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Given a sequence 〈Tn〉 of nonempty closed sets Kuratowski-Painlevé convergent to the
empty set in a noncompact metrizable space X, we show not only that there exists an
admissible unbounded metric such that 〈Tn〉 converges to infinity in distance, but also that
there must exist another such metric for which this is not the case. For such a sequence,
let A consist of all subsets A of X whose closure hits Tn for at most finitely many indices
n. We give necessary and sufficient conditions for A to be the family of bounded sets
induced by some admissible metric for X, and show that all possible nontrivial metric
bornologies for X arise in this manner if and only if the derived set of X is compact.
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1. Introduction

Let 〈X, τ〉 be a metrizable topological space. If X is noncompact, then there exists an
unbounded metric compatible with the topology for X. Many years ago, S.-T. Hu [8, 9]
discovered a characteristic set of properties for a family of subsets A of X to be the family
of bounded subsets with respect to some unbounded metric d compatible with τ . These
properties are the following:

(a) A is an ideal of subsets of X, i.e., A is hereditarily closed and is closed under finite
unions;

(b)
⋃

A = X , or equivalently by (a), {x} ∈ A for every x ∈ X;

(c) for each A ∈ A, X \ A 6= ∅, i.e., A is a proper ideal;

(d) for each A ∈ A, there exists B in A such that clA ⊂ intB;

(e) A contains a countable base, i.e., a countable cofinal subfamily with respect to set
inclusion.

A family A that satisfies conditions (a) and (b) is often called a bornology in the literature
[7], and so it makes sense to call a family satisfying (a) through (e) a nontrivial metric
bornology (the trivial metric bornology, corresponding to a bounded metric compatible
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with the topology, consists of the power set of X). Simple examples show that these
conditions are minimal. In particular, condition (d) cannot be replaced by the weaker
condition A ∈ A ⇒ clA ∈ A, for the family of finite subsets of the rationals viewed as a
subspace of the real line satisfies this weakened condition and all the others but does not
satisfy (d). To see that condition (e) does not follow from the others, consider Z+ with
the discrete topology and let A = {A ⊂ Z+ : A contains at most finitely many powers
of each prime}.
In [4], the author introduced a notion dual to that of nontrivial metric bornology – the
notion of metric mode of convergence to infinity – and argued for its use as the primitive
notion in developing a theory of metric boundedness. In a noncompact metrizable space
consider all sequences 〈Fn〉 of nonempty closed subsets such that for each positive integer
n, Fn+1 ⊂ intFn and

⋂∞
n=1 Fn = ∅. Define an equivalence relation ≡ on the set of such

sequences as follows: 〈Fn〉 ≡ 〈En〉 provided for each positive integer k there exist positive
integers n and j such that Ek ⊃ Fj and Fk ⊃ En. By a metric mode of convergence to in-
finity we mean an equivalence class for this equivalence relation. As in [4] we freely engage
in the abuse of identifying an equivalence class under ≡ with a particular representative
of that class.

The connection between these objects and nontrivial metric bornologies is as follows.
Given a metric mode of convergence to infinity 〈Fn〉 define a subset A of X to be bounded
with respect to 〈Fn〉 provided for some n we have A ∩ Fn = ∅. We denote the bounded
subsets of X with respect to 〈Fn〉 by B(〈F\〉). One can show that B(〈F\〉) = B(〈E\〉) if
and only if 〈Fn〉 ≡ 〈En〉 and, furthermore, that each family of the form B(〈F\〉) satisfies
Hu’s axioms for a nontrivial metric bornology. Conversely, if A is a family of subsets of
X satisfying Hu’s axioms and d is a compatible metric whose bounded sets coincide with
A, then it is easy to show that A = B(〈{§ : d(§, §′) ≥ \}〉) where x0 ∈ X is an arbitrary
fixed point.

