sup
K3x′→x

Nσ
K(x

′) . (6)

The cone ÑK(x) indeed coincides with the Mordukhovich normal cone, see [27, Theorem
2.9 (i)]. We remark that the inclusions

Np
K(x) ⊆ Nσ

K(x) ⊆ N b
K(x) ⊆ N c

K(x) ∀x ∈ K (7)

hold. We observe also that the map x 7→ ÑK(x) has always sequentially (s × w)-closed
graph, i.e. its graph is sequentially closed in K ×H, where H is endowed with the weak
topology, while neither Bouligand nor Clarke normal cones enjoy this property, in general
(see [30, Counterexample 2]). By definition we set Np

K(x) = Nσ
K(x) = N b

K(x) = N c
K(x) =

∅ for x 6∈ K.

We recall now the definition of Fréchet (see, e.g., [25, p. 61], or [4, p. 29]) and Clarke
subdifferential (see [15]). Let Ω ⊂ H be open, and f : Ω → R ∪ {+∞} be any function;
if f(x) is finite, we set

∂−f(x) =

{

v ∈ H : lim inf
y→x,y 6=x

f(y)− f(x)− 〈v, y − x〉
‖y − x‖

≥ 0

}

,

while ∂−f(x) = ∅ if f(x) = +∞. The set ∂−f(x) is closed and convex; some other
properties can be found, for example, in [4] (see Lemmas 1.7, 1.8). If f = IK , the
indicator function of a set K, i.e. IK(x) = 0 if x ∈ K, IK(x) = +∞ otherwise, then

∂−IK(x) =

{

v ∈ H : lim sup
K3y→x,y 6=x

〈v, y − x〉
‖y − x‖

≤ 0

}

. (8)

The elements of ∂−IK(x) are often called the Fréchet normals to K at x. It follows from
Proposition 6.5 in [31] that ∂−IK(x) = N b

K(x) for each closed K ⊂ Rd. The Clarke
subdifferential of a Lipschitz function f : H → R at x ∈ H is defined as

∂cf(x) = {ζ ∈ H : 〈ζ, v〉 ≤ f o(x; v) ∀v ∈ H} ,

where f o(x; v) := lim supt→0+,y→x(f(y+tv)−f(y))/t. Among well known properties of the
Clarke subdifferential (see, e.g., [15]) we will use the fact that ∂cf(x) is always nonempty,
and it is contained in LB, where L is the Lipschitz constant of f .



G. Colombo, V. V. Goncharov / Variational inequalities and regularity properties 201

3. Regular normals

The following variational characterization of weak Bouligand normal cones is at the basis
of our analysis. It appeared in [24]; see also [8, Proposition 3.1].

Proposition 3.1. If H is an arbitrary Hilbert space, and K ⊂ H is closed, then

∂−IK(x) = Nσ
K(x) ∀x ∈ K . (9)

We now give a geometrical characterization of the cone Nσ
K , as the set of those vectors

being normal to K at x in a “reasonable wayÔ. In finite dimensional spaces, the elements
of N b

K = Nσ
K are called in [31] regular normals. Proposition 10 below – together with

Example 7.1 – suggests that in infinite dimensional spaces the adjective “regularÔ is
better fit for weak Bouligand normals than for strong ones.

Proposition 3.2. Let K ⊂ H be closed, and let x ∈ K, v ∈ H. The following statements
are equivalent:

(i) v ∈ Nσ
K(x);

(ii)

lim
h→0+

dK(x+ hv)

h
= ‖v‖ ; (10)

(iii) for each choice of yh ∈ K such that

‖x+ hv − yh‖2 ≤ d2K(x+ hv) + o(h2), h → 0+ (11)

(in particular, for each yh ∈ πK(x+ hv), if any), we have

lim
h→0+

‖yh − x‖
h

= 0 . (12)

Proof. (i) ⇒ (ii). Let v ∈ Nσ
K(x). Take yh ∈ K such that ‖x+hv− yh‖2 ≤ d2K(x+hv)+

o(h2), h → 0+. Clearly ‖yh − x‖ ≤ 2h‖v‖+ o(h), and by (9) lim suph→0+
〈v, yh − x〉
‖yh − x‖ ≤ 0.

We have the inequalities

h2‖v‖2 ≥ d2K(x+ hv) ≥ 〈x+ hv − yh, x+ hv − yh〉+ o(h2)

= h2‖v‖2 − 2h〈v, yh − x〉+ ‖x− yh‖2 + o(h2)

≥ h2‖v‖2 − 2h〈v, yh − x〉+ o(h2) .

Therefore, if 〈v, yh − x〉 ≥ 0 we obtain

‖v‖2 ≥ d2K(x+ hv)

h2 ≥ ‖v‖2 − 4‖v‖〈v, yh − x〉
‖yh − x‖

+ o(1) .

Otherwise,

‖v‖2 ≥ d2K(x+ hv)

h2
≥ ‖v‖2 + o(1) .

In both cases, by passing to limits in the above inequalities we prove (10).
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(ii) ⇒ (i). Let v ∈ H, ‖v‖ = 1, be satisfying (10), and assume by contradiction that
v 6∈ Nσ

K(x). Then, by (8), (9), there exist 0 < η < 1 and a sequence {yn} ⊂ K, yn → x,
such that

〈v, yn − x〉 ≥ η ‖yn − x‖ ∀n = 1, 2, . . . .

Thus
∥

∥

∥

∥

x+
‖yn − x‖

η
v − yn

∥

∥

∥

∥

2

= ‖x− yn‖2 +
‖x− yn‖2

η2
+

2

η
〈v, x− yn〉 ‖x− yn‖

≤ ‖x− yn‖2(
1

η2
− 1) .

Therefore

lim sup
n→∞

dK(x+ v ‖x− yn‖/η)
‖x− yn‖/η

≤ 1− η2 < 1 ,

a contradiction.

(i) ⇒ (iii). Let v ∈ Nσ
K(x) and take yh ∈ K satisfying (11). Observe that, since the set

{(yh − x)/h} is bounded, one can choose a sequence hn such that (yhn − x)/hn converges
weakly to some ξ ∈ T σ

K(x). Then clearly ‖yhn − x‖2/h2
n ≤ d2K(x + hnv)/h

2
n − ‖v‖2 +

2〈v, (yhn−x)/hn〉+o(1); by (10) this sequence converges to 2〈v, ξ〉 ≤ 0, and the conclusion
follows.

(iii) ⇒ (ii) is straightforward.

Remarks. 1) A characterization of the weak Bouligand normal cone in terms of the
Fréchet subdifferential of the distance function was established by Kruger [23] and Ioffe
[21]. A simple proof can be found in [9], Theorem 3.1. In particular, the implication (i)⇒
(ii) follows easily from that result. Observe that Proposition 3.2 says also that v ∈ Nσ

K(x)
if and only if the directional derivative of ∂dK(x)/∂v equals ‖v‖, i.e. it has the largest
possible value.

2) Example 7.1 (c) shows that elements of N b
K(x) may fail to enjoy property (10). Conse-

quently, in general, N b
K(x) strictly contains Nσ

K(x) (see also the Remark 6.1 in [9], which
is based on an example contained in [7]).

