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For a class A of convex sets in (not necessarily finite-dimensional) real vector spaces, let Sep A denote
the class of all convex sets C such that the affine maps from C to elements of A separate points. If we
restrict our attention to finite-dimensional convex sets, there are only four possibilities for SepfA :=
SepA ∩ {C : C finite-dimensional convex set}. Similarly, restriction to absolutely convex sets yields only
three possibilities. In the general case, there are many possibilities for SepA, at least as many as cardinals.
In particular, there is no line-free convex set C such that for all linearly bounded convex sets D the affine
maps from D to C separate points.
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1. Introduction

In this paper we shall study questions of the following type: Which convex setsD have the
property that all affine maps from D to elements of a given class A of convex sets separate
points of D? For which classes A of convex sets does there exist a C ∈ A such that for
each D ∈ A the affine maps D → C separate points? It will turn out that a fairly easy
complete answer can be obtained if we restrict the question either to finite-dimensional
convex sets or to absolutely convex sets and zero-preserving affine maps. Categorically
speaking, we are interested in regular-epireflective subcategories and cogenerators.

Throughout this paper, by a convex set we mean a (possibly empty) convex subset of a (not
necessarily finite-dimensional) real vector space. For convex setsD ⊂ V, C ⊂ W (in vector
spaces V,W ), a map f : D → C is called affine if f(λx+(1−λ)y) = λf(x)+ (1−λ)f(y)
holds for all x, y ∈ D, λ ∈ [0, 1]. Obviously, f is affine if and only if there exist a c ∈ C
and a linear map l : D → C with f(x) = c + l(x) for all x ∈ C. The “only ifÔ part is
obvious. The “ifÔ part follows by direct construction if D generates V as a vector space;
otherwise we extend a linear map by Zorn’s lemma. Observe that the category of convex
sets (and affine maps) is the same as the category of pre-separated convex modules in the
sense of Pumplün and Röhrl [3], who describe the structure of a convex sets intrinsically
(without reference to a vector space containing them).
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If A is a class of convex sets, we denote by SepA the class of all convex sets D such that
the affine maps from D to elements of A separate points, i.e. for all x, y ∈ D with x 6= y
there exist a C ∈ A and an affine map f : D → C with f(x) 6= f(y). Equivalently, SepA
is the class of all convex sets which can by embedded affinely into a (cartesian) product
of elements of A. The product of convex sets can be formed in the canonical way as a
convex subset of the product of the containing vector spaces. We call A separation closed
if A = Sep A holds. For arbitrary A, we easily see Sep SepA = SepA and SepA is the
smallest separation closed class containing A.

Our main result 4.2 is an improvement of Theorem 2.4 of [1].

2. The finite-dimensional situation

At first we shall study finite-dimensional (f.d.) convex sets, i.e. convex sets in finite-
dimensional vector spaces. For a class A of finite-dimensional convex sets, let SepfA
denote the class of all f.d. convex sets C such that the affine maps from C to elements
of A separate points. We shall see that the finite-dimensional situation is much simpler
than the general case.

Proposition 2.1. There are only four classes, A with Sepf = A, namely

(i) the class of all convex sets with at most one point,

(ii) the class of all bounded f.d. convex sets,

(iii) the class of all line-free f.d. convex sets,

(iv) the class of all f.d. convex sets.

Proof. “⇐Ô We show SepfA = A in the cases (i)–(iv). The case (i) is trivial. Now
consider a C ⊂ Rn such that the affine maps from C to bounded f.d. convex sets separate
points. Since C is f.d. there exist finitely many maps from C to bounded f.d. convex sets
jointly separating points. Since the coordinate functions on a f.d. set separate points and
assume only values in an interval and since all finite-dimensional intervals can be affinely
embedded into [0, 1] ⊂ R, there exists an injective affine map from C to [0, 1]m for some
m ∈ N. Since [0, 1]m ⊂ Rm is bounded, C is affinely isomorphic to a bounded subset of
Rn; thus C is bounded, proving (ii).

Now assume that all affine maps from a convex set D ⊂ Rn to line-free convex sets
separate points. Then we have to show that D is line-free, i.e. D does not contain a line,
i.e. a convex subset affinely isomorphic to R. Assume the contrary. Then there exists an
injective affine map l : R → D; in particular we have l(0) 6= l(1). Since the maps from
D to line-free convex sets separate points, there exists an affine map f : D → C into a
line-free convex set C with f ◦ l(0) 6= f ◦ l(1). But each affine map with domain R is
either injective or constant. Since f ◦ l : R → C is not constant, it must be injective,
contradicting our hypothesis. This settles case (iii). Case (iv) is trivial.