There are advantages to this dual approach. First, examples of metric modes of conver-
gence to infinity are natural and exist in abundance, e.g., in the context of a normed
linear space, convergence to infinity in a particular direction, and positive convergence
to infinity as determined by a closed convex cone with nonempty interior fall within this
rubric. Second, these objects are simpler and are more tractible than the nontrivial met-
ric bornologies to which they correspond, and proofs about boundedness structures are
invariably simpler when approached dually. Finally, they provide the link between met-
ric bornologies and one-point regular extensions of the space with a countable base at
the ideal point. Such extensions are automatically metrizable [5], and provide an alter-
nate generalization in the framework of noncompact metrizable spaces rather than in the
framework of noncompact locally compact Hausdorff spaces of the familiar construction of
the Riemann sphere as a one-point extension of the metrizable Euclidean plane.

A metric mode of convergence to infinity 〈Fn〉 is a special case of a sequence of closed sets
that converges to the empty set in the sense of Kuratowski-Painlevé. It is the purpose
of this article to clarify the relationship between Kuratowski-Painlevé convergence to
the empty set for a general sequence of nonempty closed sets in a metric space and
nontrivial metric bornologies. Our analysis leads to another axiomatic approach to metric
bornologies that is valid only in those metrizable spaces 〈X, τ〉 whose derived set X ′ is
compact. Such metrizable spaces have been well-studied, as they are the carriers of UC
metrics.
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2. Notation and terminology

Let 〈X, τ〉 be a metrizable space. We denote the interior, closure, boundary, and set of
accumulation points of a subset A of X by intA, clA, bdA, and A′. A metric d defined
on X is called admissible if it is compatible with the topology τ . Given an admissible
metric d, the symbol d(x,A) will represent inf{d(x, a) : a ∈ A}, the usual distance from
a point x in X to a nonempty subset A of X. Given x ∈ X and δ > 0, we denote
the open ball of radius δ and center x by Sd

δ (x). More generally, if A is a subset of
X, we denote the enlargement

⋃

x∈A Sd
δ (x) of A of radius δ by Sd

δ (A). For A nonempty,
Sd
δ (A) = {x : d(x,A) < δ}. Each enlargement of the empty set is again empty. A subset

A of X is called d-bounded if for some x ∈ X and δ > 0, we have A ⊂ Sd
δ (x), which

means that diamd(A) = sup{d(a1, a2) : a1 ∈ A, a2 ∈ A} < ∞. We denote the family of
d-bounded subsets of X by B(d).

In an introductory exposure to metric space topology, one becomes aware of the following
results valid in a compact metric space 〈X, d〉:
(1) Each continuous function f from 〈X, d〉 to an arbitrary metric space 〈Y, ρ〉 is uni-

formly continuous;

(2) Each open cover of X has a Lebesgue number λ, i.e., if A is a subset of X with
diamd(A) < λ, then A lies within some single member of the cover;

(3) Whenever A and B are disjoint closed subsets of X, there exists δ > 0 such that
Sd
δ (A) ∩B = ∅.

Although these properties are equivalent for a metric d [1, 3, 13], it cannot be shown that
these properties characterize compactness, for indeed they do not. For example, each
holds in a zero-one discrete metric space. Compact metric spaces and zero-one metric
spaces are extreme cases of the class of metric spaces in which these properties are valid.
Such metric spaces, called UC spaces or Atsuji spaces in the literature, are perhaps best
characterized visually as follows by the conjunction of two conditions [10]:

(1) X ′ is compact (but is perhaps empty), and

(2) for each δ > 0, (Sd
δ (X

′))c is uniformly discrete, i.e., there exists ε > 0 such that
whenever x, y ∈ (Sd

δ (X
′))c, x 6= y, then d(x, y) > ε.

For a proof that compactness of the derived setX ′ for a metrizable space 〈X, τ〉 is sufficient
for the existence of an admissible UC metric compatible with the topology, the reader
may consult [2, 11, 13].

3. On Kuratowski-Painlevé convergence to the empty set

We begin this section with a review of some basic facts about Kuratowski-Painlevé con-
vergence. All of the information given below is either explicit or implicit in Section 5.2 of
the monograph of the author [3] and is well-known.