3) Comparing (12) with (4) one can see the difference between the elements of Nσ
K(x) and

of Np
K(x): in the second case yh = x for all h small enough.

We now give an equality of the same nature as (9) characterizing the (strong) Bouligand
normal cone. To this aim we introduce the following definition.

Definition 3.3. We say that a sequence {xn} ⊂ H directionally converges to a point x
(we write xn

d−→x) if there exist sequences {vn} ⊂ H, vn → v 6= 0, and hn → 0+ such that
xn = x+ hnvn for infinitely many n.

Clearly in finite dimensional spaces directional convergence coincides with the usual con-
vergence. If f is a scalar function defined on H and K ⊂ H, we set

lim sup
K3y d−→x

f(y) := sup

{

lim sup
n→∞

f(xn) : {xn} ⊂ K, xn
d−→x

}

.
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Proposition 3.4. Let K ⊂ H be closed and x ∈ K. Then

N b
K(x) =

{

v ∈ H : lim sup
K3y d−→x,y 6=x

〈v, y − x

‖y − x‖
〉 ≤ 0

}

. (13)

Proof. Take v ∈ N b
K(x) and a sequence {xn} ⊂ K directionally converging to x. Without

loss of generality assume that there exists a sequence hn → 0+ for which (xn − x)/hn →
w 6= 0. Then we have (xn−x)/‖xn−x‖ → w/‖w‖ and w ∈ T b

K(x). Hence, limn→∞〈v, (xn−
x)/‖xn − x‖〉 = 〈v, w〉/‖w‖ ≤ 0.

Conversely, let v belong to the right-hand side of (13), and let w ∈ T b
K(x), w 6= 0. Then

ther exist sequences {xn} ⊂ K and hn → 0+ such that (xn − x)/hn → w, i.e. xn
d−→x.

Therefore, 〈v, w〉 ≤ 0 and v ∈
(

T b
K(x)

)−
.

By using the concept of directional convergence one can give a characterization of the
boundary of N b

K .

Proposition 3.5. Let K ⊂ H be closed and x ∈ K be such that T b
K(x) 6= {0}. Then

v ∈ bdN b
K(x) if and only if

lim sup
K3y d−→x

〈v, y − x

‖y − x‖
〉 = 0 . (14)

More precisely, for each v ∈ N b
K(x) the equality

lim sup
K3y d−→x

〈v, y − x

‖y − x‖
〉 = −dbdNb

K(x)(v) (15)

holds.

Proof. Let v satisfy the equality (14). Observe that v ∈ N b
K(x), by (13). Assuming by

contradiction that v is in the interior of N b
K(x) we find ε > 0 with v + εB ⊂ N b

K(x) and
a sequence {xn} ⊂ K converging to x, such that (xn − x)/‖xn − x‖ → w ∈ T b

K(x), and
limn→∞〈v, (xn − x)/‖xn − x‖〉 > −ε. Hence 〈v+ εw,w〉 = 〈v, w〉+ ε > 0, a contradiction.
The converse implication follows directly from (13).

To prove (15), take v ∈ N b
K(x). Let us show that there exists ξ∗ ∈ T b

K(x) with ‖ξ∗‖ = 1
satisfying

lim sup
K3y d−→x

〈v, y − x

‖y − x‖
〉 = sup

{

〈v, ξ〉 : ξ ∈ T b
K(x), ‖ξ‖ = 1

}

= 〈v, ξ∗〉 . (16)

Indeed, write S := sup{〈v, ξ〉 : ξ ∈ T b
K(x), ‖ξ‖ = 1}, fix ε > 0 and choose ξε ∈ T b

K(x),
‖ξε‖ = 1, with 〈v, ξε〉 ≥ S − ε. By the definition of Bouligand tangent cone there exists a
sequence {xn} ⊂ K converging to x and such that (xn−x)/‖xn−x‖ → ξε. Consequently,
xn

d−→x and we have lim sup
K3y d−→x

〈v, (y − x)/‖y − x‖〉 ≥ 〈v, ξε〉 ≥ S − ε. On the

other hand, take a sequence {yn} ⊂ K, yn
d−→x such that lim sup

K3y d−→x
〈v, (y − x)/‖y −

x‖〉 = limn→∞〈v, (yn − x)/‖yn − x‖〉. Without loss of generality we can assume that
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{(yn − x)/‖yn − x‖} converges to some ξ ∈ T b
K(x), ‖ξ‖ = 1. Hence lim sup

K3y d−→x
〈v, (y−

x)/‖y − x‖〉 = 〈v, ξ〉 ≤ S, and the equality (16) follows. Assume now v ∈ intN b
K(x), and

set λ = 1/(1 − 〈v, ξ∗〉), where ξ∗ is given by (16). It is easy to see from (14) and (16)
that 0 < λ < 1, and the point u = λv + (1 − λ)ξ∗ belongs to the boundary of N b

K(x).
Let p be the projection of v into the line through 0 and u. From elementary geometric
considerations, taking into account that 〈u, ξ∗〉 = 0, we deduce that

‖v − p‖ =
‖u− v‖
‖u− ξ∗‖

=
1− λ

λ
= −〈v, ξ∗〉 ,

so that dbdNb
K(x)(v) ≤ − lim sup

K3y d−→x
〈v, (y−x)/‖y−x‖〉. To see the converse inequality,

let w ∈ bdN b
K(x); by the same argument as above, choose η∗ ∈ T b

K(x), ‖η∗‖ = 1, such
that

〈w, η∗〉 = sup
{

〈w, η〉 : η ∈ T b
K(x), ‖η‖ = 1

}

= lim sup
K3y d−→x

〈w, (y − x)/‖y − x‖〉 = 0 .

Then by Cauchy-Schwartz inequality and the definition of ξ∗ we have

‖w − v‖+ 〈v, ξ∗〉 ≥ 〈w − v, η∗〉+ 〈v, η∗〉 = 〈w, η∗〉 = 0,

and the proof is concluded.

We observe that in a finite dimensional space the Bouligand normal cone at x is large (i.e.
has nonempty interior) if and only if x is an “outwards corner pointÔ. More precisely, it
is straightforward to show the following fact.

Corollary 3.6. Let K ⊂ Rd be closed, and x ∈ K. Then v ∈ intN b
K(x) if and only if

there exist positive δ and η such that

〈v, y − x〉 ≤ −η‖y − x‖ ∀y ∈ K ∩ (x+ δB) . (17)

Proof. We can assume that x is a non isolated point, i.e. T b
K(x) 6= {0}, since otherwise

the property 17 holds trivially. By Proposition 3.5, v ∈ intN b
K(x) if and only if

lim sup
K3y→x

〈v, y − x

‖y − x‖
〉 = −2η

for some η > 0, and the remainder follows from the definition of “lim supÔ.

Remark. 1) A characterization of vectors internal to the Bouligand normal cone similar
to Corollary 3.6 is not valid in infinite dimensional Hilbert spaces (see Example 7.1 (b)).

2) It is a natural question finding assumptions under which the strong and weak Bouligand
cones coincide. In the next sections sufficient conditions will be provided. Here we observe
only that N b

K(x) = Nσ
K(x) for some x does not imply T b

K(x) = T σ
K(x) (see Example 7.1

(d)).
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4. Sleek, regular and σ-regular sets

This section has a partial overlapping with [9]. Since our arguments are short – because
we work in a Hilbert space, while [9] deals with Banach spaces – we prefer to prove all
the stated results.

