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Let Rn denote the usual n-dimensional Euclidean space. A polyhedral convex function f : Rn → R∪{+∞}
can always be seen as the pointwise limit of a certain family {f t}t>0 of C∞ convex functions. An explicit
construction of this family {f t}t>0 can be found in a previous paper by the second author. The aim of the
present work is to further explore this C∞-approximation scheme. In particular, one shows how the family
{f t}t>0 yields first and second-order information on the behavior of f . Links to linear programming and
Legendre-Fenchel duality theory are also discussed.
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1. Introduction

Throughout this note f : Rn → R∪{+∞} is assumed to be a polyhedral convex function
in the sense that its epigraph

epi f = {(x, α) ∈ Rn × R : f(x) ≤ α}

is a polyhedral convex set [6, p. 172]. An important consequence of the polyhedrality
assumption is that a finite number of vectors in Rn×R are enough to determine completely
the function f . Indeed, it is possible to represent f in the following “canonicalÔ form:

f(x) =

{

Max{〈w1, x〉 − β1, · · · , 〈wp, x〉 − βp} if x ∈ K ,

+∞ if x /∈ K ,
(1)

with
K = {x ∈ Rn : 〈ai, x〉 − γi ≤ 0 ∀i = 1, · · · , q} . (2)

The symbol 〈·, ·〉 denotes here the usual Euclidean product in the space Rn. Two com-
ments concerning the data

{(wj, βj)}pj=1 , {(ai, γi)}qi=1
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are in order. On the one hand side, the finite term

h(x) = Max{〈w1, x〉 − β1, · · · , 〈wp, x〉 − βp} (3)

can be written in the form
h(x) = σP (x,−1) ,

where σP : Rn × R → R stands for the support function of the polytope

P = conv{(w1, β1), · · · , (wp, βp)}

= {
p

∑

j=1

µj(w
j, βj) :

p
∑

j=1

µj = 1 , µj ≥ 0 ∀j = 1, · · · , p} .

If a particular vector (wj, βj) is not an extreme point of P , then the corresponding affine
function 〈wj, ·〉 − βj can be deleted from (3) without affecting the values of h. On the
other hand, the set K admits the alternative expression

K = {x ∈ Rn : σQ(x,−1) ≤ 0}

where σQ : Rn×R → R∪{+∞} stands for the support function of the polyhedral convex
cone

Q = cone{(a1, γ1), · · · , (aq, γq)}

= {
q

∑

i=1

νi(a
i, γi) : νi ≥ 0 ∀i = 1, · · · , q} .

If a particular vector (ai, γi) is a positive linear combination of the others, then the deletion
of the corresponding affine function 〈ai, ·〉 − γi from (2) does not affect the set K.

As shown recently by Seeger [7, Theorem 3.1], one can always construct a family {f t}t>0

such that
{

each f t : Rn → R is convex and infinitely often differentiable ;

{f t}t>0 converges pointwise to f as the parameter t goes to ∞ .
(4)

Thus, when t > 0 is sufficiently large, f t can be viewed as a C∞-approximation of f . As
example of such a family {f t}t>0, one may consider

f t(x) :=
M(tx,−t)

t
∀x ∈ Rn , (5)

with

M(x, α) := c+

∫

Rn×R
e〈a,x〉+γαdν(a, γ) + log

[ ∫

Rn×R
e〈w,x〉+βαdµ(w, β)

]

. (6)

Here ν is any discrete measure concentrated on {(a1, γ1), · · · , (aq, γq)}, and µ is any
discrete measure concentrated on {(w1, β1), · · · , (wp, βp)}. The constant c ∈ R in (6)
is irrelevant, but for notational convenience, one chooses the value of c that yields the
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normalization condition M(0, 0) = 0. The consequence of this particular choice is that
f t(x) is nondecreasing with respect to the parameter t, and therefore {f t}t>0 converges
monotonically upwards to f as t goes to ∞.

If νi denotes the weight of (a
i, γi) and µj denotes the weight of (w

j, βj), then the function
M takes the form

M(x, α) = c+

q
∑

i=1

νie
〈ai,x〉+γiα + log

[ p
∑

j=1

µje
〈wj ,x〉+βjα

]

, (7)

with

c = −
q

∑

i=1

νi − log[

p
∑

j=1

µj] .

For the sake of the exposition, M : Rn×R → R will be referred to as a generating function
for f . As a trivial justification for this terminology, one may invoke the formula

f(x) = lim
t→∞

M(tx,−t)

t
= sup

t>0

M(t(x,−1))

t
(8)

yielding the values of f . There is however a deeper justification. The purpose of this note
is to show that M provides a wealth of information on the behavior of f .