Let 〈Tn〉 be a sequence of nonempty closed sets in a metrizable space 〈X, τ〉. A point
x ∈ X is called a limit point (resp. a cluster point) of 〈Tn〉 provided each neighborhood
V of x intersects Tn for all but finitely many (resp. infinite many) indices n. We denote
the set of limit points (resp. cluster points) of the sequence Tn by LiTn (resp. LsTn).
Clearly, LiTn ⊂ LsTn and it is not hard to show that both sets are closed. In particular,
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closedness of LsTn follows from the formula

LsTn =
∞
⋂

n=1

(cl
∞
⋃

j=n

Tj).

We declare 〈Tn〉 Kuratowski-Painlevé convergent to a (closed) set T provided T = LiTn =
LsTn, and in this case we write T = K-limTn. Notice that when 〈Tn〉 is a decreasing
sequence, we have K-limTn =

⋂∞
n=1 Tn. We will be interested in convergence to the

empty set ∅. We list some criteria for this to occur in the following lemma whose proof is
left as an exercise for the reader.

Lemma 3.1. Let 〈X, τ〉 be a metrizable space and let 〈Tn〉 be a sequence of nonempty
closed sets. The following conditions are equivalent:

(1) ∅ = K-limTn;

(2) LsT = ∅;

(3) Whenever C is a compact subset of X, we have C ∩ Tn = ∅ eventually;

(4) {Tn : n ∈ Z+} is a locally finite family of closed sets and for each n ∈ Z+ there exist
at most finitely many indices j such that Tn = Tj.

Clearly, none of these conditions can occur if X is compact, and it will be understood
in the sequel that the underlying space is noncompact. The following result gives a new
characterization of Kuratowski-Painlevé convergence to the empty set.

Proposition 3.2. Let 〈Tn〉 be a sequence of closed nonempty sets in a noncompact metriz-
able space 〈X, τ〉. The following conditions are equivalent:

(1) ∅ = K-limTn;

(2) There exists an unbounded admissible metric d for X such that for each B ∈ B(d),
Tn ∩B = ∅ eventually;

(3) There exists an unbounded admissible metric d for X such that for some x0 ∈ X we
have limn→∞ d(x0, Tn) = ∞;

(4) There exists an unbounded admissible metric d for X such that for all x ∈ X we
have limn→∞ d(x, Tn) = ∞.

Proof. As the proof of the equivalence of conditions (2), (3) and (4) is trivial, we will
just prove (1) ⇒ (2) and (3) ⇒ (1). For (1) ⇒ (2) let ρ be an admissible metric for X
and for each n ∈ Z+ let En be the following closed set:

En =

{

x ∈ X : ρ(x,
∞
⋃

j=n

Tj) ≤
1

n

}

.

Since 〈Tn〉 has no cluster points, it follows that
⋂∞

n=1 En = ∅, and for each n ∈ Z+, we
clearly have En+1 ⊂ intEn. Thus, 〈En〉 is a metric mode of convergence to infinity. Since
for each n we have

⋃∞
j=n Tj ⊂ En, for each B ∈ B(〈En〉) we have Tn ∩ B = ∅ for all but

finitely many indices n. Finally, by Hu’s Theorem, there exists an unbounded admissible
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metric d such that B(〈En〉) = B(d), and this finishes the argument. For (3) ⇒ (1), let
C be a compact subset of X and let x0 and d be as described in (3). Take λ > 0 with
C ⊂ Sd

λ(x0) and then take n0 ∈ Z+ such that for all n ≥ n0 we have d(x0, Tn) > λ. Then
C ∩ Tn = ∅ for all n ≥ n0, whence by Lemma 3.1, it follows that ∅ = K-limTn.

It can never be the case that for all admissible d and x ∈ X we have

lim
n→∞

d(x, Tn) = ∞

However, the situation is a little subtle. We begin with

Proposition 3.3. Let 〈Tn〉 be a decreasing sequence of nonempty closed sets in a non-
compact metrizable space 〈X, τ〉 with ∅ = K-limTn. Then there exists an unbounded
admissible metric d such that for some x0 ∈ X, we have lim supn→∞ d(x0, Tn) < ∞.