Definition 4.1. We say that a closed setK ⊂ H is sleek if the set-valued map x 7→ T b
K(x)

is lower semicontinuous on K.

Observe that, in particular, both convex sets and sets with C1 boundary are sleek. The
above concept is studied, under the same name, in [3, §4.1.4], or – in finite dimensional
spaces – in [31, Corollary 6.29], as an item of a list of characterizations of Clarke regularity.
Some of the implications in [31, Corollary 6.29] hold also in infinite dimensional spaces.

Proposition 4.2. For a closed set K ⊂ H consider the following statements:

(a) K is sleek;

(b) the map x 7→ N b
K(x) has sequentially (s× w)-closed graph;

(c) there exists a function ω : K ×K → R+ such that
1) for all x, y ∈ K, v ∈ N b

K(x) it holds

〈v, y − x〉 ≤ ω(x, y) ‖v‖ ‖y − x‖ ; (18)

2) ω is upper semicontinuous in (K ×K) ∩ {(x, y) : x 6= y};
3) lim

K3y d−→x
ω(x, y) = 0.

(d) N b
K(x) = N c

K(x) for all x ∈ K;

(e) T b
K(x) = T c

K(x) for all x ∈ K.

Then (a) ⇔ (b) ⇔ (c) ⇒ (d) ⇔ (e).

Proof. (a) ⇒ (b). Let sequences {xn} ⊂ K and vn ∈ N b
K(xn) be such that xn → x

strongly and vn → v weakly. Let w ∈ T b
K(x) and let, by lower semicontinuity, wn ∈ T b

K(xn)
be such that wn → w. Since 〈vn, wn〉 ≤ 0, also 〈v, w〉 ≤ 0, i.e. v ∈ N b

K(x).

(b) ⇒ (c). Set, for x, y ∈ K, x 6= y

ω(x, y) = sup
‖v‖≤1,

v∈Nb
K(x)

〈v, y − x〉
‖y − x‖

∨ 0 .

By weak compactness and graph closedness of x 7→ N b
K(x), ω is upper semicontinuous

in (K × K) ∩ {(x, y) : y 6= x} (see Theorem 5 in [2, p. 53]). It remains to show that
lim

K3y d−→x
ω(x, y) = 0. Assume by contradiction that there exist sequences {yn} ⊂ K,

yn
d−→x, and vn ∈ N b

K(x), ‖vn‖ ≤ 1, such that

〈vn,
yn − x

‖yn − x‖
〉 → η > 0 . (19)

By compactness we can assume that vn weakly converges to v ∈ N b
K(x), and by directional

convergence that (yn−x)/‖yn−x‖ converges to w ∈ T b
K(x) (strongly). Then (19) implies

that 〈v, w〉 > 0, which is impossible.
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(c) ⇒ (b). Let K 3 xn → x, vn ∈ N b
K(xn), vn → v weakly. We want to show that

v ∈ N b
K(x). Fix y ∈ K, y 6= x. Then, by 1),

〈v, y − xn〉 ≤ ω(xn, y)‖vn‖‖y − xn‖+ ‖v − vn‖‖x− xn‖+ 〈v − vn, y − x〉 .

Since the sequence {vn} is bounded, say ‖vn‖ ≤ M , we can pass to the limsup for n → ∞,
and obtain by 2)

〈v, y − x

‖y − x‖
〉 ≤ ω(x, y)M .

By passing now to the limsup for y d−→x in the above inequality and using the property
3) we obtain the result, recalling Proposition 3.4.

(b) ⇒ (a). It follows from the duality theorem [3, Theorem 1.1.8], since T b
K(x) is a convex

cone (see (e)).

(b) ⇒ (d). By (5), (6), (7) and the convexity of N b
K(x) we have

N c
K(x) ⊂ cl co(w−lim sup

K3x′→x
N b

K(x
′)) ⊂ cl coN b

K(x) = N b
K(x) ⊂ N c

K(x) ∀x ∈ K .

(d) ⇒ (e). By the bipolar theorem

T c
K(x) = (N c

K(x))
0 = (N b

K(x))
0 = cl coT b

K(x) ⊃ T b
K(x) .

(e) ⇒ (d) by definition.

Remark. The equivalence (e) ⇒ (d) appears also in [9, Theorem 6.1], while (a) ⇒ (d)
is [3, Theorem 4.1.8].

In [13, Definition 2.4.6], a set K is said to be regular if the condition (e) in the above
Proposition holds. This notion is introduced in order to find a class of sets where Clarke
normal cone has good geometrical properties, or Bouligand normal cone has a good calcu-
lus. If K is sleek then it is regular (this is (a) ⇒ (e) of Proposition 4.2), while the converse
implication holds only if H is finite dimensional (see Example 7.1 e). Some properties of
regular sets can be found also in [28]. We introduce now a stronger regularity condition,
for which it holds the same set of equivalences characterizing finite dimensional sleek sets.

Definition 4.3. We say that a closed set K ⊂ H is σ-regular if for each x ∈ K the
equality Nσ

K(x) = N c
K(x) holds.

Remark. The above condition is called Fréchet normal regularity in [9], and proved to
be equivalent to another concept of regularity defined earlier by Mordukhovich (see [26]
and [9, Theorem 3.4]). Thanks to (7), we obtain that a σ-regular set is regular. Example
7.1 c) shows that the converse is not true in infinite dimensional spaces.

The next result is the announced characterization of σ-regular sets: the chain of implica-
tions in Proposition 4.2 can be closed, if the strong Bouligand normal cone is substituted
by the weak one. We add to that list of equivalent conditions a further characterization
based on a variational inequality.



G. Colombo, V. V. Goncharov / Variational inequalities and regularity properties 207

Proposition 4.4. Let K ⊂ H be closed. Consider the statements:

(a) K is σ-regular;

(b) the map x 7→ Nσ
K(x) has sequentially (s× w)-closed graph;

(c) the map x 7→ T σ
K(x) is lower semicontinuous;

(d) T σ
K(x) = T c

K(x) for all x ∈ K;

(e) there exists a function ω : K ×K → R+ such that
1) for all x, y ∈ K, v ∈ Nσ

K(x) it holds

〈v, y − x〉 ≤ ω(x, y) ‖v‖ ‖y − x‖ ; (20)

2) ω is upper semicontinuous in (K ×K) ∩ {(x, y) : x 6= y};
3) limK3y→x ω(x, y) = 0.

Then (a) ÷ (d) are equivalent, and follow from (e). Furthermore, in finite dimensional
spaces (e) is equivalent to the other properties.

Proof. (a) ⇔ (b) follows readily from (6) and (5), while (d) follows from both (a) and
(b) by the same argument of Proposition 4.2. Now (b) ⇔ (c) from the Duality Theorem
[3, Theorem 1.1.8] and (d) ⇒ (a) by definition.

