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We consider implicit functions y = y(z) defined by a system of equations G;(z,y) = 0,7 = 1,...,m.
In the case of convex differentiable functions G; we establish some sufficient conditions under which the
component function yi(z) is convex or concave. Examples show that without these assumptions yy(x)
can be nonconvex and nonconcave.

For the special case with additive separated convex functions G;(z,y) = g;(z) + h;(y) additional results
concerning the gradients Vg; and Vh; are obtained which can be applied to the differentiable continuation
of convex marginal functions in parametric optimization.
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1. Introduction

In convex optimization often one has to consider systems of equations where convex func-
tions are involved. A typical example is the Karush-Kuhn-Tucker system for a convex
programming problem which is linear w.r.t. the Lagrange multipliers and nonlinear w.r.t.
the optimization variables in the (convex) constraints, gradient and complementarity re-
lations.

We consider the following system of equations
Gz,y)=0, G=z,y)=(Gi(z,y),...,Gulz,y)) (1)

where G : R x R — R™, n,m > 1, is a continuously differentiable function. As it is
well known, the solution set of analogous inequalities G(z,y) < 0 with convex functions
G; is a convex subset of R"*™, In contrast to this, in general the solution set of the
equations (1) does not have any convexity properties even if G is convex. Geometrically,
this set is the intersection of the boundaries of convex bodies, whereby quite differently
constituted curves and hypersurfaces can occur.

In the literature one can find many papers about the implicit function y = y(z) defined
by (1) under suitable additional assumptions, but there are only very few results about
convexity properties of y(x). Some investigations for the case m = 1 (one convex equation)
are part of the papers [1] and [5]. Furthermore, the book [7] contains some related results
w.r.t. the boundary of convex sets from the geometrical point of view (also for m = 1
only).

For our examination of convexity properties of such solution functions first we cite a
general implicit function theorem.
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Theorem 1.1. Let G(x,y) be a C' function defined in a neighborhood of T € R" and
7y € R™ taking values in R™, with G(Z,7) = 0. Then if V,G(Z,7) is invertible there
exists a neighborhood U of T and a C* function y : U — R™ such that §j = y(T) and
G(z,y(z)) = 0 for every z € U.

Furthermore, y is unique in that there exists a netghborhood V' of y such that there is only
one solution z € V of G(x,z) = 0, namely z = y(x). Finally, the differential of y can be
computed by implicit differentiation from

V.G Zai (z))-Vy;(z) =0, i=1,...,m, YzeU. (2

Remark. For the proof see for instance [3] or [9].

2. Systems of convex equations

Theorem 2.1. Let the assumptions of Theorem 1.1 be fulfilled, and assume that the func-
tions G, i = 1,...,m, are convex on the considered neighborhood of (Z,y). Furthermore,
let a (n + 1)-dimensional affine manifold H C R"™™ exist such that

Vi={(z,y) eR"™ : y=y(x), z€U } CH, dim(H) =n+1. (3)
Then for each i =1,...,m the function y; = y;(x) is convez or concave on U.

Proof. Because of the structure (3) of the set Y we have the existence of two vectors
a,d € R™ such that

H={(z,y) eR"™™ : z€eR", y=a+t-d, teR }. (4)

Then in the case d = 0 the assertion of the Theorem is obviously true because of y(z) = @
Vzel.

In the case d # 0 we can conclude from (4) that a uniquely defined function ¢ : U — R!
exists with

V={(z,y) eR"" : y=y(z)=a+tx)-d, z€U }. (5)

Because of the differentiability of y(x) on U the function ¢(x) is differentiable on U, too.
Defining the sets

Ci = {(@y) €R xR : Gi(z,y) <0},
D; = {(z,y) €C; : Gi(z,y) =0}, )
=1 i=1
we find that C; and C; N H are convex for each ¢ = 1,...,m. Furthermore we have

(z,y) € D; C C; and V,G;i(Z,7) # 0. Hence, Theorem 17.5 from [7] provides that C; is
a (n + m)-dimensional closed convex set, D; is the boundary 0C; = cl(C;) \ int(C;) of C;
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and a (n+m — 1)-dimensional regular manifold of the R**™. For each point (z*,y*) € D;
there is a unique supporting halfspace R; (z*,y*) to C; at (z*,y*) with