Proof. Let ρ be a bounded admissible metric with diamρ(X) < 1. We consider two
cases for the sequence 〈Tn〉: (1) for all n ∈ Z+, T c

n has compact closure; (2) for some
n ∈ Z+, T c

n does not have compact closure. In the first case, let 〈wn〉 be a sequence in
X with distinct terms having no cluster point. By the Tietze extension theorem, there
exists a nonnegative continuous function f mapping w2n to n and w2n−1 to zero, for
n ∈ Z+. Then the metric d(x, y) = ρ(x, y) + |f(x)− f(y)| is admissible and unbounded,
and clSd

1(w1) is not compact. As a result, Sd
1(w1) cannot be contained in T c

n for any n,
and so lim supn→∞ d(w1, Tn) ≤ 1. In the second case, fix n0 ∈ Z+ such that T c

n0
has

noncompact closure. Let 〈xj〉 be a sequence in T c
n0

with distinct terms having no cluster
point. By the Tietze extension theorem we can find a continuous nonnegative real valued
function g on X such that for each j ∈ Z+ we have g(xj) = j and g(Tn0) = 0. Define
d : X ×X → [0,∞) by the formula

d(x, y) = ρ(x, y) + |g(x)− g(y)|.

Then d is an unbounded admissible metric, and if x0 ∈ Tn0 and n ≥ n0, we have d(x0, Tn) ≤
1. In fact, all Tn for n ≥ n0 are contained in a common d-ball.

Proposition 3.4. Let 〈Tn〉 be a sequence of nonempty closed sets in a noncompact metriz-
able space 〈X, τ〉 with ∅ = K-limTn. Then there exists an unbounded admissible metric d
such that for some x0 ∈ X, we have lim infn→∞ d(x0, Tn) < ∞.

Proof. For each n ∈ Z+, write Fn =
⋃∞

j=n Tj. By local finiteness of {Tn : n ∈ Z+} each
set Fn is closed, and since ∅ = LsTn =

⋂∞
n=1 cl(

⋃∞
j=n Tj) =

⋂∞
n=1 clFn =

⋂∞
n=1 Fn, we also

have ∅ = K-limFn. By Proposition 3.3,

lim sup
n→∞

d(x0, Fn) < ∞

for some x0. Thus for some λ > 0 and all indices n, we have d(x0, Fn) < λ. It now follows
that d(x0, Tn) < λ for infinitely many indices n.

Example. In the statements of Propositions 3.3 and 3.4, "some" can be replaced by
"all". However, in the last result, we cannot in general replace "lim inf" by "lim sup".
For our metrizable space, consider Z+ with the discrete topology and for each n ∈ Z+
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let Tn = {n}. If d is any unbounded admissible metric and k0 ∈ Z+ and λ > 0 are
arbitrary, then the complement of Sd

λ(k0) must consist of infinitely many points, else Z+

would be a bounded set. This means that lim supn→∞ d(k0, Tn) ≥ λ, and so we obtain
lim supn→∞ d(k0, Tn) = ∞.

4. Metric bornologies in spaces with compact derived set

Suppose 〈Tn〉 is a sequence of nonempty closed sets in a metrizable space 〈X, τ〉 that is
Kuratowski-Painlevé convergent to the empty set. Let us write B(〈Tn〉) for the following
family of subsets of X:

B(〈T\〉) = {A : clA intersects Tn for at most finitely many indices n}.

Now if 〈Tn〉 were a metric mode of convergence to infinity, for B(〈T\〉) as just defined, we
obtain the same class of bounded sets as indicated by the same notation in the introduc-
tion. Thus, each nontrivial metric bornology in an arbitrary metrizable space 〈X, τ〉 arises
in this way. But there are other natural ways to represent a given nontrivial metric bornol-
ogy A as B(〈T\〉) where the sets Tn are not nested. To see this, let d be an unbounded
admissible metric for which A = B(d). Fix x0 ∈ X, and let 〈kn〉 be a strictly increasing se-
quence in Z+ such that for each n, the closed annulus Tn = {x ∈ X : kn ≤ d(x, x0) ≤ kn+1}
is nonempty. Then the sequence 〈Tn〉 converges to the empty set and A = B(〈T\〉).