(e) ⇒ (b). Let K 3 xn → x, vn ∈ Nσ
K(xn), vn → v weakly. We want to show that

v ∈ Nσ
K(x). Fix y ∈ K, y 6= x, and let ‖vn‖ ≤ M for n = 1, 2, . . . Then, by 1), by the

same argument of Proposition 4.2 (b) ⇒ (c), we obtain

〈v, y − x

‖y − x‖
〉 ≤ ω(x, y)M .

By passing now to the limsup for y → x in the above inequality and using the property
3) we obtain the result, recalling Proposition 3.1.

(a) ⇒ (e). It is trivial by Proposition 4.2, since in finite dimensional spaces sleekness and
σ-regularity do coincide.

From Propositions 4.4 and 4.2 we immediately deduce

Corollary 4.5. Each closed σ-regular set K ⊂ H is sleek, and the property (e) of Propo-
sition 4.4 holds, provided 3) is substituted by

3’) lim
K3y d−→x

ω(x, y) = 0,

Remark. 1) The equivalences (a) ⇔ (b) and (a) ⇔ (d) are proved also in [9], Theorems
3.4 and 6.3, respectively.

2) Examples 7.1 show that in infinite dimensional spaces

• a sleek set may not be σ-regular;

• the implication (a) ⇒ (e) does not hold.

Moreover, one can see from Example 7.2 that no further regularity of ω w.r.t. x, even in
the finite dimensional case, can be expected.
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5. The property (ω)

We introduce now a class of closed sets satisfying a variational inequality of the same
nature as (20).

Definition 5.1. We say that a closed set K ⊂ H satisfies the property (ω) if there exists
a continuous function ω : K ×K → R+ with ω(x, x) = 0 for all x ∈ K such that

〈v, y − x〉 ≤ ω(x, y) ‖v‖ ‖y − x‖ (21)

for all x, y ∈ K, v ∈ Nσ
K(x).

Remark. A set K is convex if and only if it has the property (ω), with ω ≡ 0 (see [34,
Theorem 4.10]). Furthermore, a set whose boundary is a C1-manifold has the property
(ω); more in general a set K such that for all x ∈ K there exists a neighborhood U with
either U ∩K convex, or U ∩ bdK a C1-manifold has the property (ω) (see Theorem 5.8
(iii) ⇒ (ii)).

Proposition 4.4 (e) immediately yields

Proposition 5.2. Let K ⊂ H be a closed set satisfying the property (ω). Then K is
σ-regular.

The converse is not true, as the Example 7.2 shows. In fact the property (ω) implies
stronger regularity conditions.

Proposition 5.3. Let K ⊂ H be closed and satisfying the property (ω). Then for each
{xn} ⊂ K \ {x}, xn

d−→x, and for each bounded sequence vn ∈ Nσ
K(xn), one has

lim
n→∞

〈vn,
xn − x

‖xn − x‖
〉 = 0 . (22)

Proof. Let ‖vn‖ ≤ M for all n. Then, by the property (ω),

〈vn, x− xn〉 ≤ Mω(xn, x) ‖xn − x‖ .

On the other hand, without loss of generality we can assume that {vn} converges weakly
to some v ∈ H, which belongs to Nσ

K(x) by Propositions 5.2 and 4.4 (b). Consequently,
〈v, (xn − x)/‖xn − x‖〉 ≤ ω(x, xn) ‖v‖. Assuming, moreover, that (xn − x)/‖xn − x‖ → ξ
we have:

∣

∣

∣

∣

〈vn,
xn − x

‖xn − x‖
〉
∣

∣

∣

∣

≤ ω(x, xn) ‖v‖+ |〈vn − v, ξ〉|+ ‖vn − v‖
∥

∥

∥

∥

ξ − xn − x

‖xn − x‖

∥

∥

∥

∥

.

Thus |〈vn, (xn − x)/‖xn − x‖〉| → 0 as n → ∞ and the Proposition is proved.

As a corollary we obtain the following regularity property of the boundary of the normal
cone.

Corollary 5.4. Assume that a closed set K ⊂ H satisfies the property (ω) and a point
x ∈ K is such that T b

K(x) 6= {0}. Then the inclusion

w− lim sup
K\{x}3y d−→x

N b
K(y) ⊆ bdN b

K(x)
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holds. In particular, the map x 7→ bdN b
K(x) has (sequentially) (d× w)-closed graph.

Proof. Let us take v ∈ H for which there exist sequences {xn} ⊂ K \ {x}, xn
d−→x,

and {vn} converging to v weakly such that vn ∈ N b
K(xn). Then v ∈ N b

K(x) and by
Proposition 5.2 〈vn, (xn−x)/‖xn−x‖〉 converges to zero. Hence, as it is easy to see, also
〈v, (xn−x)/‖xn−x‖〉 → 0, and lim sup

K3y d−→x
〈v, (y−x)/‖y−x‖〉 = 0. This means that

v ∈ bdN b
K(x) (see Proposition 3.5).

Observe that in a finite dimensional space the Corollary above gives a property stronger
than sleekness, and implies graph closedness of bdN b

K .

Definition 5.5. Let Γ : H → H be a multivalued map. We say that Γ is locally monotone
at x ∈ dom (Γ) if for all sequences {xn}, {yn} ⊂ dom (Γ), with xn 6= yn, converging to x,
and for all bounded sequences un ∈ Γ(xn), vn ∈ Γ(yn) we have

lim inf
n→∞

〈un − vn,
xn − yn

‖xn − yn‖
〉 ≥ 0 . (23)

We say that Γ is locally monotone if it is so at all x ∈ domΓ.

A straightforward equivalent condition for local monotonicity of cones is the following

Proposition 5.6. Let K ⊂ H be closed, and let Γ(x) be a closed set containing the origin
for each x ∈ K. Then Γ is locally monotone at x ∈ K if and only if for all sequences
{xn}, {yn} ⊂ K, with xn 6= yn converging to x, and for all bounded sequences un ∈ Γ(xn)
one has

lim sup
n→∞

〈un,
yn − xn

‖yn − xn‖
〉 ≤ 0 . (24)

Using the concept of local monotonicity we now characterize property (ω). Before stating
the result we recall another definition.

Definition 5.7 ([32]). We say that a closed K ⊂ H is o(1)-convex if for all x ∈ K there
exist a neighborhood U of x and a function ψx : (K ∩ U) × (K ∩ U) → R+ such that
limK3y,z→x ψx(y, z) = 0 and for all y, z ∈ K ∩ U , y 6= z, one has

dT b
K(y)

(

z − y

‖z − y‖

)

≤ ψx(y, z) .

Theorem 5.8. Let H be separable and K ⊂ H be closed. The following statements are
equivalent:

(i) K has the property (ω);

(ii) N c
K is locally monotone;

(iii) N b
K is locally monotone;

(iv) Nσ
K is locally monotone and Nσ

K(x) = N b
K(x) for all x ∈ K;

(v) K is o(1)-convex.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) follow immediately from (7) and Propositions
5.6 and 5.2.



210 G. Colombo, V. V. Goncharov / Variational inequalities and regularity properties

(i) ⇒ (iv) follows from (7) and Proposition 5.2, while (iv) ⇒ (iii) is trivial.