2. Limiting formula for subgradients

Consider a reference point x̄ ∈ Rn at which the polyhedral convex function f : Rn →
R ∪ {+∞} is finite. The first-order behavior of f around x̄ is reflected by the nonempty
set

∂f(x̄) := {y ∈ Rn : f(x) ≥ f(x̄) + 〈y, x− x̄〉 ∀x ∈ Rn} . (9)

This set is known as the subdifferential of f at x̄, and each of its elements is called a
subgradient of f at x̄ (see Rockafellar [6] or Moreau [5]).

A natural question to ask is whether the subgradients of f can be obtained by computing
classical gradients of smooth approximations of f . More precisely, if f t denotes the C∞-
approximation of f given by (5)–(6), what happens with the gradient

∇f t(x̄) = (
∂f t

∂x1
(x̄), · · · , ∂f

t

∂xn

(x̄))T

when the parameter t goes to ∞ ? Does one get closer to an element of ∂f(x̄) ? Which
one is the subgradient that is being approached in this way ?

All these questions will be answered in a clear-cut manner, but first one needs to introduce
some adjustments in the notation. First of all, the generating function M , as given by
the expression (7), depends on the weight vector

ξ := (ν1, · · · , νq , µ1, · · · , µp) ∈ Rq
+ × Rp

+ .

To underline the role of ξ, we shall write

Mξ(x, α) =

q
∑

i=1

νi{e〈a
i,x〉+γiα − 1}+ log{

p
∑

i=1

µj

〈µ〉
e〈w

j ,x〉+βjα} .
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The above expression is obtained by getting rid of the constant c, and by setting 〈µ〉 =
µ1+· · ·+µp. Of course, the case 〈µ〉 = 0 has been ruled out. Without loss of generality, one
may suppose that 〈µ〉 = 1 (otherwise, one works with the new coefficients µ

′
j := µj/〈µ〉).

In short,

Mξ(x, α) =

q
∑

i=1

νi{e〈a
i,x〉+γiα − 1}+ log{

p
∑

j=1

µje
〈wj ,x〉+βjα} , (10)

with a weight vector ξ ranging over

Ξ := {(ν1, · · · , νq , µ1, · · · , µp) ∈ Rq
+ × Rp

+ :

p
∑

j=1

µj = 1} .

The same notational consideration leads us to write

f t
ξ(x) =

Mξ(tx,−t)

t
, (11)

or in full extent

f t
ξ(x) =

1

t

q
∑

i=1

νi{et[〈a
i,x〉−γi] − 1}+ 1

t
log{

p
∑

j=1

µj e
t[〈wj ,x〉−βj ]} . (12)

Finally, we introduce the notation

I(x̄) := {i ∈ {1, · · · , q} : 〈ai, x̄〉 − γi = 0} ,

J(x̄) := {j ∈ {1, · · · , p} : 〈wj, x̄〉 − βj = h(x̄)} ,

Ξ(x̄) = {(ν1, · · · , νq , µ1, · · · , µp) ∈ Ξ : νi = 0 for i /∈ I(x̄) and µj = 0 for j /∈ J(x̄)} .

Without further ado, we state:

Theorem 2.1. Consider a polyhedral convex function f : Rn → R ∪ {+∞} given in the
canonical form (1). Let x̄ ∈ Rn be a point at which f is finite. Then, the following
statements are equivalent:

(a) ȳ is a subgradient of f at x̄ ;

(b) ȳ =
∑

i∈I(x̄) νia
i +

∑

j∈J(x̄) µjw
j for suitable coefficients {νi}i∈I(x̄) and {µj}j∈J(x̄)

satisfying

νi ≥ 0 ∀i ∈ I(x̄) , µj ≥ 0 ∀j ∈ J(x̄) ,
∑

j∈J(x̄)

µj = 1 ;

(c) there is a weight vector ξ ∈ Ξ(x̄) such that

ȳ = lim
t→∞

∇f t
ξ(x̄) .

Proof. The equivalence between (a) and (b) is well known, and is obtained by applying
standard calculus rules for computing subdifferentials (see, for instance, [4]). The novelty
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of this theorem lies in the condition (c). A straightforward computation shows that

∇f t
ξ(x̄) =

q
∑

i=1

νie
t[〈ai,x̄〉−γi]ai +

p
∑

j=1

µje
t[〈wj ,x̄〉−βj ]wj

p
∑

j=1

µje
t[〈wj ,x̄〉−βj ]

. (13)

Observe that

lim
t→∞

νie
t[〈ai,x̄〉−γi]ai =

{

0 if 〈ai, x̄〉 − γi < 0 ,

νia
i if 〈ai, x̄〉 − γi = 0 .

