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We make some remarks concerning the p-semiconvex hulls of the quasiconformal sets, using a recent
significant observation of T. Iwaniec in the paper [7] on the important relation between the regularity of
quasiregular mappings in the theory of geometric functions and the notion of Morrey’s quasiconvexity in
the calculus of variations. We also point out several partial results on a conjecture in that paper.
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1. Introduction

The notion of quasiconvexity was first introduced by C. B. Morrey [11] in the study of
variational integrals of the form

I(u) =

∫

Ω

f(Du(x)) dx, (1)

where Ω ⊂ Rn is a bounded domain, u : Ω → Rm is a map with gradient matrix Du(x) =
(∂ui/∂xj), i = 1, · · · ,m, j = 1, · · · , n, and f : Mm×n → R is a given function defined on
the space Mm×n of all real m× n matrices. In the sense of Morrey, function f is said to
be quasiconvex on Mm×n if

∫

D

f(ξ +Dϕ(x))− f(ξ) dx ≥ 0

for all ξ ∈ Mm×n, bounded domains D ⊂ Rn, and smooth maps ϕ : Ω → Rm with
compact support in Ω. This condition is in general difficult to verify and hence there have
been many attempts in replacing it by other easier conditions; see, e.g., J. M. Ball [3] and
B. Dacorogna [5]. Recall that we say f is rank-one convex if for any given matrices ξ and
η with rank η = 1 the function g(t) = f(ξ + tη) is a convex function of t ∈ R, and f is
polyconvex if f(ξ) can be represented as a convex function of sub-determinants of ξ. It is
well-known that ([3, 5, 11]) for continuous functions on Mm×n one has

polyconvexity =⇒ quasiconvexity =⇒ rank-one convexity (2)

and the converse of each of these implications is known to be false for m ≥ 2, n ≥ 2
with the exception of that of the second implication when m = 2 and n ≥ 2; in fact,
whether any rank-one convex function on M2×2 must be quasiconvex remains one of the
most challenging open problems in the vectorial calculus of variations. We refer to Alibert
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and Dacorogna [1] and V. Šverák [15] for some counterexamples and refer to S. Müller’s
lecture notes [12] for some recent related developments.

To proceed, we let C∞
0 (Ω;Rm) be the family of all smooth maps with compact support

in Ω and let W 1,p(Ω;Rm), W 1,p
0 (Ω;Rm) be the usual Sobolev spaces of mappings from Ω

to Rm. We also define two matrix norms on Mm×n by

|ξ| = max
|h|=1

|ξh|, ‖ξ‖ = (ξ : ξ)1/2 = (tr(ξT ξ))1/2. (3)

In the following, we assume m = n ≥ 2. It is easy to see that | det ξ| ≤ n−n/2‖ξ‖n ≤ |ξ|n
for ξ ∈ Mn×n. For each K ≥ 1, using the norm |ξ|, we define the K-quasiconformal set
SK to be the closed cone

SK = {ξ ∈ Mn×n | |ξ|n ≤ K det ξ}. (4)

From Hadamard’s inequality [8], we easily have S1 = {λQ |λ ≥ 0, QTQ = I, detQ = 1},
where I = diag(1, · · · , 1) ∈ Mn×n is identity matrix; the set S1 is thus called the n-
dimensional conformal set. A map u ∈ W 1,p(Ω;Rn), p ≥ 1, is said to be (weakly if p < n)
K-quasiregular in Ω if

Du(x) ∈ SK a.e. x ∈ Ω, (5)

andK-quasiconformalmaps are thoseK-quasiregular maps inW 1,n(Ω;Rn) that are home-
omorphisms; see [6, 7, 9, 14].

One could also define K-quasiregular mappings by using the cone

CK = {ξ ∈ Mn×n | ‖ξ‖n ≤ nn/2K det ξ}. (6)

Note that SK 6= CK unless K = 1. However, as we shall see later, it is of great advantage
to use the set SK instead of CK .
In connection with the set SK defined above, we consider a function introduced by T.
Iwaniec in [7], using the norm | · |; namely,

hp(ξ) = |1− n

p
| |ξ|p − |ξ|p−n det ξ. (7)

Theorem 1.1 (Iwaniec [7]). hp is rank-one convex for all p ≥ n/2.

Based on this theorem and other properties of function hp, it has been conjectured in [7]
that hp(ξ) is quasiconvex. It is this conjecture that signifies the relations between the
notion of semiconvexity in the calculus of variations and the regularity of quasiregular
mappings in the theory of geometric functions, and the confirmation of this conjecture,
especially in two dimensional case (n = 2), can make important impact on some open
problems in both areas. For a recent discussion on this conjecture, see also an article by
K. Astala [2].