(ii) ⇒ (i). Consider the function

ϕ(x, v, y) =

{

〈v, (y − x)/‖y − x‖〉 if y 6= x

0 if y = x,

defined on graphN c
K × K. This function is sequentially upper semicontinuous on its

domain if graphN c
K is endowed with the (s × w)-topology (the upper semicontinuity at

points (x, v, x) follows from the local monotonicity, using Proposition 5.6). We recall (see
(5) and (6)) that the cone ÑK ⊂ N c

K has sequentially (s×w)-closed graph. Consider the
function

ψ(x, y) = sup
v∈ÑK(x)∩B

ϕ(x, v, y) ,

which is upper semicontinuous by the sequential (s×w)-upper semicontinuity of the map
x 7→ ÑK(x) ∩ B (Theorem 5 in [2, p. 53]) and the metrizability of B endowed with the
weak topology. Set

Ω(x, y) =

{

[ψ(x, y),+∞) if y 6= x

{0} if x = y .

Clearly, Ω is lower semicontinuous (as a multivalued map), with closed convex values,
therefore it admits a continuous selection ω(x, y) by Michael’s theorem. Since Nσ

K ⊂ ÑK ,
this fact establishes property (ω).

(iii) ⇒ (ii). In view of Proposition 4.2, it suffices to show that (iii) implies thatK is sleek.
To this aim, let {xn} ⊂ K \ {x}, xn → x and vn ∈ N b

K(xn), vn → v weakly. We want to
prove that v ∈ N b

K(x), i.e., recalling Proposition 3.4,

lim sup
K3y d−→x

〈v, y − x

‖y − x‖
〉 ≤ 0 . (25)

Let {yk} ⊂ K \{x}, yk d−→x and for all k = 1, 2, . . . choose nk such that ‖(yk−xnk
)/‖yk−

xnk
‖ − (yk − x)/‖yk − x‖‖ ≤ 1/k. Then,

〈v, yk − x

‖yk − x‖
〉 = 〈v − vnk

,
yk − x

‖yk − x‖
〉+

+ 〈vnk
,

yk − xnk

‖yk − xnk
‖
〉+ 〈vnk

,
yk − x

‖yk − x‖
− yk − xnk

‖yk − xnk
‖
〉 .

There is no loss of generality in assuming that (yk − x)/‖yk − x‖ is strongly converging.
Therefore, recalling (24), we obtain (25) from the above inequality.

(i) ⇒ (v). Observe that, by Fenchel duality, one has dT c
K(y)((z − y)/‖z − y‖) =

supv∈Nc
K(y),‖v‖=1〈v, (z − y)/‖z − y‖〉. Now, property (ω) implies T c

K = T b
K and N c

K = N b
K ,

so that K is o(1)-convex with ψx(y, z) = ω(y, z) for all x ∈ K.

(v) ⇒ (i) follows from the fact (see Lemma 2.1 in [32]) that for a o(1)-convex set the map
x 7→ N b

K(x) is locally monotone.
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The regularity of the boundary of a class of plane sets with the property (ω) can now be
described. We recall that a cone C is said to be pointed if 0 6= z ∈ C implies −z 6∈ C. In
[30, Theorem 3] closed sets K ⊂ Rd such that N c

K(x) is pointed are characterized as those
sets for which, after a linear change of coordinates, a neighborhood of x intersected with
K coincides with the intersection of this neighborhhod with the epigraph of a Lipschitz
continuous function from Rd−1 into R. If this property holds for all x ∈ K, the set is
called epi-Lipschitzian.

Proposition 5.9. Let K ⊂ R2 be closed, epi-Lipschitzian and satisfying property (ω).
Then there exists a dense set R ⊂ bdK and a continuous function v : R → R2, ‖v(x)‖ =
1, such that N b

K(x) = R+ v(x) for all x ∈ R, while for all x ∈ bdK \ R the cone N b
K(x)

has nonempty interior.

Proof. By Propositions 5.2 and 4.2 the map Γ : K 3 x 7→ N b
K(x) ∩ {‖v‖ = 1} is upper

semicontinuous (see [2, p. 41]). By [22] there exists a dense set R ⊂ bdK where Γ is
lower semicontinuous. We show that in such points Γ(x) must be a singleton, namely
Γ(x) = {v(x)} for all x ∈ R, with v : R → R2 continuous. Indeed, since K has the
property (ω), by lower semicontinuity and Proposition 5.3 we have for all x ∈ R

Γ(x) ⊂ lim inf
R\{x}3y→x

Γ(y) ⊂ lim sup
K\{x}3y→x

Γ(y) ⊂ (bdN b
K(x)) ∩ {‖v‖ = 1} . (26)

Assume that there are two different points v1, v2 ∈ Γ(x), and observe that by epi-
Lipschitzianity they are linearly independent. Then any nontrivial convex combination of
v1, v2 belongs to the interior of N b

K(x): this contradicts (26).

6. ϕ-convexity

The last regularity property we consider concerns sets satisfying an external sphere con-
dition, with locally uniform radius.

Definition 6.1. We say that a closed set K ⊂ H is ϕ-convex if there exists a continuous
ϕ : K ×K → R+ such that for all x, y ∈ K, v ∈ Nσ

K(x)

〈v, y − x〉 ≤ ϕ(x, y) ‖v‖ ‖y − x‖2 . (27)

The ϕ-convexity of a set K means the ϕ-convexity of the indicator function IK(·) as
defined in [25] (see (9)). Such sets (under the name of “sets with positive reachÔ) were
thoroughly studied in finite dimensional spaces by Federer [20], in connection with local
uniqueness of the metric projection and smoothness of the distance function. They were
also investigated in [35]. In infinite dimensional spaces, ϕ-convex sets were introduced and
studied by A. Canino [10, 11], in connection with global analysis. They were characterized
in several ways in [29, Theorem 1.3], which in particular extends to infinite dimensional
spaces the results in [20]. The particular case of ϕ ≡ const. was treated in [15].

Each ϕ-convex set has obviously the property (ω), with ω(x, y) = ϕ(x, y)‖y − x‖, so, in
particular, it is σ-regular. Examples of ϕ-convex sets are convex sets, or sets with a C1,1

boundary; more in general a set K such that for all x ∈ K there exists a neighborhood
U with either U ∩ K convex, or U ∩ bdK a C1,1-manifold is ϕ-convex. The most inter-
esting example is contained in [10, Proposition 1.9]. Let Ω ⊂ Rn be an open bounded
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domain, and c, ρ be positive numbers and set Kc =
{

u ∈ H1
0 (Ω) :

∫

Ω
|∇u|2 ≤ c2

}

, Mρ =
{

u ∈ L2(Ω) :
∫

Ω
|u|2 = ρ2

}

. Then Mρ ∩ Kc is ϕ-convex in L2, provided c2/ρ2 is not an
eigenvalue of −∆ in H1

0 .

Let us give a few preliminary results related to ϕ-convex sets.

Proposition 6.2. Let K ⊂ H be a closed set. Consider the statements:

(a) there exists a continuous ψ : K → R+ such that for each x ∈ K and for each
v ∈ Np

K(x) it holds

〈v, y − x〉 ≤ ψ(x) ‖v‖ ‖y − x‖2 ∀y ∈ K ; (28)

(b) K is ϕ-convex;

(c) there exists a function ω : K ×K → R+ with the properties
1) for all x, y ∈ K, v ∈ Np

K(x) it holds

〈v, y − x〉 ≤ ω(x, y) ‖v‖ ‖y − x‖2 ; (29)

2) ω is upper semicontinuous in (K ×K) ∩ {(x, y) : y 6= x};
3) lim supK3y→x ω(x, y) < +∞.