V.Gi(z*, y*) x —

R;Lx*,y*:{x,y ER"+’”:<( ’ ),( )>§0}. 7
@) (=.9) V,Gi(z*,y*) ) \y —y* ™)

Hence we have D; C C; C R/ (z*,y*) and D; N H C R (z*,y*) N H with

R;’(x*,y*)ﬂH:{ (z,y) ER™™ : 2R, y=a+t-d, t e R,
(Tt Gor)) =0} 7
VyGiz*,y*)) \y —y*
Because of Y C C;NH C R; (z*,y*)N H we can choose (z,y(x)) € Y and (z*,y(z*)) € Y
in (8) which leads us to

(VoGi(z*,y"),x — ) + (V,Gi(z",y"),a + t(z) od— y* )y <0 9)
V x € U. With respect to y* = @ + t(z*) - d from this we get

(ViGi(z*,y"),z — z*) + (t(z) — t(z*)) - (V,Gi(z",y"),d) < 0. (10)
Since the vectors V,G;(z*,y*), i = 1,...,m, are linearly independent there is at least one

index 4o € {1,...,m} such that the product s* := (V,G;,(z*,y*), d) is nonzero. Without
loss of generality we can suppose that either s* > 0 or s* < 0 is true for all z* € U. Hence

1
we can multiply relation (10) with — and we get
s
<0, s*>0,

1
t(z) —t(x") + — (VG (2%, "),z — 2" Ve, 2" € U. 11
(@) = ta") + - (VaGia ") >{20, o (1)

From this it follows directly that the function ¢(x) is convex or concave on U (depending
on the sign of s*). Considering y;(z) = @; + t(z) - dj, j = 1,...,m, from the convex-
ity /concavity of ¢(x) we get also one of the two properties for the function y,(z) on U
(depending on the sign of the factor d;). O

Remark. The assertion of Theorem 2.1 does not mean that all functions y; = y;(x),
i =1,...,m, are either convex or concave. In general only some functions y;(z), i € I,
are convex and the remaining functions y;(z), ¢ € {1,...,m} \ I;, are concave. This is
illustrated by the following two examples.

Example 2.2. We consider the system (1) with n =1, m = 2 and

Gl(xay) = $2+(y1—1)2+(y2+1)2—4,
Gao(z,y) = 22+ + 1)+ (g2 —1)2—4.

For z = 0 and §, = J, = 1 all assumptions of Theorem 2.1 are fulfilled, and we get

(al) y=(1,1) = y(r) = \/1—2—2, Yao(z) = 1—%;
(a2) g=(-1,-1) = @) =—/1-%, w@)=—/1-2%.

In the case (al) the functions y;(x) and ys(x) are concave, but in the case (a2) both
functions are convex (in a neighborhood of Z, respectively).
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Figure 2.1: Balls G;(z,y) = 0 for Example 2.3

Example 2.3. Let in (1) the relations n = 1, m = 2 and

Gi(z,y) =2+ (1 + 1) + (2 +1)* — 4,
Go(z,y) = 2%+ (y1 — 1) + (yo — 1)? — 4

be valid. Then for z = 0 and 3, = —y, = *+1 all assumptions of Theorem 2.1 are fulfilled

with
b)) 7=01,-1) = w@= \1-%, n)=—\/1-%;

2’
yl($)=—\/1—”§—2, Yo () = 1—%2-

In both cases (bl) and (b2) one convex and one concave function y;(z) appears (in a
neighborhood of Z, respectively).
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Remark. In the case m > 1 the additional assumption in Theorem 2.1 (dimension (n+1)
of the set Y) seems to be very restrictive because in general the curve (z,y(z)) is a subset
of R**™ . But the following example shows even the dimension (n+ 2) of Y can cause the
appearance of nonconvex and nonconcave implicit functions y;(x).