The purpose of the present paper is using the important observations of Iwaniec [7] to
make some remarks concerning several p-semiconvex hulls of the quasiconformal sets SK .
The p-semiconvex hulls of a set S are the certain generalization of the closed convex hull
of S depending on a power p ≥ 1, and we shall briefly review in Section 2 the definition
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of these p-semiconvex hulls and refer to [16, 19, 20, 21] for their applications in some
variational problems. The main remarks of this paper include a complete description of
the p-rank-one convex hulls of SK for all p ≥ 1 and some partial results concerning the
more important p-quasiconvex hulls of SK . In addition, we also make some remarks on
Iwaniec’s conjecture mentioned above.

2. Semiconvex hulls of quasiconformal sets

Given a closed subset S ofMm×n, for any power p ≥ 1, let C+
p (S) be the class of continuous

functions f on Mm×n satisfying

0 ≤ f(ξ) < c (|ξ|p + 1), f |S = 0, (8)

where c > 0 is a constant depending on f . Let f−1(0) be the zero set of f . The semiconvex
hulls of set S with power p are defined as follows; see, e.g., [16, 19, 20, 21] for their
applications in some variational problems.

Definition 2.1. p-quasiconvex hull :

Qp(S) = ∩{f−1(0) | f ∈ C+
p (S), quasiconvex}. (9)

p-rank-one convex hull :

Rp(S) = ∩{f−1(0) | f ∈ C+
p (S), rank-one convex}. (10)

p-polyconvex hull :

Pp(S) = ∩{f−1(0) | f ∈ C+
p (S), polyconvex}. (11)

With this definition, it is easily seen that the p-semiconvex hulls are closed sets and
decreasing with respect to the power p; furthermore,

S ⊆ Rp(S) ⊆ Qp(S) ⊆ Pp(S). (12)

This paper concerns the p-semiconvex hulls of the K-quasiconformal set SK defined in
the introduction. The following theorem summarizes some known results proved in [13,
17, 18, 20].

Theorem 2.2.
(a) If 1 ≤ p < nK

K+1
then Rp(SK) = Mn×n.

(b) There exists an ε > 0 such that Qp(SK) = SK for all p > n − ε. Moreover, if n is
even and K = 1 then Qp(S1) = S1 for p ≥ n/2.

(c) For p ≥ n, Pp(SK) = SK . Moreover, if n is odd then Pp(SK) = Mn×n for all
1 ≤ p < n; if n is even then Pp(SK) contains the set of all matrices with rank ≤ n

2
−1

for all 1 ≤ p < n.

The following result and Theorem 2.2(a) give a complete description of p-rank-one convex
hulls of SK for all p ≥ 1.

Proposition 2.3. For K ≥ 1 and p ≥ nK
K+1

, Rp(SK) = SK .
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Proof. Define
fK(ξ) = max{0, K−1|ξ|p − |ξ|p−n det ξ}. (13)

It is easy to see that fK ∈ C+
p (SK) and f−1

K (0) = SK . Note that, by Iwaniec’s theorem
above (Theorem 1.1), the function

K−1|ξ|p − |ξ|p−n det ξ = hp(ξ) + (K−1 − |1− n

p
|)|ξ|p

is rank-one convex if K−1 ≥ |1 − n
p
| or, equivalently, nK

K+1
≤ p ≤ nK

K−1
; for such values of

p, fK is also rank-one convex. By definition, we have Rp(SK) = SK for all p ≥ nK
K+1

.

From Theorem 2.2(c), we have the following result.

Proposition 2.4. Let n ≥ 3. Then the function hp is not polyconvex for n/2 ≤ p < n.
The conclusion also holds when n = 2 and 1 < p < 2.

Proof. Consider f(ξ) = |ξ|p − |ξ|p−n det ξ. We have f ∈ C+
p (S1) and f−1(0) = S1. For

n ≥ 3 and n/2 ≤ p < n, it also follows that

f(ξ) = hp(ξ) +
2p− n

p
|ξ|p. (14)

Since 2p − n ≥ 0, f would be polyconvex if hp were polyconvex. However, for n ≥ 3,
by Theorem 2.2(c), f cannot be polyconvex; this shows that hp is not polyconvex for
all n/2 ≤ p < n. When n = 2, since it is easy to see that every polyconvex function
with subquadratic growth at infinity on M2×2 must be convex, and since it is easy to see
hp(δ + tI) is not convex function in t > 0, where δ = diag(1, 0), we therefore also have
proved hp is not polyconvex for n = 2 and 1 < p < 2.