(d) all the normal cones coincide, i.e.

Np
K(x) = Nσ

K(x) = N b
K(x) = N c

K(x) ∀x ∈ K . (30)

Then the implications (a) ⇔ (b) ⇒ (c) ⇒ (d) hold. Furthermore, (d) ⇒ (c), provided 3)
is substituted by

3’) lim sup
K3y d−→x

ω(x, y) < +∞,

and in finite dimensional spaces (c) ⇔ (d).

Proof. (a) ⇒ (b). Clearly (28) implies sequential (s × w)-closedness of the graph of
x 7→ Np

K(x) (see the proof of (e) ⇒ (b) of Proposition 4.2 and the characterization (3)),
i.e. w−lim supK3x′→x N

p
K(x

′) ⊂ Np
K(x). Then by Theorem 2.6.1 (b) [14] we have

N c
K(x) = cl co (w−lim sup

K3x′→x
Np

K(x
′)) ⊂ cl coNp

K(x) = Np
K(x) , (31)

where the last equality holds since Np
K(x) is sequentially weakly closed and convex. Thus

K is ϕ-convex.

(c) ⇒ (d). One can see as above that 1) ÷ 3) imply sequential (s× w)-closedness of the
graph of x 7→ Np

K(x), and (d) follows from the relation (31).

(b) ⇒ (a). Let K be ϕ-convex. For each x0 ∈ K there exist p(x0) > 0, r(x0) > 0 such
that

〈v, y − x〉 ≤ p(x0) ‖v‖ ‖y − x‖2 ∀x, y ∈ K ∩B(x0, 2r(x0)), ∀v ∈ Np
K(x) .

Then 〈v, y − x〉 ≤ (p(x0) + 1/r) ‖v‖ ‖y − x‖2 for all x ∈ K ∩ B(x0, r(x0)), y ∈ K and
v ∈ Np

K(x). Let {Uα} be a locally finite refinement of the covering {B(x0, r(x0)) ∩ K :
x0 ∈ K} with a continuous partition of unity {ξα(·)} subordinate to it. Let xα ∈ K be
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such that Uα ⊂ B(xα, r(xα)) ∩ K, and set ψ(x) =
∑

α ξα(x)p(xα), x ∈ K. Then the
property (28) holds.

(d) ⇒ (c). Define, for x, y ∈ K, x 6= y,

ω(x, y) = sup
‖v‖≤1,v∈Np

K(x)

〈v, y − x〉
‖y − x‖2

∨ 0 .

By the same argument of Proposition 4.2 (b) ⇒ (c), properties 1) and 2) hold. To show
3), observe that the cone Np

K(x) has closed graph. Take sequences {yn} ⊂ K, yn
d−→x, and

vn ∈ Np
K(x), ‖vn‖ = 1 such that 〈vn, (yn − x)/‖yn − x‖2〉 → lim sup

K3y d−→x
ω(x, y) := L.

Without loss of generality we can assume that

lim sup
n→∞

〈vn, (yn − x)/‖yn − x‖〉 ≤ 0.

Thus L < +∞, which concludes the proof.

Remark. i) The above Proposition immediately shows that there are σ-regular sets which
are not ϕ-convex. A simple example is the epigraph of the function x 7→ −|x|3/2.
ii) The property that all Clarke normals to a set are proximal is only necessary for ϕ-
convexity, as Example 7.2 shows.

We conclude the section with a list of characterizations of ϕ-convex sets. They are es-
sentially known (see [10, 11, 29]), but some of them appear together for the first time,
and we provide a few alternative and simpler proofs. In particular, we observe that the
local existence and uniqueness of the metric projection into K are straighforward con-
sequences of the geometrical property (ii) in the below statement: in fact the classical
argument of Convex Analysis can still be applied. Moreover, the proof of (iv) ⇒ (i) is
an infinite dimensional version of an argument developed by Federer in [20]: in his paper
Peano’s existence theorem for ordinary differential equations was applied; instead we use
the monotonicity of the metric projection in order to obtain the existence of solutions to
an infinite dimensional Cauchy problem. A global argument of the same nature appeared
in [5], where the author was concerned with the necessity of convexity for a Chebyshev
set (i.e. a set the metric projection into which is everywhere nonempty and unique) with
a continuous metric projection. We point out that ϕ-convex sets appear to be exactly
those sets which satisfy locally the above property.

Theorem 6.3. Let K ⊂ H be closed. The following statements are equivalent:

(i) K is ϕ-convex;

(ii) for each x ∈ K there exist r > 0 and p ≥ 0 such that for all x1, x2 ∈ K ∩ B(x, r)
one has

dK

(x1 + x2

2

)

≤ p ‖x1 − x2‖2 ; (32)

(iii) there exists an open set U ⊃ K such that each x ∈ U has a unique metric projection
πK(x) into K, and the map x 7→ πK(x) is continuous in U .

(iv) there exists an open set U ⊃ K such that dK ∈ C1(U \K).
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Moreover, the gradient of the distance function can be expressed through the (unique)
projection as

∇dK(x) =
x− πK(x)

dK(x)
, x ∈ U \K . (33)

Finally, the function ϕ can be chosen to be 1/(2dbdU), and the projection πK as well as
∇dK are locally Lipschitzian in {y ∈ U \K : dK(y)ϕ(πK(y)) < 1/2}.

Proof. (i) ⇔ (ii) is [11, Proposition 1.12]. We give here an alternative proof of (i) ⇒
(ii), based on a direct geometrical argument. Fix M > ϕ(x) and let r > 0 be such that
ϕ(x′) < M for all x ∈ K ∩ B(x, 2r). Take x1, x2 ∈ K ∩ B(x, r) and set z = (x1 + x2)/2.
Suppose that z 6∈ K and take by Edelstein’s theorem [19] a sequence {zn} ⊂ H \ K
such that zn → z and πK(zn) is a singleton, say yn. For all n = 1, 2, . . . set wn =
yn + (zn − yn)/(2M ‖zn − yn‖) and let Bn be the ball centered at wn with radius 1/(2M).
We claim that

Bn ∩K = {yn} ∀n large enough. (34)

In fact, observe first that ‖yn − x‖ < 2r for n large enough, so that ϕ(yn) < M . Let
y′n ∈ K be such that ‖y′n − wn‖ ≤ 1/(2M), and set vn = wn − yn. Then

‖vn‖2 ≥ ‖wn − y′n‖2 = ‖vn + yn − y′n‖2

= ‖vn‖2 + ‖yn − y′n‖2 − 2〈vn, y′n − yn〉 ,

i. e.
‖yn − y′n‖2 ≤ 2〈vn, y′n − yn〉 . (35)

On the other hand, by ϕ-convexity we have

〈vn, y′n − yn〉 < M‖vn‖ ‖yn − y′n‖2 .

The above inequality together with (35) and the choice of vn force y′n to be yn.