Therefore,

lim
t→∞

q
∑

i=1

νie
t[〈ai,x̄〉−γi]ai =

∑

i∈I(x̄)

νia
i .

On the other hand,

vt := {
p

∑

j=1

µje
t[〈wj ,x̄〉−βj ]}−1

p
∑

j=1

µje
t[〈wj ,x̄〉−βj ]wj

= {
p

∑

j=1

µje
t[〈wj ,x̄〉−βj−h(x̄)]}−1

p
∑

j=1

µje
t[〈wj ,x̄〉−βj−h(x̄)]wj .

Hence,

lim
t→∞

vt =

∑

j∈J(x̄) µjw
j

∑

j∈J(x̄) µj

.

Putting all the pieces together, it is not hard to see that (b) ⇐⇒ (c). The details of the
proof are left aside.

3. Link to linear programming

Before passing to the second-order analysis of f , we make a pause in our way and provide
a further interpretation of the approximating function f t

ξ . Let us have a closer look at
the terms

gtν(x) :=
1

t

q
∑

i=1

νi{et[〈a
i,x〉−γi] − 1} ,

ht
µ(x) :=

1

t
log{

p
∑

j=1

µje
t[〈wj ,x〉−βj ]}

appearing in the decomposition of f t
ξ . Both terms have an interesting interpretation in the

context of linear programming. Recall that the standard form of a linear programming
problem is

{

Minimize〈γ, r〉
subject to Ar = z , r ∈ Rq

+ ,
(14)
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where γ = (γ1, · · · , γq)T ∈ Rq and z = (z1, · · · , zn)T ∈ Rn are given vectors, and

A =

[

a1
... a2

...
... aq

]

is a matrix of appropriate dimensions. In full extent, this problem is expressed as

{

Minimize
∑q

i=1 γiri

subject to
∑q

i=1 ria
i = z , ri ≥ 0 ∀i = 1, · · · , q .

The positivity constraints in (14) can be incorporated in the objective function through
the penalty term

Qν(r) :=

{

∑q
i=1 {νi + ri[log(

ri
νi
)− 1]} if r ∈ Rq

+

+∞ otherwise ,
(15)

where the convention 0 log 0 = 0 is in force. Thus,







Minimize〈γ, r〉+ 1

t
Qν(r)

subject to Ar = z
(16)

corresponds to a penalized version of (14). This specific penalization scheme has been
studied in depth by Cominetti and San Martin [1], at least from the point of view of the
asymptotic analysis of optimal trajectories. Observe that (16) falls within the framework
of convex analysis but it is no longer a linear programming problem.

As shown next, Legendre-Fenchel conjugation theory [6, Section 16] provides a framework
for the interpretation of gtν :

Proposition 3.1. The functions gtν and

z ∈ Rn 7−→ vtν(z) := Inf
Ar=z

{〈γ, r〉+ 1

t
Qν(r)}

are mutually conjugate.

Proof. The proposition says that

vtν(z) = (gtν)
∗
(z) := Sup

x∈Rn

{〈z, x〉 − gtν(x)} ∀z ∈ Rn

and

gtν(x) = (vtν)
∗
(x) := Sup

z∈Rn

{〈z, x〉 − vtν(z)} ∀x ∈ Rn .

Since gtν : Rn → R is convex, it is enough to prove the first equality ([6, Theorem 12.2]).
Observe that

gtν(x) =
1

t
Mν(t(A

Tx− γ)) ∀x ∈ Rn , (17)
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with AT denoting the transpose of A and Mν : Rq → R being defined by

Mν(c) =

q
∑

i=1

νi(e
ci − 1) .

A direct calculation shows that

M∗
ν (r) := Sup

c∈Rq

{

〈r, c〉 −
q

∑

i=1

νi(e
ci − 1)

}

=

q
∑

i=1

Sup
τ∈R

{

riτ − νi(e
τ − 1)

}

= Qν(r) .

On the other hand

(gtν)
∗
(z) = Sup

x∈Rn

{

〈z, x〉 − 1

t
Mν

(

t(ATx− γ)
)}

=
1

t
Sup
x∈Rn

{

〈z, x〉 −Mν

(

ATx− tγ
)}

.

To conclude one just needs to apply a well known formula for the conjugate of the com-
position of a real-valued convex function and an affine mapping (see [3]).