Remark. When n = 2 and p = 1 it turns out

h1(ξ) = |ξ| − |ξ|−1 det ξ = |ξ − (adj ξ)T |,

where adj ξ is the adjugate matrix given by ξ (adj ξ) = (adj ξ) ξ = (det ξ) I. Since, when
n = 2, adj ξ is linear in ξ and hence h1(ξ) is convex in this case.

Since the operator norm |ξ| is not differentiable and thus hp is not a smooth function, one
would expect to use the smooth norm ‖ξ‖ and hence the set CK instead of the set SK ;
however, this replacement would not work as we can easily prove the following result.

Proposition 2.5. The function

gp(ξ) = |1− n

p
| ‖ξ‖p − nn/2‖ξ‖p−n det ξ (15)

is not rank-one convex for all n/2 ≤ p < n.

Proof. Let ξ = n−1/2 diag(1, · · · , 1,−1), η = diag(0, · · · , 0, 1) and consider function
g(t) = gp(ξ + tη). A direct computation shows that g′′(0) = p − n < 0, and hence
g(t) is not convex in t and gp is not rank-one convex.
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3. Iwaniec’s conjectures

Note that the function hp defined by (7) is rank-one convex for all p ≥ n/2. The following
conjectures have been made by T. Iwaniec in [7].

Conjecture 3.1. For each p ≥ n/2, the function hp defined by (7) is quasiconvex; that
is, for all ξ ∈ Mn×n and ϕ ∈ C∞

0 (Ω;Rn), we have

∫

Ω

hp(ξ +Dϕ(x))− hp(ξ) dx ≥ 0. (16)

In particular, for ξ = 0, this suggests a much weaker conjecture.

Conjecture 3.2. For each p > n/2 and all ϕ ∈ W 1,p
0 (Ω;Rn), we have

∫

Ω

|Dϕ(x)|p−n detDϕ(x) dx ≤ |1− n

p
|
∫

Ω

|Dϕ(x)|p dx. (17)

There exist other explicit examples of rank-one convex functions which we don’t know
whether are quasiconvex; see for instance [1]. However, Iwaniec’s functions hp defined
above, especially when n = 2, relate directly to an important conjecture concerning the
norm of the so-called Beurling-Ahlfors transform.

Remark. Let n = 2. Consider point (x, y) ∈ R2 as a complex number z = x+iy ∈ C and
map ϕ(x, y) as a complex function ϕ(z) on z ∈ C. Let ∂z =

1
2
(∂x − i∂y), ∂z̄ =

1
2
(∂x + i∂y)

be the complex Cauchy-Riemann operators; then hp(Dϕ) can be expressed in terms of
ϕz = ∂zϕ, ϕz̄ = ∂z̄ϕ as

hp(Dϕ) = (1− |1− 2

p
|)
[

(p∗ − 1)|ϕz̄| − |ϕz|
]

(|ϕz̄|+ |ϕz|)p−1,

where p∗ − 1 = max{p− 1, (p− 1)−1}. The Beurling-Ahlfors transform is defined by

(Sf)(z) = − 1

2πi

∫

C

f(ζ) dζ ∧ dζ̄

(z − ζ)2
(18)

and has an important feature that S(fz̄) = fz. Using the Burkholder-type inequalities
[4], it has been shown in Iwaniec [7] that when n = 2 Conjecture 3.2 is equivalent to
a long-standing conjecture that the Lp-operator norm of the Beurling-Ahlfors transform
‖S‖p = p∗ − 1 for all 1 < p < ∞.

Consequently, in the case of dimension n = 2, the truth of Conjecture 3.1 would confirm
the norm conjecture of the Beurling-Ahlfors transform, while the failure of it would provide
a counterexample of a rank-one convex function onM2×2 which is not quasiconvex, settling
another long-standing open problem in the calculus of variations.

We would complete the computation of the quasiconvex hulls of the quasiconformal set
from Iwaniec’s conjectures.

Proposition 3.3. Conjecture 3.2 implies Qp(SK) = SK for all p > nK
K+1

; while Conjecture

3.1 implies Qp(SK) = SK for p = nK
K+1

.
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Proof. We only prove the first implication; the second one is easy. Let fK be defined by
(13). Since fK(ξ) ≥ hp(ξ) + (K−1 − |1− n

p
|)|ξ|p, we easily see that Conjecture 3.2 would

imply that fK is Lp-mean coercive for nK
K+1

< p < nK
K−1

in the sense that
∫

Ω

fK(Dϕ(x)) dx ≥ γ

∫

Ω

|Dϕ(x)|p dx (19)

holds for all ϕ ∈ W 1,p
0 (Ω;Rn), where γ > 0 is a constant; in this case, γ = K−1−|1−n

p
| > 0.