A basic question still remains: for a general sequence 〈Tn〉 of nonempty closed sets in
a noncompact metrizable space with ∅ = K-limTn, must B(〈T\〉) always satisfy Hu’s
axioms? It is clear that B(〈T\〉) contains only proper subsets of X, that B(〈T\〉) forms
a cover of X, and that B(〈T\〉) is closed under finite unions and is hereditarily closed.
Thus, it is always true that B(〈T\〉) forms a nontrivial bornology on X. Furthermore,
Hu’s axiom (d) is satisfied for B(〈T\〉). To see this, suppose A ∈ B(〈T\〉), and choose
n ∈ Z+ such that clA ∩ (

⋃∞
j=n Tj) = ∅. By local finiteness,

⋃∞
j=n Tj is a closed subset of

X, whence by normality there exists B ∈ τ such that

clA ⊂ B ⊂ clB ⊂ (
∞
⋃

j=n

Tj)
c.

As a result, B ∈ B(〈T\〉) and clA ⊂ intB, as required.

Only Hu’s axiom (e) – the requirement that the bornology have a countable base – is
at issue. We intend to give necessary and sufficient conditions for this to occur. Given
a sequence 〈Tn〉 of nonempty closed sets with ∅ = K-limTn, let us adopt some notation
introduced in the proof of Proposition 3.4: Fn for

⋃∞
j=n Tj. Not only is it true that

∅ = K-limFn, but also that B(〈F\〉) = B(〈T\〉).
Theorem 4.1. Let 〈X, τ〉 be a noncompact metrizable space and let 〈Tn〉 be a sequence
of nonempty closed sets with ∅ = K-limTn. For each positive integer n let Fn =

⋃∞
j=n Tj.

The following conditions are equivalent:

(1) For each k ∈ Z+ there exists n ∈ Z+ with intFk ⊃ Fn;

(2) There exists a subsequence 〈Fnk
〉 of 〈Fn〉 that is a metric mode of convergence to

infinity;
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(3) For each A ⊂ X, A ∈ B(〈T\〉) if and only if there exists j ∈ Z+ with A ∩ Fj = ∅;

(4) the bornology B(〈T\〉) has a countable base with respect to set inclusion;

(5) B(〈T\〉) is a nontrivial metric bornology.

Proof. (1) ⇒ (2). By (1) we can find a strictly increasing sequence of positive integers
〈nk〉 such that for all k ∈ Z+ we have intFnk

⊃ Fnk+1
. Each set Fnk

is closed and
⋂∞

k=1 Fnk
= ∅, because

⋂∞
n=1 Fn = ∅. By definition, 〈Fnk

〉 is a metric mode of convergence
to infinity.

(2) ⇒ (3). If for some j ∈ Z+ we have A ∩ Fj = ∅, then choosing nk > j we have

clA ∩ Fnk+1
⊂ clA ∩ intFnk

= ∅.

This shows that A ∈ B(〈F\〉) = B(〈T\〉). The converse is immediate from the definition
of B(〈T\〉) and holds without the validity of condition (2).

(3) ⇒ (4). By (3), {F c
n : n ∈ Z+} is a countable base for B(〈T\〉) = B(〈F\〉).

(4) ⇒ (5). By (4), B(〈T\〉) satisfies Hu’s axiom (e) for a nontrivial metric bornology. The
other axioms are automatically satisfied.