The interpretation of ht
µ follows the same pattern as before, but this time one has to start

with a linear programming problem written in Karmarkar’s form:

{

Minimize〈β, s〉
subject to Ws = z , 〈1, s〉 = 1 , s ∈ Rp

+ .
(18)

Here β = (β1, · · · , βp)T ∈ Rp , z = (z1, · · · , zn)T ∈ Rn, and 1 = (1, · · · , 1)T ∈ Rp are
given vectors, and

W =

[

w1 ...w2 ...
... wp

]

is a matrix of appropriate dimensions. Karmarkar’s formulation stipulates that the min-
imization variables add up to 1. This fact leads us to consider a penalty term of the
form

Pµ(s) =











∑p
j=1 sj log(

sj
µj

) if s ∈ Rp
+ ,

p
∑

j=1

sj = 1

+∞ otherwise .

(19)

As shown in the next proposition, the smoothing function ht
µ turns out to be related to

the penalized version






Minimize〈β, s〉+ 1

t
Pµ(s)

subject to Ws = z
(20)

of the linear programming problem (18). The opposite of Pµ corresponds to the Kullback-
Leibler entropy function associated to µ. For this reason, some authors refer to (20) as an
entropic regularization method (cf. Fang and Li [2], Sheu and Wu [8], and the references
therein). Of course, (20) is no longer a linear programming problem.
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Proposition 3.2. The functions ht
µ and

z ∈ Rn 7−→ `tµ(z) := Inf
Ws=z

{〈β, s〉+ 1

t
Pµ(s)}

are mutually conjugate.

Proof. It is similar to the proof of Proposition 3.1. It is based on the representation

ht
µ(x) =

1

t
Nµ(t(W

Tx− β)) ∀x ∈ Rn ,

and the fact that Pµ is the conjugate function of

d ∈ Rp 7−→ Nµ(d) = log(

p
∑

j=1

µje
dj) .

By combining the standard formulation (14) and Karmarkar’s formulation (18), one ob-
tains the mixed form of a linear programming problem:































Minimize

q
∑

i=1

γiri +

p
∑

j=1

βjsj

subject to

q
∑

i=1

ria
i +

p
∑

j=1

sjw
j = z ,

ri ≥ 0 ∀i = 1, · · · , q , sj ≥ 0 ∀j = 1, · · · , p ,
∑p

j=1 sj = 1 .

For this problem to be feasible, it is necessary and sufficient that

z ∈ Ω := cone{a1, · · · , aq} + conv{w1, · · · , wp} .

The mixed linear programming problem can be written also in a more compact way,
namely























Minimize〈

[

γ

β

]

,

[

r

s

]

〉

subject to C

[

r

s

]

= z , 〈

[

0

1

]

,

[

r

s

]

〉 = 1 ,

[

r

s

]

∈ Rq+p
+ ,

(21)

with

C =
[

a1
... a2

...
... aq

... w1 ... w2 ...
... wp

]

.

As a penalization term for the basic constraints

r ∈ Rq
+ , s ∈ Rp

+ , 〈1, s〉 = 1 ,
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one may consider the expression

Rξ(r, s) = Qν(r) + Pµ(s) ,

yielding in this way the penalized version































Minimize〈

[

γ

β

] [

r

s

]

〉 +
1

t
Rξ(r, s)

subject to C

[

r

s

]

= z

(22)

of the linear programming problem (21). The infimal-value function

z ∈ Rn 7−→ mt
ξ(z) := Inf

C [ rs ] =z

{

〈
[

γ
β

]

,

[

r
s

]

〉 +
1

t
Rξ(r, s)

}

is closely related to the smoothing function f t
ξ . At this stage of our exposition, it should

be no surprise that f t
ξ and mt

ξ are related through conjugacy:

Theorem 3.3. The function f t
ξ and mt

ξ are mutually conjugate.

Proof. According with Propositions 3.1 and 3.2, the conjugate function of f t
ξ is given by

(f t
ξ)

∗ = (gtν + ht
µ)

∗ = [(vtν)
∗ + (`tµ)

∗]∗ .

From a general result of convex analysis [6, Theorem 16.4], it follows that

(f t
ξ)

∗ = vtν2`tµ ,

where
z ∈ Rn 7−→ [vtν2`tµ](z) = Inf

θ∈Rn
{vtν(z − θ) + `tµ(θ)}

stands for the infimal-convolution of vtν and `tµ. A straightforward calculation shows that

[vtν2`tµ](z) = Inf
θ∈Rn

[

Inf
Ar=z−θ

{〈γ, r〉 +
1

t
Qν(r)} + Inf

Ws=θ
{〈β, s〉 +

1

t
Pµ(s)}

]

= Inf
Ar+Ws=z

{〈γ, r〉 + 〈β, s〉 +
1

t

[

Qν(r) + Pµ(s)

]

}

= mt
ξ(z) .

This completes the proof.