Therefore, by a theorem in Yan and Zhou [20], Qp(SK) will be constant for nK
K+1

< p <
nK
K−1

. In particular, by Theorem 2.2(b) above, we have Qp(SK) = SK for all p > nK
K+1

.

The following result could be derived from Conjecture 3.2 and a theorem in [20]; the
conclusion of this result in the case dimension n = 2 has been proved by K.Astala
regardless of Conjecture 3.2, using a different method of measurable Riemann mapping
theorem (see the references given in [2]).

Proposition 3.4. Conjecture 3.2 implies that any weakly K-quasiregular maps in
W 1,p(Ω;Rn) for some p > nK

K+1
must belong to W 1,q

loc (Ω;R
n) for all nK

K+1
< q < nK

K−1
.

In particular, if K = 1, this would imply that any weakly conformal mappings in
W 1,p(Ω;Rn) with some p > n/2 must be a restriction of a Möbius transform on Ω as
in a classical Liouville theorem [14]. If dimension n is even, this generalized Liouville
theorem has proved even true with p = n/2; see Iwaniec and Martin [9].

4. A special case and final remarks

In this final section, we make a few remarks concerning Conjecture 3.1. We will prove the
estimate (16) in Conjecture 3.1 for a special class of radially symmetric test functions;
the result is useful in both aspects: it makes the conjecture more convincing and, on the
other hand, it helps in excluding the possible counterexamples.

Let B be the unit open ball in Rn. A map u : B → Rn is said to be radial if there exists
a function U(r), 0 < r < 1, such that

u(x) = U(|x|)x a.e. x ∈ B. (20)

If U is smooth away from r = 0, then u is smooth on B \ {0} and an easy calculation
shows that

Du(x) = U(r)I + rU ′(r)ω ⊗ ω, r = |x|, ω = x/|x|. (21)

LetW (ξ) be any finite continuous rank-one convex function. We first assumeW is smooth.
Then it follows that (cf. [3])

W (ξ + a⊗ b) ≥ W (ξ) +
n

∑

i,j=1

∂W (ξ)

∂ξij
aibj (22)

for all ξ ∈ Mn×n and a, b ∈ Rn. Therefore, for any given ξ,

W (ξ +Du(x)) = W (ξ + U(r)I + rU ′(r)ω ⊗ ω)

≥ W (ξ + U(r)I) + rU ′(r)
n

∑

i,j=1

∂W

∂ξij
(ξ + U(r)I)ωiωj.
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Integrating this over Bρ \ Bε (0 < ε < ρ < 1) using spherical coordinates, we obtain (cf.
[18])

∫

Bρ\Bε

W (ξ +Du) ≥ |B| (ρnW (ξ + U(ρ)I)− εnW (ξ + U(ε)I)). (23)

A smoothing argument shows that this inequality holds for all finite continuous rank-one
convex functions W.

From the above inequality, we deduce the following result as a consequence of Theorem
1.1. Let hp be the function defined by (7) above.

Proposition 4.1. Let p ≥ n/2. Then, for all ξ ∈ Mn×n and radial maps ϕ ∈ W 1,p
0 (B;Rn),

we have
∫

B

hp(ξ +Dϕ(x))− hp(ξ) dx ≥ 0. (24)

Proof. We first assume that the radial map ϕ ∈ W 1,p
0 (B;Rn) has support in Bρ for some

ρ < 1. Let ϕ(x) = Φ(|x|)x. Since ϕ ∈ W 1,p(B;Rn) we have

∫ 1

0

|Φ(r)|prn−1 + |Φ′(r)|prp+n−1 dr < ∞. (25)

We claim that there exists a decreasing sequence {εj} such that εj → 0 and |Φ(εj)|pεnj → 0
as j → ∞. If this were not the case, we would have |Φ(r)|prn ≥ ν for some constant ν > 0
and all 0 < r < 1. This would imply |Φ(r)|prn−1 ≥ νr−1 and thus

∫ 2ε

ε

|Φ(r)|prn−1 dr ≥ ν ln 2 > 0 (26)

for all 0 < ε < 1
2
, which violates (25); the claim is proved. Using (23) with W = hp, ε = εj

and ρ → 1, we have

∫

B

hp(ξ +Dϕ(x))χj(x) dx ≥ |B| [hp(ξ)− εnj hp(ξ + Φ(εj)I)], (27)

where χj is the characteristic function of B \Bεj . Note that

εnj |hp(ξ + Φ(εj)I)| ≤ Cp ε
n
j (1 + |Φ(εj)|p) → 0 (28)

as j → ∞. Hence, by the Lebesgue dominated convergence theorem, we have

∫

B

hp(ξ +Dϕ(x)) dx ≥ |B|hp(ξ), (29)

as desired. For general radial maps ϕ, this can be proved by a density argument.