“⇒Ô Now assume SepfA = A. Obviously, all convex sets with at most one point belong
to A. If there are no more sets in A, we are in case (i) and hence finished.

So assume that A contains at least one set C with two distinct points a, b. Then the
map [0, 1] → C, λ 7→ λa + (1 − λ)b is injective, and thus we have [0, 1] ∈ A. Since the
coordinate functions on a bounded convex set D ⊂ Rn separate points and are bounded,
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the maps D → [0, 1] separate points, and we obtain D ∈ A. Thus A contains all bounded
convex sets. If there are no more convex sets in A, we are in case (ii) and hence finished.

Now assume that A contains at least one unbounded set C ⊂ Rn. Then from Proposition
III, 2.2.3 (p. 109) of [3] we see that its closure C contains a ray, i.e. a subset which is
affinely isomorphic to R+ := {ξ ∈ R : ξ ≥ 0}. Thus there are a, b ∈ Rn with b 6= 0 and
a+ ξb ∈ C for all ξ ∈ R+. From Theorem III, 2.1.3 (p.103) of [2] or Theorem 1.1.12 (p.7)
of [4] we see that C has an inner point c. Now from Theorem III, 2.1.6 (p.104) of [2] we
see that 1

2
(a+ c)+ ξb = 1

2
c+ 1

2
(a+2ξb) ∈ C for all ξ ∈ R+. Thus ξ 7→ 1

2
(a+ c)+ ξb yields

an affine embedding from R+ to C. Hence we have R+ ∈ A, and we shall show that for
each line-free convex set D ⊂ Rn the affine maps D → R+ separate points.

By the same argument as above we see that D is also line-free. Thus without loss of
generality we may assume that D ⊂ Rn is closed. Then D is an intersection of half-spaces
(cf.[2], Theorem III, 4.1.1, p.121) or Theorem 1.3.4 (p.12) or Corollary 1.3.5 (p.13) of [4].

Now assume x, y ∈ D, x 6= y. Since D is line-free by hypothesis, D does not contain the
line L connecting x and y. Thus there is a z ∈ L with z /∈ D. Since D is an intersection
of half spaces, there exists a linear map f : D → R and an α ∈ R with f(u) ≥ α for
all u ∈ C and f(z) < α. In particular, we have f(x) ≥ α > f(z) because x ∈ D, and
since x, z ∈ L we see that f is not constant on L. But then f must be injective on L;
in particular we get f(x) 6= f(y). Therefore the affine map = D → R+, u 7→ f(a) − α
separates x and y. This shows that the affine maps from D to R+ separate points, proving
D ∈ A. Thus we have shown that A contains all line-free f.d. convex sets. If D contains
no more sets, we are in case (iii) and therefore finished.

Finally, assume that A contains at least one convex set C which is not line-free. Then
there exists an injective affine map from R to C, and we conclude R ∈ A. Since the
coordinate maps Rn → R separate points, we obtain Rn ∈ A for all n ∈ N, and thus all
convex subsets of Rn are also in A. Thus we are in case (iv) and hence finished.

For an arbitrary class A of f.d. convex sets, SepfA is the smallest class containing A and
closed under the operator Sepf. For a single f.d. convex set C, Sepf{C} is the class of all
f.d. convex sets D such that the affine maps from D to C separate points. So from 3.1
we immediately obtain the following

Corollary 2.2. For a f.d. convex set C,
Sepf{C} is:

(i) the class of all f.d. convex sets D with at most one point if C has at most one point,

(ii) the class of all bounded f.d. convex sets if C is bounded but contains at least two
points,

(iii) the class of all line-free f.d. convex sets if C is unbounded but line-free,

(iv) the class of all f.d. convex sets if C contains a line.

3. Absolutely Convex Sets

The aim of this section is to study the situation for absolutely convex sets, i.e. convex
sets C with 0 ∈ C and −x ∈ C for all x ∈ C. The results of this section are also valid for
absolutely convex sets over the field C of complex numbers, i.e. convex sets C with 0 ∈ C
and αx ∈ C for all x ∈ C, α ∈ C with |α| ≤ 1. For real (or complex) vector spaces V,W
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and absolutely convex sets D ⊂ V, C ⊂ W we call a map f : D → C absolutely affine if it
is a restriction of a linear map from V to W . A map between real absolutely convex sets is
absolutely affine if and only if it is affine and preserves the zero; in the complex situation,
f : D → C is absolutely affine if and only if f is absolutely affine as a map between real
absolutely convex sets and if moreover f(ix) = if(x) holds for all x ∈ D. For a class A of
absolutely convex sets, we denote by SepaA the class of all absolutely convex sets D such
that the absolutely affine maps from D to elements of A separate points. But observe
that point separation by affine maps is sufficient for D ∈ SepaA. Indeed, if f : D → C
is affine with f(a) 6= f(b) for some a, b ∈ D, then the mapD → C, x 7→ 1

2
f(x) − 1

2
f(0)

is absolutely affine over R and separates a and b. In the complex case, separation by
absolutely convex spaces suffices because 3.1 below holds over both R and C.