As immediate consequence of Theorem 3.3, one sees that the upward convergence of
{f t

ξ}t>0 toward f is equivalent to the downward convergence of {mt
ξ}t>0 toward the con-

jugate of f . This observation is consistent with the fact that the conjugate of f evaluated
at z is precisely the infimal-value m(z) of the mixed linear programming problem (21).
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Table 3.1: Smoothing, penalization, and duality

form of LP program standard Karmarkar mixed

minimization variables r ∈ Rq
+ s ∈ Rp

+, 〈1, s〉 = 1 [ rs ] ∈ Rq+p
+ , 〈[ 01 ] , [ rs ]〉 = 1

penalty term Qν(r) Pµ(s) Rξ(r, s) = Qν(r) + Pµ(s)

inf-value of penalized program vtν `tµ mt
ξ = vtν2`tµ

conjugate of inf-value function gtν ht
µ f t

ξ = gtν + ht
µ

4. Second-order information

Following the pattern initiated in Section 2, one may ask now whether the Hessian matrix

∇2f t
ξ(x̄) =

[

∂2f t
ξ

∂xk∂x`

(x̄)

]

k,`=1,··· ,n

converges somewhere as the parameter t goes to ∞. Preliminary computations show
that ∇2f t

ξ(x̄) converges to the zero matrix if the function f happens to be affine. More
precisely,

Proposition 4.1. Let f : Rn → R ∪ {+∞} be a polyhedral convex function given in the
canonical form (1). For a point x̄ ∈ Rn at which f is finite, the following three conditions
are equivalent

(a) f is affine on a neighborhood of x̄ ;

(b) I(x̄) is empty and J(x̄) is a singleton ;

(c) for each ξ ∈ Ξ, limt→∞∇2f t
ξ(x̄) = 0 (the zero matrix of order n× n).

Proof. The equivalence between (a) and (b) is evident. Condition (c) can be established
after computing explicitly the Hessian matrix of f t

ξ . This will be done in the proof of the
next theorem.

The result established above is, of course, not surprising. The limiting behavior of∇2f t
ξ(x̄)

is more interesting when f behaves “genuinely" as a polyhedral function around x̄, that
is to say, when I(x̄) is nonempty (i.e. at least one of the constraints defining K becomes
active at x̄), or J(x̄) contains more than one index (i.e. at least two of the affine functions
defining h achieve at x̄ the value h(x̄)). In this genuine polyhedral setting, ∇2f t

ξ(x̄) may
not remain bounded as t goes to ∞. In other words, it may well happen that

lim
t→∞

‖∇2f t
ξ(x̄)‖ = ∞ .

However, if one multiplies ∇2f t
ξ(x̄) by a suitable scaling factor, then one does obtain

convergence. More precisely, the limiting matrix

Hξ(x̄) = lim
t→∞

1

t
∇2f t

ξ(x̄)
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does exist. What kind of information is contained inHξ(x̄) ? Since our geometric intuition
does not help us to clarify this matter, we rely on our analytic computations. The outcome
of our analysis is a result that has an interesting probabilistic interpretation. Recall that
for a (discrete) measure λ on Rn, the n× n matrix

m2[λ] :=

∫

Rn

uuTdλ(u)

is referred to as the second-order moment of λ. As usual, the symbol “TÔ denotes trans-
position. The notation

var[λ] :=
1

λ(Rn)

∫

Rn

uuTdλ(u)− [

∫

Rn

udλ(u)] [

∫

Rn

udλ(u)]T

stands for the covariance matrix of λ.

Theorem 4.2. Consider a polyhedral convex function f : Rn → R ∪ {+∞} given in the
canonical form (1). Let x̄ ∈ Rn be a point at which f is finite. For each weight vector
ξ ∈ Ξ, one has

lim
t→∞

1

t
∇2f t

ξ(x̄) = m2[ν
x̄] + var[µx̄] . (23)

Here ν x̄ is the discrete measure concentrated on {ai : i ∈ I(x̄)} given by

ν x̄({ai}) = νi ∀i ∈ I(x̄) ,

and µx̄ is the discrete measure concentrated on {wj : j ∈ J(x̄)} given by

µx̄({wj}) = µj
∑

k∈J(x̄) µk

∀j ∈ J(x̄) .

Proof. Consider an arbitrary ξ ∈ Ξ. We have seen already that

∂f t
ξ

∂xk

(x) =

q
∑

i=1

νie
t[〈ai,x〉−γi](ai)k +

p
∑

j=1

λt
j(x)(w

j)k ∀x ∈ Rn ,

where (u)k denotes the k-th component of a vector u ∈ Rn, and

λt
j(x) :=

µje
t[〈wj ,x〉−βj ]

p
∑

k=1

µke
t[〈wk,x〉−βk]

.