Example 2.4. Let in (1) the relations n = 1, m = 2 and

Gi(z,y) = /a2 +y7 - (20 + (arctan -)%) — 20 -y,
Gao(z,y) = /22 +y{ - (20 — 2(arctan )%) — 20 + 2y,

hold (cf. Figure 2.2). Then the functions G;(z,y), i = 1,2, are convex and continuously
differentiable in a neighborhood of Z = 0 and 7 = (1,0). Because of

vaQ 20z+z(arctan £)3+3y1 (arctan ﬁ)2 20y1+y1 (arctan ;—1)3—3z(arctan ﬁ)"’ 1
l(xay)_ \/$2+y12 ) \/$2+y12 , —
e . 20z—2z(arctan ﬁ)3—6y1(arctan ;—1)2 20y1—2y1 (arctan ﬁ)3+6$(arctan ;—1)2 9

2(-T; y)_ \/:v2+y12 ; \/w2+y12 )
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Figure 2.2: Surfaces G;(z,y) = 0 for Example 2.4

20 —1

we find that det(V,G(7,7)) = ‘ 50 9

‘ = 60 # 0, such that all assumptions of Theorem
1.1 are fulfilled, and we get
3
yi(z) =vV1—2%2, yz)= (arctan %) , YVzeU(T)
—z
(cf. Figure 2.3). But the (threedimensional) set Y does not fulfill the additional assump-
tion of Theorem 2.1. Therefore, the function ys(x) is neither convex nor concave (w.r.t.

an arbitrary neighborhood of 7 = 0).

For additional properties we need the following lemma on convex, finite generated dual
cones from linear algebra.

Lemma 2.5. Let a, i =1, ..., m, be linearly independent vectors of RN, and let
K = cone(dl,...,a™),
K' = {zeRV : (z,a)=0,i=1....,m }, (12)

K* = {zeRNV : (z,a")<0,i=1...,m }

be the convex cone generated by the a', the mazimal subspace orthogonal to all a* and the
dual cone to K. Furthermore, let the matrices

D= (ag)i—y, ag={d,d), D= by, (13)
be given. Then m linearly independent vectors 2*, i =1,..., m, exist such that
m
K* = K' 4+ cone(z',...,2™), 2'= —Z bij-a',i=1,...,m. (14)

=1
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Figure 2.3: Solution functions for Example 2.4

Proof. Let A be the matrix containing the column vectors a' to a™ (with rank m).
Then from linear algebra we know that the dual cone K* = { z€RN : 2TA<O } is
representable as algebraic sum of the subspace K' = { 2€RN : 2TA=0 } and a finite
generated cone K° = cone(y!,...,y*). Hereby the extreme rays y* € K* are uniquely
defined (despite of a positive factor) by the rank (m — 1) of the set of columns a’/ with
(y®,a’) = 0 (cf. Theorem 2.16 in [4]).

Because of the linear independence of the m columns a’ there are exactly m different

variants for determining the vectors y*, hence we have £k = m and lin(a',...,a™) =
m .

lin(y',...,y™) (because of (y*,z) = 0V 2z € K'). Choosing y* = ozz(-s)aZ we can
i=1

calculate the vectors y* by solving the systems

a(s)(ai,aj) =0, Vj#s,

i

I
Mz

(y*, )

~
Il
—

(15)

!N at,a®) =7 < 0.

%

I

-
Il
—

(y*, a®)

With r(®) = —1 the system (15) is equivalent with D - o{®) = —e®. Because of the linear
independence of the columns o’ the matrix D from (13) is regular, hence a(®) = —D~1.¢*

and y* = —A-D7'.¢*. Then with y* = 2%, s = 1,...,m, the assertion (14) is proved. [

The convexity or concavity of the implicit functions yi(z) from Theorem 2.1 can be
proved also by direct examination of the adequate inequalities. But as Example 2.4
shows therefore some additional assumptions are necessary. By this we ensure that the
projection of the (n + m)-dimensional set Y into the graph space of a fixed function y
can be used as supporting halfspace of the epigraph of y.

Theorem 2.6. Let the assumptions of Theorem 1.1 be fulfilled, and assume that the func-
tions G, i =1,...,m, are convex on the considered neighborhood of (Z,y). Furthermore,
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for arbitrary fized x € U and y = y(z) consider the convez polyhedral cones

C(z) = cone(VGy(z,y(x)),..., VGm(x,y(x))),
C'z) = {zeR"™ : (z,VGi(z,y(x)))=0, i=1...,m }, (16)
C*(z) = {zeR"™ : (2,VGi(z,y(x))) <0, i = ,m }

= ('(z) + cone(z!(x),...,2™(z))

(where the 2*(z), 1 = 1,...,m, are defined according to Lemma 2.5). Finally, let k €
Vyk(x)
ek
ponent of the solution function y(z) extended by an appropriate unit vector. Then we

have:

(i) If{d*,2*(z)) <OV i=1,...,m, then y,(x) is convez in a neighborhood of x.