(5) ⇒ (1). Suppose B(〈T\〉) = B(d) for some unbounded admissible metric d yet (1)
fails. Then for some k ∈ Z+ and all larger integers n we have Fn ∩ bdFk 6= ∅. For each
n > k pick an ∈ Fn∩bdFk. Since K-limFn = LsFn = ∅, the sequence ak+1, ak+2, ak+3, . . .
can have no cluster point. Also, by passing to a subsequence, we can assume that all
the terms of the sequence are distinct. By Hu’s axioms (d) and (e), we may choose a
countable base {Bi : i ∈ Z+} for B(〈T\〉) consisting of closed sets. Starting with B1 there
exists n1 > k such that B1 ∩ Fn1 = ∅. As an1 ∈ Fn1 there exists ε(n1) ∈ (0, 1) such that
B1∩Sd

ε(n1)
(an1) = ∅. Since 〈Fn〉 is a decreasing sequence of sets, there exists n2 > n1 such

that B2 ∩ Fn2 = ∅. As before, there exists ε(n2) ∈ (0, 1/2) such that B2 ∩ Sd
ε(n2)

(an2) = ∅.
Continuing, we produce a strictly increasing sequence 〈ni〉 of positive integers and an
associated sequence 〈ε(ni)〉 of positive reals such that for each i ∈ Z+ we have ε(ni) < 1/i
and

Bi ∩ Sd
ε(ni)

(ani
) = ∅.

Now each point ani
lies in bdFk and so for each i ∈ Z+ there exists ci 6∈ Fk with

0 < d(ci, ani
) < ε(ni). The condition limi→∞ ε(ni) = 0 guarantees that 〈ci〉 has no cluster

point because 〈ani
〉 has no cluster point. As a result, C = {ci : i ∈ Z+} is a closed set,

and since C ∩ Fk = ∅, we see that C ∈ B(〈F\〉) = B(〈T\〉). But no set Bi contains C,
which contradicts {Bi : i ∈ Z+} serving as a base for B(〈T\〉). As result, condition (1)
follows from condition (5).

Our next result describes those metrizable spaces in which sequences of nonempty closed
sets convergent to the empty set always determine nontrivial metric boundedness struc-
tures (see Theorem 2 of [13] for other characterizations of spaces with compact derived
set).

Theorem 4.2. Let 〈X, τ〉 be a noncompact metrizable space. The following conditions
are equivalent:
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(1) Whenever 〈Tn〉 is a sequence of nonempty closed subsets of X with ∅ = K-limTn,
the bornology B(〈T\〉) is a nontrivial metric bornology;

(2) Whenever {Tn : n ∈ Z+} is a discrete family of distinct closed subsets of X, B(〈T\〉)
is a nontrivial metric bornology;

(3) X ′ is compact.

Proof. (1) ⇒ (2). By Lemma 3.1, this is trivial.

(2) ⇒ (3). Suppose X ′ is noncompact. Then there exists a sequence 〈xn〉 in X ′ with
distinct terms that has no cluster point in X. For each n ∈ Z+, let Tn = {xn}. Then
{Tn : n ∈ Z+} is a discrete family of closed sets. Now for each k ∈ Z+, we have
int{xn : n ≥ k} = ∅. Thus with Fk = {xn : n ≥ k}, there cannot exist n ∈ Z+ such that
intFk ⊃ Fn. By Theorem 4.1, B(〈T\〉) cannot be a nontrivial metric bornology.

(3) ⇒ (1). Assume X ′ is compact, and let d be an admissible UC-metric. Let 〈Tn〉 be a
sequence of nonempty closed subsets of X with ∅ = K-limTn. To show that B(〈T\〉) is a
nontrivial metric bornology, we need only produce a countable base for B(〈T\〉). For each
j ∈ Z+, define Bj by the formula

Bj = {x ∈ X : d(x,
∞
⋃

n=j

Tn) ≥
1

j
}.

We claim that {Bj : j ∈ Z+} does the job. First note that each such Bj is a closed set
that intersects no Tn for n ≥ j so that Bj ∈ B(〈T\〉). Now let B ∈ B(〈T\〉) be arbitrary.
By definition, there exists j ∈ Z+ such that clB ∩ (

⋃∞
n=j Tn) = ∅. Since d is a UC-metric

and the union of any locally finite family of closed sets remains closed there exists k > j
with clB ∩ Sd

1/k(
⋃∞

n=j Tn) = ∅. Since
⋃∞

n=k Tn ⊂
⋃∞

n=j Tn, it follows that B ⊂ clB ⊂ Bk

as required.