Observe, incidentally, that

p
∑

j=1

λt
j(x) = 1 , λt

j(x) ≥ 0 ∀j = 1, · · · , p .

By differentiating once again, one arrives at the expression

∂2f t
ξ

∂xk∂x`

(x) = t

q
∑

i=1

νie
t[〈ai,x〉−γi](ai)k (a

i)` +

p
∑

j=1

∂λt
j

∂x`

(x)(wj)k ,
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with

∂λt
j

∂x`

(x) = tλt
j(x)

[

(wj)` −
p

∑

r=1

λt
r(x)(w

r)`

]

.

In other words,

1

t

∂2f t
ξ

∂xk∂x`

(x) =

q
∑

i=1

νie
t[〈ai,x〉−γi](ai)k (a

i)` +

p
∑

j=1

λt
j(x)(w

j)k(w
j)`

−
[ p
∑

j=1

λt
j(x)(w

j)k

] [ p
∑

j=1

λt
j(x)(w

j)`

]

.

Hence, up to a scaling factor, the Hessian of f t
ξ evaluated at x̄ admits the following

expression:

1

t
∇2f t

ξ(x̄) =

q
∑

i=1

νie
t[〈ai,x̄〉−γi]ai(ai)T +

p
∑

j=1

λt
j(x̄)w

j(wj)T

−
[ p
∑

j=1

λt
j(x̄)w

j

] [ p
∑

j=1

λt
j(x̄)w

j

]T

.

This shows that

lim
t→∞

1

t
∇2f t

ξ(x̄) =
∑

i∈I(x̄)

νia
i(ai)T +

∑

j∈J(x̄)

µ̃jw
j(wj)T −

[

∑

j∈J(x̄)

µ̃jw
j

] [

∑

j∈J(x̄)

µ̃jw
j

]T

,

with

µ̃j =
µj

∑

k∈J(x̄) µk

∀j ∈ J(x̄) .

This is, of course, the desired conclusion.

5. Differentiation with respect to the smoothing parameter

Next on our agenda is the analysis of f t
ξ(x) as a function of the parameter t. For the sake

of notational convenience, we drop again the reference to the weight vector ξ and write
simply

F (t, x) := f t(x) ∀(t, x) ∈ ]0,∞[ × Rn . (24)

The function F : ]0,∞[ × Rn → R is infinitely often differentiable. The first and second-
order partial derivatives of F with respect to the “stateÔ vector x have been studied at
lenght in Sections 2 and 4, respectively. From a purely formal point of view, the smoothing
or approximation parameter t can be interpreted as a time variable.
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A direct differentiation of F with respect to t yields

∂F

∂t
(t, x) = − 1

t2

[

log(

p
∑

j=1

µje
t[〈wj ,x〉−βj ]) +

q
∑

i=1

νi(e
t[〈ai,x〉−γi] − 1)

]

(25)

+
1

t

[

1
p

∑

j=1

µje
t[〈wj ,x〉−βj ]

p
∑

j=1

µj[〈wj, x〉 − βj]et[〈w
j ,x〉−βj ] +

q
∑

i=1

νi [〈ai, x〉 − γi] et[〈a
i,x〉−γi]

]

.

Some terms in the above equality are easily recognizable, some others are not. Anyway,
observe that

t
∂F

∂t
(t, x) = −F (t, x) + Γt(x) , (26)

with

Γt(x) =
1

p
∑

j=1

µje
t[〈wj ,x〉−βj ]

p
∑

j=1

µj[〈wj, x〉−βj]et[〈w
j ,x〉−βj ] +

q
∑

i=1

νi [〈ai, x〉−γi] et[〈a
i,x〉−γi] .

Theorem 5.1. Let f : Rn → R∪{+∞} be the polyhedral convex function with canonical
representation given by (1). Then,

(a) the family {Γt}t>0 converges pointwise to f as t goes to ∞, i.e. f admits the ap-
proximation formula

f(x) = lim
t→∞

Γt(x) ∀x ∈ Rn ; (27)

(b)
∂F

∂t
and t

∂F

∂t
converge to the indicator function of K, i.e.

lim
t→∞

∂F

∂t
(t, x) = lim

t→∞
t
∂F

∂t
(t, x) = ψK(x) :=

{

0 if x ∈ K ,

+∞ if x ∈ K .
(28)

(c) t2
∂F

∂t
behaves asymptotically according with the rule

lim
t→∞

t2
∂F

∂t
(t, x) =

{

θ(x) if x ∈ K ,

+∞ if x /∈ K .
(29)

with
θ(x) :=

∑

i/∈I(x)

νi − log
[
∑

j∈J(x)

µj

]

.