(i) If (d* 2%(z)) <OV i=1,...,m, then yp(x*) > y(z) + (Vyr(z),z* — z) holds for
all x* from a neighborhood of x.

(iii) If (d*,2*(z)) >0V i=1,...,m, then yi(z) is concave in a neighborhood of x.

(iv) If(d*, 2(z)) > 0Vi=1,...,m, then yp(z*) < yr(z) + (Vyr(z),z* — z) holds for
all x* from a neighborhood of x.

{1,...,m} be a fived index and d* = ( > € R*™™ the gradient of the k-th com-

Proof. From (2) we get
V.Gi(z,y(z = 6 Vy;(x)
(VyGi(x (2) ) gz o, iJ(z,y(x)) - ( i VzeU, (17)

which gives us together with the linear independence of the m vectors V,G;(z,y(z)) € R™
the relation (Y%7} € 1in(VG\(z,y(x)),..., VGm(z,y(z))), hence d* € lin(C(z)) and

el

d* 1 C'(z), respectively.

Using the sets Y and R; (z,y) from (3) and (7) in the proof of Theorem 2.1 we find for
arbitrary x* € U the inclusion

(e, y(@") € Y C () Bf (,y()) = (z,y(2)) + C*(x). (18)
i=1
Because of the structure (16) of the set C*(z) a vector r € C'(x) and constants «; € R',
1 =1,...,m, exist such that the representation
(.T*,y(l'*)) = (x,y(a:))—i—r—i-z:azzz(x), &7 > 07 1= 1;"'7m: (19)
i=1

holds. From this we get the equation

(d", (2" — @,y(z") = y(2))) = (d",r + Zaizi(w)) = Zaz(d'“, 2'(x)). (20)



248 U. Wiirker / Convezity properties of some implicit functions

Assume that (d*,2'(z)) < 0V i=1,...,m is true. Then from the nonnegativity of the
factors a; from (20) we get (d*, (z* — z,y(2*) — y(x))) < 0, which leads us together with
the definition of d* to

(Vyr(x), 2" = z) = (ye(¢") — yr(2)) <0 (21)

and the assertion (ii) is proved. Analogously, in the case of reverse inequality sign we find
the assertion (iv), too.

Assuming the strict inequalities (d¥, z*(z)) < 0V i = 1,...,m, because of the continuity
of all functions we find that (d*,2'(z')) < 0V i = 1,...,m holds for all z' from a
neighborhood U(z) C U of z. Hence we can apply assertion (ii) in all points 2’ and get

yr(2*) > yr(2') + (Vyr(z'),z* — ') Vaz* e U Va' e U(z). (22)

From this the convexity of y, on U(x) is proved. Analogously we find (iii) as corollary
from (iv). O

For illustration of Theorem 2.6 we apply its assertion to the above example with (n + 2)-
dimensional set Y for which Theorem 2.1 was not applicable.

Example 2.7. Let the functions G; are given as in Example 2.4 in a neighborhood of
Z =0 and y = (1,0). Then for the sets defined by (16) we have

0 0 1
C(T) = cone 200,120 ), C'(m)=lin| (0] ],
—1 2 0
1Y 1[0
C*(@) = cone(2'(7), 2%(7)) + C'(x), 2'(@) = |-1], @) =_| -1
30 60
10 —20
401 398
1 (= 2 (7 : ~ _ -1
Hereby z'(Z) and 2%(%) are determined with D = (398 40 4) and D =
1 404 —398 . .. . .
3600 (—398 401> as in formula (14). Hence, from the explicit solution functions

or from the implicit representation (2)

y(e) = VI—a? and y() = (arctan \/%7)3

0 0
we get yi(T) = 0, which leads tod' = | =1 | and d*>= | 0
0 —1

1 1
Then we have: Because of (d', 2!(T)) = 30> 0 and (d', 2%(7)) = 50> 0 the function

y1(z) is concave in a neighborhood of T = 0 (case (iii) in Theorem 2.6).