Call now ξn the intersection of the segment joining x1 and zn with the boundary of Bn.
By elementary considerations we have that

dK(zn) ≤ const‖zn − ξn‖2 .

By passing to the limit in the above inequality and using (34) we obtain (32).

(ii) ⇒ (iii). Given x ∈ K, we find a neighborhood U(x) such that whenever z ∈ U(x)
each sequence minimizing the function y 7→ ‖z − y‖ in K is a Cauchy sequence, which
therefore converges to an element of the set πK(z); the uniqueness as well as the continuity
of the projection are also immediate consequence of the Cauchy property of minimizing
sequences. In order to obtain the neighborhood U(x), let p, r be as in (ii). Without loss
of generality we can choose r > 0 so small that

4rp < 1 . (36)

Fix z ∈ U(x) := B(x, r/2), and let {xn} ⊂ K be such that

‖z − xn‖2 ≤ d2K(z) + εn, n = 1, 2, . . .
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for some εn → 0+. There is no loss of generality in assuming that ‖xn − x‖ < r. Recall
that for all m,n = 1, 2, . . . one has

∥

∥

∥z −
xn + xm

2

∥

∥

∥

2

+

∥

∥

∥

∥

xn − xm

2

∥

∥

∥

∥

2

=
1

2

(

‖z − xn‖2 + ‖z − xm‖2
)

.

Then, by (32),

∥

∥

∥

∥

xn − xm

2

∥

∥

∥

∥

2

≤ d2K(z) +
εn + εm

2
−
∥

∥

∥z −
xn + xm

2

∥

∥

∥

2

≤ εn + εm
2

+ 2dK(z)dK((xn + xn)/2)

≤ εn + εm
2

+ rp ‖xn − xm‖2 .

The Cauchy property now follows from (36).

(iii) ⇒ (iv) and (33). Fix x ∈ U , and let ζ ∈ ∂cdK(x). Then, in particular,

〈ζ, πK(x)− x〉 ≤ lim sup
h→0+, y→x

dK(y + h(πK(x)− x))− dK(y)

h

≤ lim sup
h→0+, y→x

dK(y + h(πK(y)− y))− dK(y)

h

+ lim sup
h→0+, y→x

dK(y + h(πK(x)− x))− dK(y + h(πK(y)− y))

h

≤ lim sup
h→0+, y→x

(−dK(y)) + lim sup
h→0+, y→x

‖πK(y)− πK(x) + y − x‖

= −‖x− πK(x)‖ .

Since ‖ζ‖ ≤ 1, it follows that ζ is parallel to πK(x) − x. Thus ∂cdK(x) reduces to the
singleton (x − πK(x))/‖x − πK(x)‖, which is the GÝateaux derivative of dK(·) at x (see
[15, p. 122]). Now the continuity of the GÝateaux derivative w.r.t. x implies the Fréchet
differentiability of dK , and (33) follows.

(iv) ⇒ (i). For all x ∈ H, consider the set

Φ(x) =
⋂

r>dK(x)

co (B(x, r) ∩K) ,

which is the subdifferential of a convex function g(x) (see [1, 5, 6]). Obviously, coπK(x) ⊂
Φ(x) for all x ∈ H. In [15, Proposition 3.6 (2)] it was proved that under our assumptions
the projection πK(x) is a singleton, continuously depending on x ∈ U , and (33) holds.
We claim that the multivalued map

Φ̃(x) :=

{

{πK(x)} if x ∈ U
Φ(x) if x 6∈ U

is maximal monotone, i.e.
Φ̃(x) = Φ(x) ∀x ∈ H . (37)
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In fact, fix x0 ∈ U , take q0 6= πK(x0), and set yτ = x0 + τ(q0 − πK(x0)), τ > 0. Then, for
τ sufficiently small,

〈πK(yτ )− q0, yτ − x0〉 = 〈πK(x0) + o(1)− q0, yτ − x0〉
≤ τ

(

−‖πK(x0)− q0‖2 + o(1) ‖πK(x0)− q0‖
)

< 0 ,

so that no proper extension of Φ̃ can be monotone.

Fix now x ∈ K with Np
K(x) 6= ∅. Let v ∈ Np

K(x), ‖v‖ = 1, be such that

0 < τ0 := sup{t > 0 : πK(x+ tv) = x} < +∞ .

We claim that y := x+ τ0v 6∈ U .
Indeed, assuming that y ∈ U , by continuity we would have πK(y) = x and dK(y) = τ0. It
is easy to see that for each ξ ∈ H the set Φ(ξ)− ξ is the (Fréchet) subdifferential of the
function ξ 7→ g(ξ)− ‖ξ‖2/2, and for all ξi ∈ H, ui ∈ Φ(ξi)− ξi (i = 1, 2) it holds

〈u1 − u2, ξ1 − ξ2〉 ≥ −‖ξ1 − ξ2‖2 .

This implies that the Cauchy problem

Úξ ∈ ξ − Φ(ξ),

ξ(0) = y
(38)

admits a (unique) solution ξ in some interval I = [0, T ], T > 0, in the sense of Definition
2.1 in [18] (see Definition 1.4 and Theorem 3.2 in [18]). In particular, ξ is continuous on
I and absolutely continuous in all compact subintervals of (0, T ). Let r > 0 be so small
that ξ(t) ∈ U for all t ∈ [0, r]. By (37) and (33), ξ is the solution of the Cauchy problem

Úξ = ξ − πK(ξ) (=
1

2
∇d2K(ξ)),

ξ(0) = y.
(39)

It follows from (39) that

d

dt

1

2
d2K(ξ(t)) = ‖ Úξ(t)‖2 = d2K(ξ(t)) , (40)

so that
dK(ξ(t)) = τ0e

t . (41)

We observe that, by (40) and (41), ‖ξ(t)− y‖ ≤ τ0 (e
t − 1) = dK(ξ(t))− τ0. On the other

hand, obviously,
dK(ξ(t)) ≤ τ0 + ‖ξ(t)− y‖ .

Therefore,
dK(ξ(t)) = τ0 + ‖ξ(t)− y‖ , (42)

which means that t 7→ ξ(t) parametrizes a straight line segment in the direction v =
∇dK(y), namely for 0 < t < r there exists s > 0 small enough such that ξ(t) = y + sv.
Thus πK(+(τ0 + s)v) = x, contradicting the definition of τ0.
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Fix now z ∈ U \K and y ∈ K. Let x = πK(z), w = (z− x)/‖z− x‖ and set S = {t > 0 :
πK(x+ tw) = x}. It follows from the previous claim that

supS ≥ dbdU(x) > 0 . (43)

Fix any t ∈ S. From
‖x+ tw − y‖ ≥ dK(x+ tw) = t

it follows
2t〈w, y − x〉 ≤ ‖y − x‖2 .

The above inequality and Proposition 6.2 imply the ϕ-convexity of K, with ϕ(x) =
1/(2dbdU(x)).