Proof. To prove the part (a), it suffices to write Γt in the form

Γt(x) =
1

p
∑

j=1

µje
t[〈wj ,x〉−βj−h(x)]

p
∑

j=1

µj [〈wj, x〉 − βj] et[〈w
j ,x〉−βj−h(x)]

+

q
∑

i=1

νi [〈ai, x〉 − γi] et[〈a
i,x〉−γi] . (30)
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The first term on the right-hand side of (30) clearly converges to

1
∑

j∈J(x)

µj

∑

j∈J(x)

µj[〈wj, x〉 − βj] = h(x) .

The second term on the right-hand side of (30) converges to

ψK(x) =

{

0 if 〈ai, x〉 − γi ≤ 0 ∀i ∈ {1, · · · , q} ,

+∞ otherwise .

To summarize,
lim
t→∞

Γt(x) = h(x) + ψK(x) = f(x) ∀x ∈ Rn .

This result together with the equation (26) yield

lim
t→∞

t
∂F

∂t
(t, x) = 0 ∀x ∈ K ,

which, in turns, implies that

lim
t→∞

∂F

∂t
(t, x) = 0 ∀x ∈ K .

The latter equality can be derived also from the fact that

lim
t→∞

F (t, x) = h(x) ∈ R ∀x ∈ K .

The case x /∈ K must be handled with more care, because passing to the limit on the right-
hand side of (26) leads to the undetermined expression −∞ + ∞. So, let us rearrange
(25) to get

∂F

∂t
(t, x) =

1

t

{

− ht
µ(x) +

1
p

∑

j=1

µje
t[〈wj ,x〉−βj−h(x)]

p
∑

j=1

µj[〈wj, x〉 − βj]et[〈w
j ,x〉−βj−h(x)]

}

+
1

t2

q
∑

i=1

νi +
1

t

p
∑

i=1

νi [〈ai, x〉 − γi − 1

t
] et[〈a

i,x〉−γi] .

The term between brackets goes 0, so does the next term. But, the last term goes to ∞
because

〈ai, x〉 − γi > 0 for at least one index i .

This shows that

lim
t→∞

∂F

∂t
(t, x) = ∞ ∀x /∈ K ,

which, in turns, implies that

lim
t→∞

t
∂F

∂t
(t, x) = lim

t→∞
t2

∂F

∂t
(t, x) = ∞ ∀x /∈ K ,



S. Guillaume, A. Seeger / A higher-order smoothing technique for polyhedral ... 123

To complete the proof it remains to show that

lim
t→∞

t2
∂F

∂t
(t, x) = θ(x) ∀x ∈ K ,

but this equality is left as exercise. It follows from a careful examination of (25).

An important comment on Theorem 5.1 is in order: formula (27) tells us that the poly-
hedral convex function f can be seen as the pointwise limit of the family {Γt}t>0, with
each Γt : Rn → R being infinitely often differentiable. So, we have obtained yet another
C∞-approximation method for polyhedral convex functions. The link between f t and Γt

is expressed by the formula

Γt(x) =
∂

∂t
[tf t(x)] , (31)

which is another way of writing the equation (26). In contrast with f t, the function Γt is
not convex in general. Let us illustrate this point with a simple example:

Example 5.2. Let f be the absolute value function on R, i.e.

f(x) = |x| = Max{x,−x} ∀x ∈ R .

In this case

f t(x) =
1

t
log(µ1e

tx + µ2e
−tx) ,

Γt(x) =

[

µ1e
tx

µ1etx + µ2e−tx

]

x +

[

µ2e
−tx

µ1etx + µ2e−tx

]

(−x) .

Regardless of the coefficients µ1 > 0 and µ2 > 0, one obtains

|x| = lim
t→∞

f t(x) = lim
t→∞

Γt(x) ∀x ∈ R .

Both functions f t and Γt are of class C∞, but only f t is convex. The lack of convexity of
Γt can be checked by using the second-derivative test.

6. Euler-type PDE with source term

For the sake of the exposition, consider momentarily the case in which

βj = 0 ∀j = 1, · · · , p and γi = 0 ∀i = 1, · · · , q . (32)

In this particular setting, F : ]0,∞[ × Rn → R can be written in the form

F (t, x) = u(
1

t
, x) ,

with

(τ, x) ∈ ]0,∞[ × Rn 7−→ u(τ, x) = τ

q
∑

i=1

νi(e
1
τ
〈ai,x〉 − 1) + τ log{

p
∑

j=1

µj e
1
τ
〈wj ,x〉}
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being a homogeneous function of degree 1. Due to its homogeneity, u satisfies Euler’s
equation

〈∇xu(τ, x), x〉+ τ
∂u

∂τ
(τ, x)− u(τ, x) = 0 ,

and therefore F satisfies

〈∇xF (t, x), x〉 − t
∂F

∂t
(t, x)− F (t, x) = 0 . (33)

The latter equation is referred to as an Euler-type PDE because it is obtained from the
former one by a simple change of variables.