1 1
Since (d?, 21 (7)) = -3 < 0 and (d?, 22(7)) = 3> 0, as expected for the (nonconvex and

nonconcave) function ys(x) none of the assertions of Theorem 2.6 is applicable.
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Remark. The properties (i) to (iv) in Theorem 2.6 are sufficient but in general not
necessary for the convexity or concavity of y(x), respectively. For instance, to obtain
an affinlinear (convex and concave) function y,(z) the assumptions (ii) and (iv) has to
be valid simultaneously. From this we have (d*,2*(z)) = 0V ¢ = 1,..., m which gives
us together with d* 1 C'(z) and z%(z) LC'(Z) V i the contradiction d* = 0. Hence, the
assumptions of Theorem 2.6 are not suitable to prove the linearity of the implicit function

Yr(x).

3. Systems with additive convex functions

In section 2 we have seen that the convexity or concavity of implicit functions can only
be obtained with the help of additional assumptions. In the following we consider the
special case when two groups of variables are additively separated in the equations. The
aim of the following section is to get statements about the gradients of the involved
functions which can be useful in the investigation of subdifferentials of marginal functions
(for decomposition approaches).

Theorem 3.1. Let the functions gi(z) : R' — R' and hi(y) : R®™ — R, ¢ = 1,2,
be convex and continuously differentiable in a neighborhood of the points T € R' and
y € R™, respectively. Furthermore, suppose that for the system

a continuous function y(z) exists with

which is differentiable on U(T) \ {Z}. Finally let at least one of the following conditions
(i) to (iii) be fulfilled:

i) IM>0,6>0: |z—7|<d = ||[Vyl)||<M Vz#z;
(iii)) m=1.
Then the tmplication
G:=Vh(@y) =Vh(y) =  ¢@) =g0@) (25)
holds.

Proof. Differentiating the equations (24) w.r.t. z we get
Vhi(y(z)) - Vy(z) = —gi(z) ~ Vz eU@)\{7}. (26)

Since —gi(x) is continuous in a neighborhood of Z, the expression lim Vh;(y(z)) - Vy(z)
T—T
exists independently from the existence of the limit = lim Vy(x). If assumption (i) is
T—T

fulfilled, then there is at least one finite accumulation point V' € R™ of the gradients
Vy(z), such that the limit in relation (26) is realized:

lim Vhi(y(z)) - Vy(z) =G-V =—gi(T), i=1,2. (27)

T—T
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Hereby the vector V depends only from the series Vy(x) and not from the index 7. Hence
from (27) we get directly the assertion (25).

(ii) In the case G = 0 we have h;(y) > h;(y) V y € U(¥), hence
gi(z) = —=hi(y(z)) < —hi(¥) = g:(T), 1=1,2, VzeU(T). (28)

Because of the convexity of g;(z) from this we get g;(z) = ¢;(T) V « € U(Z), and this
gives us with ¢}(Z) = 0, i = 1, 2, the validness of the assertion (25).

(iii) For m = 1 only the case G # 0 is to be proved. Then for each of the two equations
gi(z) + hi(y) =0, i = 1,2, an implicit function y = y(z) exists in U(T), and

_9i(@ _ 4@

"(7) = = =1,2. 29
v@) =t =5 imn (29)
Because of the uniqueness of the solution function y(x) from (29) we get ¢i(z) = —G -
y'(T) = const., and the assertion of the Theorem is proved. O

Remark. The main result of Theorem 3.1 is the validness of the property (25) even in
the case when y(x) is not differentiable at . Hereby the boundedness of the gradients
Vy(z) in a neighborhood of T is essential for the proof (at least in the case G # 0 and
m > 1). If none of the conditions (i) to (iii) is fulfilled then the assertion (25) can be true
or false:

Example 3.2. We consider (23) with m = 2 and

gi(r) = —r—1, my) = yE+vy3,
golz) = 2?—z—1, holy) = yZ+2y—1.