Our next result presents two alternative approaches to metric boundedness valid in spaces
with compact derived set.

Theorem 4.3. Let 〈X, τ〉 be a noncompact metrizable space with X ′ compact, and let A
be a family of subsets of X. The following conditions are equivalent:

(1) A is the family of bounded sets B(d) corresponding to some unbounded admissible
metric d for τ ;

(2) There exists a sequence 〈Tn〉 of distinct closed subsets of X Kuratowski-Painlevé
convergent to the empty set such that A = B(〈T\〉);

(3) There exists a discrete family {En : n ∈ Z+} of nonempty clopen subsets of X such
that A = {A ⊂ X : A ∩ E\ = ∅ for all but finitely many n}.

Proof. The implication (3) ⇒ (2) is trivial, for a set A fails to intersect a given open
set if and only if its closure does. The implication (2) ⇒ (1) is established by Theorem
4.2. To prove (1) ⇒ (3), let d be an unbounded admissible metric with A = B(d). Fix
x0 ∈ X and for each n ∈ Z+ let Fn = (Sd

n(x0))
c. Then 〈Fn〉 is a representative of the

metric mode of convergence to infinity whose bounded sets are A. Since 〈Fn〉 is equivalent
to each of its subsequences, without loss of generality we may assume that for each n,
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Fn\Fn+1 is nonempty. SinceX ′ is compact, there exists k ∈ Z+ such that Fk∩X ′ = ∅, else
⋂∞

n=1 Fn 6= ∅. Also by the compactness of X ′, there exists δ > 0 such that Sd
δ (X

′)∩Fk = ∅,
and as a result, each subset of Fk is clopen. For each n ∈ Z+ set En = Fk+n−1 \ Fk+n.
Evidently, each set En is a nonempty clopen subset of X. Also, the family {En : n ∈ Z+}
is discrete, for if x ∈ X ′, then Sd

δ (x) meets no En and if x 6∈ X ′ there is a ball with center
x consisting of just x. If A ∈ A there exists j ≥ k such that A∩Fj = ∅ and so A∩En = ∅
whenever n > j−k. On the other hand, if A∩En = ∅ for each n ≥ j, then A∩Fk+j−1 = ∅
because

Fk+j−1 =
∞
⋃

n=j

(Fk+n−1 \ Fk+n).

This proves that A = {A ⊂ X : A ∩ E\ = ∅ for all but finitely many n}.

The bornology on Z+ mentioned in the introduction is an example of a bornology on a
space with compact derived set satisfying all of Hu’s axioms save (e) without being a
metric bornology. In particular, this bornology cannot be expressed in the form B(〈T\〉)
where ∅ = K-limTn.

Unless X is compact, a metrizable space 〈X, τ〉 with compact derived set will always have
an admissible metric that is not UC because UC-metrics are always complete [3, p. 55]
and a space all of whose admissible metrics are complete must be compact [6, 12] (for a
direct proof, see the solution to advanced problem #5850 proposed by R. Tamaki, Amer.
Math. Monthly 80 (1973), p. 815). Nevertheless, if 〈X, τ〉 is noncompact and metrizable
with compact derived set, then each nontrivial metric bornology A may be represented
as B(d) for some admissible UC-metric d. To see this, let ρ be an admissible UC-metric
for X and let d∗ be an unbounded admissible metric with A = B(d∗). Fix x0 ∈ X and
define f : X → [0,∞) by f(x) = d∗(x, x0). As f is continuous, f is actually uniformly
continuous with respect to the metric ρ. Finally, define d : X ×X → [0,∞) by

d(x, y) = min{ρ(x, y), 1}+ |f(x)− f(y)|.

Then d and ρ are uniformly equivalent so that d is a UC-metric. Finally, a subset A of X
is d-bounded if and only if f |A is bounded, and this occurs if and only if A ∈ B(d∗) = A.