If one drops the simplificatory assumption (32), then there is a “sourceÔ term that shows
up on the right-hand side of (33), namely

S(t, x) =
1

p
∑

j=1

µje
t[〈wj ,x〉−βj ]

p
∑

j=1

µjβ
jet[〈w

j ,x〉−βj ] +

q
∑

i=1

νiγ
iet[〈a

i,x〉−γi] . (34)

Proposition 6.1. Consider a polyhedral convex function f : Rn → R ∪ {+∞} given in
the canonical form (1). Then, (t, x) ∈ ]0,∞[ × Rn 7−→ f t(x) is a solution to the PDE

〈∇xF (t, x), x〉 − t
∂F

∂t
(t, x)− F (t, x) = S(t, x) , (35)

with “boundaryÔ condition
lim
t→∞

F (t, x) = f(x) .

Proof. The Euler-type PDE with source term S is a consequence of (26) and the fact
that

Γt(x) = 〈∇xF (t, x), x〉 − S(t, x) ,

the latter equality being obtained with the help of (13).

7. Conclusions

As seen in this paper, a substantial amount of information on the behavior of the poly-
hedral convex function (1) can be recovered directly from its generating function (10).
Rather than review the full ramifications and applications of our work, we prefer to dress
a short list of significant results:

(a) Selection principle for subgradients: it has been shown that the subdifferential ∂f(x)
of the polyhedral convex function f : Rn → R∪{+∞} can be obtained by computing clas-
sical gradients ∇f t

ξ(x) of smooth approximations of f . Each subgradient of f corresponds
to a particular choice of the weight vector ξ.

(b) Selection principle for optimal solutions: this principle is a by-product of the previ-
ous one. A minimization problem with polyhedral convex data can always be cast in the
form

Minimize{m(y) : y ∈ Rn} , (36)
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with m being the conjugate function of (1). The solution set of (36) is known to be

arg minm = ∂m∗(0) = ∂f(0) (cf. [6, Theorem 27.1]) .

As a consequence, each minimum y ∈ Rn of the function m can be expressed as

y = lim
t→∞

∇f t
ξ(0) .

Observe that ytξ := ∇f t
ξ(0) corresponds to the unique solution to the approximated version

Minimize{mt
ξ(z) : z ∈ Rn} (37)

of the original problem (36). In short,

arg minm = { lim
t→∞

arg minmt
ξ : ξ ∈ Ξ(0)} .

(c) C∞-approximation and duality: it has been shown that the C∞-approximation f t
ξ

and the infimal-value function mt
ξ are mutually conjugate. The standard machinery of

Legendre-Fenchel conjugation theory can be put now into practice in order to exploit this
result.

(d) Second-order statistical information: the generating function (10) allows us to re-
cover also second-order information on the sample

{ai : i ∈ I(x̄)} , {wj : j ∈ J(x̄)} .

The details are discussed in Section 4.

(e) C∞-approximation via Gibbs functionals: let Pµ : Rp → Rp and Qν : Rq → Rq be
defined respectively by

Pµ(s) =

(

µ1e
s1

p
∑

j=1

µje
sj

, · · · , µpe
sp

p
∑

j=1

µje
sj

)T

, Qν(r) = (ν1e
r1 , · · · , νqerq)T .

Some authors refer Pµ as the Gibbs functional associated with µ, but Qν does not seem
to have a proper terminology. Anyway, both functionals have played an important role
in our work. Observe that Pµ takes values in the elementary simplex of Rp and Qν takes
values in the positive orthant of Rq. As a consequence,

x ∈ Rn 7−→ Γt(x) = 〈Pµ(t(W
Tx− β)) , W Tx− β〉 + 〈Qν(t(A

Tx− γ)) , ATx− γ〉

corresponds to a convex combination of the affine mappings {〈wj, ·〉 − βj}pj=1 and a conic
combination of the affine mappings {〈ai, ·〉 − γi}qi=1. Recall that Γt was shown to be a
C∞-approximation of f .

(f) PDE approach: the expression f t
ξ(x) is (infinitely often) differentiable with respect

to the couple (t, x). It has been shown that (t, x) ∈ ]0,∞[ × Rn 7−→ f t
ξ(x) is a solution

to the first-order PDE (35). A natural question that arises in this context is whether it is
possible to obtain other approximation schemes by changing the “sourceÔ term in (35).
To interact with the reader, we leave open for discussion this challenging question.
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