Then for T = 0 and 7 = (0,1) we have the gradients G = Vh;(y) = Vha(y) = (0,2) and
the solution function

yi(z) = yo(2) = 1 — |2

{ vV—zr—12%2 2<0,
—V3r—x2, 0<ux,

(cf. Figure 3.1). Here both components of y(z) are continuously differentiable for each
parameter x € (—1,1) \ {0}. For z = 0 we have

lim ¢ (z) = lim ¢ () = — lim v)(z) =1 # lim ¢,(z) = —1.
im Y (2) im yi(z) co, lim ya(x) #xlg)l Ys(x)

Despite of this nondifferentiability and unboundedness of Vy(z) at x = 0 the assertion
(25) from Theorem 3.1 is true (since ¢{(0) = g5(0) = —1).

Example 3.3. Let in (23) the relations m = 2 and

gi(z) = —2-20, hi(y) = yi+ys-(20+ (arctan 22)%)
92(y) = 2220, ho(z) = /yf +ys5 (20— 2(arctan 2)°
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Yi

-1 y1(z)
Figure 3.1: Solution functions for Example 3.2

hold. Then the functions g;(x) and h;(y), i = 1,2, are convex and continuously differen-
tiable in a neighborhood of # =0 and y = (0, 1). Because of

V()=

20y1 +y1 (arctan %)3+3y2(arctan %)2 20y2+y2(arctan %)373‘7;1 (arctan %)2 >
3

\/y12+y22 ’ \/y12—|—y22
_ Y143 _ Y1y2 _ Y1,y3 Y1,\2
Vi (y): 20y1 —2y1 (arctan y2) 6y (arctan yz) 20y2—2y2 (arctan vs +6y1 (arctan y2)
2 Vyityd ’ N ’

we have G = Vhi(y) = Vha(y) = (0,20), and the system (23) has the solution
yi(z) =sin ¥z, ya(z) =cosVz, VazelU@)
(cf. Figure 3.2). Hence, the unboundedness of the gradients Vy(x)

. ) 1

+0o0

together with G # 0 and m # 1 contradicts the assumptions of Theorem 3.1. In this case
the assertion (25) is false (since g{(T) = —1 # ¢4(T) = 2).

Now we can generalize the result of Theorem 3.1 to the multidimensional case (z € R”,
n > 1).

Corollary 3.4. Let the functions g;(z) : R* — R' and h;(y) : R™ — R, i = 1,2, be
conver and continuously differentiable in a neighborhood U(Z) C R* and U(y) C R™,
respectively. Let T C R™ be an open subset of U(T) such that T is an accumulation point
of T, and let a differentiable function y(z) ezist for which

gi(z) + hi(y(z)) =0, i=1,2, VzeT. (30)

Finally let at least one of the following conditions (i’) to (iii’) be fulfilled:
i) IM>0,6>0: |lt—7||<d = ||[Vylz)|| <MV zeT;
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Figure 3.2: Solution functions for Example 3.3

(i") Vhi(y) =0 and y(x) is continuous for each x € U(T);
(iii") m = 1.

Then the tmplication
G:=Vh(y)=Vh(y) =  Vq()=Ve(@) (31)
holds.

Proof. In the case (i’) we can use the relation (26) as in the proof of Theorem 3.1 for
each x € T. Then at least one finite accumulation point V' € R™" of the matrix Vy(x)
exists such that from formula (27) the assertion (31) follows.

In the case (iii’) the vector equation (29) leads us directly to the assertion.

For the remaining case (ii’) we need the existence of a (nondifferentiable but continuous)
function y(x) in the whole neighborhood U(Z). Only under this assumption we can use
the estimation (28) from the proof of Theorem 3.1 obtaining g;(z) = ¢;(T) V = € U(Z)
and hence Vg;(T) =0, 1 =1,2. O

Remark. In Corollary 3.4 the solution function y(z) is not supposed to be differentiable
at the accumulation point Z. Nevertheless the property (31) of the gradients can be
ensured even at such points if z(y) is differentiable at least in some open subset of the
neighborhood of 7. This result can be applied to the differentiable continuation of some
marginal functions at the boundary of stability sets (cf. [11]).

The statements of Section 3 for the system (23) cannot simply transfered to the general
convex equations (1) from Section 2 since the additive separability of the involved func-
tions is essential for the proofs of Theorem 3.1 and Corollary 3.4 in the cases G = 0 and
m > 1.
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