5. Upper semicontinuous functions and convergence to the empty set

Let f : X → [0,∞) be an unbounded function. For each n ∈ Z+, let L+
n (f) = {x ∈

X : f(x) ≥ n}. Local finiteness of the family {L+
n (f) : n ∈ Z+} is equivalent to local

boundedness of f . In the case that f is in addition continuous, then 〈L+
n (f)〉 is a metric

mode of convergence to infinity and thus determines a nontrivial metric bornology, namely
{A ⊂ X : f |A is bounded}. Conversely, if B(d) is a nontrivial metric bornology, fixing
x0 ∈ X, we have B(d) = B(〈L+

\ ({)〉) where f : X → [0,∞) is the continuous function

defined by f(x) = d(x, x0).

Recall that a real valued function f on X is called upper semicontinuous (u.s.c.) if for
each scalar α the set f−1((−∞, α)) is an open subset of X. Our next result speaks to the
representation of B(〈T\〉) for a sequence 〈Tn〉 of nonempty closed sets with ∅ = K-limTn

by a nonnegative unbounded upper semicontinuous function.
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Theorem 5.1. Let 〈X, τ〉 be a noncompact metrizable space. If f : X → [0,∞) is
unbounded and upper semicontinuous, then 〈L+

n (f)〉 is a sequence of nonempty closed sets
Kuratowski- Painlevé convergent to the empty set. Conversely, if 〈Tn〉 is a sequence of
nonempty closed sets with ∅ = K-limTn, then there exists an unbounded nonnegative upper
semicontinuous function f on X with B(〈T\〉) = B(〈L+

\ ({)〉).

Proof. Let f : X → [0,∞) be unbounded and upper semicontinuous. Since f is un-
bounded, each superlevel set L+

n (f) is nonempty, and by upper semicontinuity, each is
closed. Clearly, 〈L+

n (f)〉 converges to the empty set.

Conversely, let 〈Tn〉 be a sequence of nonempty closed sets with ∅ = K-limTn. As usual,
for each n, let Fn = ∪∞

j=nTj and let gn be the characteristic function of Fn. Since each Fn

is closed, each gn is upper semicontinuous. Given x ∈ X all but finitely many gn vanish
off some neighborhood V of x whence

f = g1 + g2 + g3 + . . .

is unbounded, finite valued, and upper semicontinuous. Since f(x) is the largest n for
which x ∈ Fn, we get Fn = L+

n (f), and so B(〈L+
\ ({)〉) = B(〈F\〉) = B(〈T\〉).

Let 〈Tn〉 be a sequence of nonempty closed sets in a noncompact metrizable space 〈X, τ〉
with ∅ = K-limTn. If we equip X with the discrete topology τ0, then by Theorem 4.3,
Bτ′(〈T\〉) is a nontrivial metric bornology for the discrete topology.

Proposition 5.1 leads us to a coarser metrizable topology τ ∗ ⊃ τ which accomplishes
the same goal. Starting with a bounded metric d compatible with τ and the upper
semicontinuous function f constructed in the proof of Proposition 5.1, the unbounded
metric d∗ on X defined by d∗(x,w) = d(x,w) + |f(x)− f(w)| defines a topology τ ∗ on X
finer than τ . The precise relationship between τ ∗ and τ can be conveniently described in
terms of convergent sequences in X as follows: 〈xk〉 → x in τ ∗ if and only if 〈xk〉 → x in
τ and whenever x ∈ Fn = ∪∞

j=nTj, we have xk ∈ Fn for all sufficiently large k. It follows
that for an arbitrary subset A of X we have

{n ∈ Z+ : (clτ∗A) ∩ Fn 6= ∅} = {n ∈ Z+ : A ∩ Fn 6= ∅},

whence by condition (3) of Theorem 4.1, Bτ∗(〈T\〉) is a nontrivial metric bornology.

We conclude with an open question. Given a sequence 〈Tn〉 of nonempty closed sets in a
metrizable space 〈X, τ〉 with ∅ = K-limTn, must there always exist a coarsest topology
τ1 on X finer than τ such that Bτ∞(〈T\〉) is a nontrivial metric bornology?
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