Now we prove the local Lipschitz continuity of πK on U∗ := {y ∈ U \K : dK(y)ϕ(πK(y))
< 1/2}. To this aim, fix x, y ∈ U∗; by (i)

〈x− πK(x), πK(y)− πK(x)〉 ≤ ϕ(πK(x))‖πK(y)− πK(x)‖2dK(x) ,
〈y − πK(y), πK(x)− πK(y)〉 ≤ ϕ(πK(y))‖πK(y)− πK(x)‖2dK(y) ,

so that

‖πK(x)− πK(y)‖2 − 〈x− y, πK(x)− πK(y)〉 ≤
≤ (dK(x)ϕ(πK(x)) + dK(y)ϕ(πK(y))) ‖πK(y)− πK(x)‖2 .

By the Cauchy-Schwartz inequality we have

(1− (dK(x)ϕ(πK(x)) + dK(y)ϕ(πK(y)))) ‖πK(y)− πK(x)‖ ≤ ‖x− y‖ ,

whence the local Lipschitzianity follows.

Corollary 6.4. Let K ⊂ H be closed. Then K is ϕ-convex if and only if there exists
an open set U ⊃ K such that the unique (bounded from below) viscosity solution of the
boundary value problem

{

‖∇u(x)‖ = 1 on H \K ,

u(x) = 0 for x ∈ bdK
(44)

is of class C1,1
loc in U \ K. Moreover, in such case, for all x ∈ bdK and all v ∈ N c

K(x),
v 6= 0, the directional derivative ∂u(x)/∂v exists and

∂u(x)

∂v
= ‖v‖ . (45)

Proof. The unique viscosity solution of (44) bounded from below is u(x) = dK(x) (see
[17]), and its C1,1

loc -regularity follows from Theorem 6.3. Now (45) follows from Proposition
6.2.

Remark. Theorem 6.3 implies that a closed setK is convex if and only if it is Chebyshev,
and the metric projection into it is continuous (Asplund’s theorem [1]). We feel it is a
natural question whether the projection into a ϕ-convex set is globally nonempty, though
not necessarily unique. The answer is negative, as the Example 7.3 shows.
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7. Counterexamples

Example 7.1. Sets in infinite dimensional spaces exhibiting differences with the finite
dimensional case.

Let H be separable, with an orthonormal basis written as {e∗, e1, e2, . . . }.

a). Let K = {0} ∪ {en/n : n = 1, 2, . . . }. Obviously K is compact. Observe that
Nσ

K(0) = H, because, if v ∈ H,
lim
n→∞

〈v, en〉 = 0 . (46)

Thus also N b
K(0) = N c

K(0) = H, and so K is σ-regular. Observe that 0 is not an isolated
point, but T σ

K(0) = T b
K(0) = T c

K(0) = {0}. Moreover, by (46), limK3y→0〈v, y/‖y‖〉 = 0
for all v, but bdNσ

K(0) = ∅. Finally, take vn = yn = en/n, and observe that, since
vn ∈ Nσ

K(0), the condition (e) 3) of Proposition 4.4 is violated. On the other hand, 0 is an
isolated point of K w.r.t. the directional convergence, so that 3’) of Corollary 5.2 holds
trivially.

b). Consider the compact set K = [0, 1]e∗ ∪ {en/n : n = 1, 2, . . . }. We have T b
K(0) =

T σ
K(0) = R+ e∗. Then −e∗ ∈ intN b

K(0) but 〈−e∗, en/n〉 = 0 for all n, so that the property
(17) does not hold.

c). LetK = {0}∪{(en+e∗)/n}. ThenK is compact and, as it is easy to see, T σ
K(0) = R+e∗,

while T b
K(0) = T c

K(0) = {0}. This shows that K is sleek, but not σ-regular. Moreover,
d(e∗/n,K) = ‖e∗/n − (e2n + e∗)/(2n)‖ = 1/(

√
2n), so that e∗ ∈ N b

K(0) does not satisfy
the condition (10).

d). SetK =
⋃

n≥1R(e1+en). Observe thatK is a closed cone and e1+en weakly converges

to e1. Thus T
b
K(0) = K, while T σ

K(0) = K ∪ R e1. However, N
b
K(0) = Nσ

K(0) = R e∗.

e). This example was inspired by Counter-example 3.1 in [33].

For n = 1, 2, . . . set

An =
{en
n

}

∪

{

en
n

+
∞
⋃

m=1

[ 1

m
,+∞

){em
n

+ e∗
}

}

and

K = R+e∗ ∪
[

∞
⋃

n=1

An

]

.

Observe that K is closed, and, for all n, T b
K(en/n) = {0} = T c

K(en/n). Thus,

lim inf
K3y→0

T b
K(y) = {0} .

On the other hand, T c
K(0) = T b

K(0) = R+e∗, so that K is regular in the sense of Clarke [13,
Definition 2.4.6], but it is not sleek. Notice that here Nσ

K(0) = N c
K(0) but σ-regularity

is violated since T σ
K(en/n) = R+e∗ 6= T c

K(en/n). We have also −e∗ ∈ intNσ
K(0), but

lim supK3y→0 〈−e∗, y/‖y‖〉 = 0, although in this case bdNσ
K(0) 6= ∅.

Example 7.2. A plane sleek set with some pathologies.
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Consider the two curves γ1 = {(x,
√
x), x ≥ 0} and γ2 = {(x, 2

√
x), x ≥ 0}, and the

decreasing sequences

x′
n =

1

n2
− 2

n4
, x′′

n =
1

n2
− 1

n4
, n ≥ 2 .

Observe that x′′
n+1 < x′

n for all n and the points

Pn = (x′
n,

1

n
), Qn = (x′′

n,
1

n
)

belong to the open region between γ1 and γ2. Taking into account that the segments
[x′

n, x
′′
n] are disjoint we define a C2 function ψ : (0,+∞) → R+ such that ψ(x) = 1/n for

x ∈ [x′
n, x

′′
n] and

√
x < ψ(x) < 2

√
x for all x > 0. Clearly, ψ can be continuously extended

to the whole of R+ by setting ψ(0) = 0. Set K = {(x, y) : ψ(x) ≤ y ≤ 2
√
x, x ≥ 0}.

Then K is sleek, and every normal vector to K is proximal (at (0, 0) by construction, at
other points by C2-smoothness of ψ and γ2). However K does not enjoy property (ω).
Indeed, let xn be in the interval (x′

n, x
′′
n) and Xn = (xn, 1/n); then (0,−1) ∈ N b

K(Xn), and
〈(0,−1),−Xn/‖Xn‖〉 → 1. Thus property (ω) is violated, even if the function ω is required
only to be separately upper semicontinuous. We see also that (0,−1) ∈ intN b

K(0, 0), i.e.
the statements of Proposition 5.3 and of Corollary 5.4 are not valid in this case. Observe
that any neighborhood of (0, 0) must contain points whose projection into K is not a
singleton.

Example 7.3. A ϕ-convex set which is not proximinal.

This example was inspired by [7, Theorem 4.1].

Set xn = (1 + 2−n)en, n = 1, 2, . . . , and let K = {xn}. Observe that K is ϕ-convex, with
ϕ ≡ 1/

√
2. Indeed, for all v ∈ H it holds

〈v, xn − xm〉 ≤ ‖v‖ ‖xn − xm‖ ≤ ‖v‖√
2
‖xn − xm‖2 .

On the other hand, dK(0) = 1 < ‖xn‖ for all n = 1, 2, . . .
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