Remark. The equality in (29) can hold for many nontrivial maps ϕ at certain ξ, but for
all these ϕ, ξ +Dϕ(x) lies in the set where hp is smooth and moreover the first variation
of the integral vanishes at ξ+Dϕ. This supports the conjectures made above; see also [7].
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As a special case of the function hp defined above, we consider the case p = n − 1. Let
H(ξ) = |ξ|n−2 ξ − (adj ξ)T . Then, using Lemma 2.1 of [7], we see that

|H(ξ)| = |ξ|n−1 − |ξ|−1 det ξ = hn−1(ξ) +
n− 2

n− 1
|ξ|n−1, (30)

and hence the estimate (17) in Conjecture 3.2 is equivalent to

‖Dϕ‖n−1
Ln−1(B) ≤

n− 1

n− 2
‖H(Dϕ)‖L1(B) (31)

for all ϕ ∈ C∞
0 (B;Rn). Since div(adjDϕ)T = 0, we have

div |Dϕ|n−2Dϕ = divh, (32)

where h = H(Dϕ(x)); this system is not the usual n-Laplacian system since the norm
|Dϕ| is used. Note that (31) would be derived easily from the following conjecture.

Conjecture 4.2. Let n ≥ 3. For any weak solution ϕ ∈ W 1,n−1
0 (B;Rn) of system (32)

with any h ∈ L1(B;Mn×n), one has the estimate

∫

B

|Dϕ(x)|n−1 dx ≤ n− 1

n− 2

∫

B

|h(x)| dx. (33)

Finally, the following result has been proved in [7] in partial support of Conjecture 3.2.

Theorem 4.3. For each n ≥ 2 there exists a minimal power p0(n) ∈ [n
2
, n) such that for

all p > p0(n) one has a positive number λp(n) < 1 for which

∫

Ω

|Dϕ(x)|p−n detDϕ(x) dx ≤ λp(n)

∫

Ω

|Dϕ(x)|p dx

holds for all ϕ ∈ C∞
0 (Ω;Rn).

Notice that Conjecture 3.2 is equivalent to the assertion that p0(n) = n/2 and λp(n) =
|1− n

p
| in Theorem 4.3. The minimal power p0(n) is also related to the Lp-mean coercivity

of the conformal set S1 studied in [20] (see also [8]). It is easy to see that p0(n) is the
infimum of powers p such that for all q ≥ p and ϕ ∈ C∞

0 (B;Rn)

∫

B

g(Dϕ(x)) dx ≥ γg

∫

B

|Dϕ(x)|q dx, (34)

where g is any q-homogeneous nonnegative function vanishing exactly on S1, γg > 0 is a
constant, and |Dϕ| can be in any norm of Mn×n.

Remark. It has been proved that p0(n) = n/2 for even dimensions n; see [7, 9, 13]. For
odd dimensions n, we can relate this power p0(n) to an Lp-type estimate for q-harmonic
systems. Consider the function

Fl,δ(ξ) = δ | ∧l (ξ)|
q
l −

(

n
l

) n
2l

| ∧l (ξ)|
q−n
l det ξ, (35)
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where 1 ≤ l ≤ n is an integer and ∧l(ξ) is the l-th exterior power of ξ as a linear operator
on ∧l(Rn) defined by

∧l(ξ)(eI) = ∧l(ξ)(ei1 ∧ · · · ∧ eil) = ξi1 ∧ · · · ∧ ξil

and | ∧l (ξ)|2 =
∑

I | ∧l (ξ)(eI)|2, where I = {1 ≤ i1 < i2 < · · · < il ≤ n} is taken with all
increasing indices and ξi is the i-th row of matrix ξ.

From a conjecture made in [8] after Theorem 7.1 (which would follow from the estimate
of [8, Theorem 8.1] with all r > max{1

q
, 1

q′
}), we would obtain with l = [n

2
] being the

largest integer less than or equal to n
2
that

∫

B

Fl,δ(Dϕ(x)) dx ≥ 0, ∀ ϕ ∈ C∞
0 (B;Rn) (36)

for all q > n− [n
2
] and some |1− n

q
| ≤ δ < 1; hence a similar argument of [7, Section 11]

would show that p0(n) ≤ n− [n
2
]. However, it seems unclear whether the conjecture in [8]

mentioned above would imply p0(n) = n/2.
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