We need an infinite-dimensional analogue of boundedness. An arbitrary subset C of a real
vector space is called linearly bounded if its intersection with each line is bounded (as a
subset of the line). Since all convex subsets of R are intervals, a convex sets C is linearly
bounded if and only if C contains no ray, i.e. no subset, which is affinely isomorphic to R+.
This is equivalent to saying that each affine map from R+ to C is constant or – equivalently
– that for all vectors a, b with a+ξb ∈ C for all ξ ∈ R+ it follows that b = 0. An absolutely
convex set is already linearly bounded if it does not contain a vector subspace 6= 0. Indeed,
if a+ ξb ∈ C for all ξ ∈ R+, then (ξ− η)b = 1

2
(a+2ξb)− 1

2
(a+2ηb) ∈ C for all ξ, η ∈ R+,

hence Rb ⊂ C and even Cb ⊂ C in the complex case.

Proposition 3.1. There exist only three classes A of absolutely convex sets with SepaA =
A, namely:

(i) the class of all one-point absolutely convex sets,

(ii) the class of all linearly bounded absolutely convex sets,

(iii) the class of all absolutely convex sets.

Proof. “⇒Ô In case (i), SepaA = A is obvious. In case (ii), SepaA = A is clear because
for every C ∈ SepA the absolutely affine maps from C to linearly bounded maps from
C to linearly bounded affine maps separate points; hence C cannot contain an absolutely
affine copy of R (or C) and is therefore linearly bounded. In case (iii) SepaA = A is
trivial.

“⇐Ô Assume SepaA = A. If we are not in case (i), there are C ∈ A and a ∈ C with
a 6= 0. Then for B := {ξ :| ξ |≤ 1} (in R or C), the map B → C, ξ 7→ ξa is absolutely
affine and injective; thus we have B ∈ A. We show that A contains all linearly bounded
absolutely convex sets. So let D ⊂ V be absolutely convex in a (real or complex) vector
space V . Without loss of generality we can assume that D generates V as a vector space;
otherwise replace V by the linear span of D. Now on V the Minkowski functional ‖ · ‖D is
a norm, where ‖x‖D := inf{ξ ∈ R+ : x ∈ ξD}. By the Hahn-Banach theorem, the linear
maps of norm ≤ 1 from V to R (or C) separate points, and they map D into B. Thus
the absolutely affine maps from D to B separate points, and since B ∈ A we conclude
D ∈ SepaA = A. Therefore A contains all linearly bounded spaces.

So, if we are neither in case (i) nor in case (ii), A must contain at least one space C which
is not linearly bounded. Thus C contains a non-trivial vector subspace and hence an affine
copy of R (or C), proving R ∈ A (C ∈ A resp.) Since the maps from a vector space to
the base field separate points, A contains all vector spaces. Since every absolutely convex
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set can be embedded in a vector space, A contains all absolutely convex sets. Therefore
we are in case (iii).

By the same argument as in section 2 we obtain the following

Corollary 3.2. For an absolutely convex set C, Sepa{C} is

(i) the class of all sets isomorphic to 0 if C = 0;

(ii) the class of all linearly bounded absolutely convex sets, if C 6= 0 is linearly bounded;

(iii) the class of all absolutely convex sets if C is not linearly bounded.

4. The General Case

From 3.2 we easily obtain a characterization of those convex sets for which the bounded
affine functionals separate points. For each convex set C in a vector space, the pointwise
difference C − C := {x − y : x, y ∈ C} is symmetric about the orign, and if C 6= ∅ we
have 0 ∈ C, and C−C is therefore absolutely convex (over R). The following proposition
is a special case of proposition 2.3 from [1], but here we shall give a proof that avoids the
abstract machinery used there.

Proposition 4.1. A convex set C belongs to Sep{[−1, 1]} (i.e. the bounded linear real-
valued affine maps separate points) if and only if C − C is linearly bounded.

Proof. “⇒Ô Assume that C − C contains a ray. Then there are sequences (an)n∈N and
(bn)n∈N in C such that a1 6= b1 and an − bn = n(a1 − b1) for all n ∈ N. If C ∈ Sep{[0, 1]}
then there even exists a linear map f from the vector space containing C to R such that
f(a1) 6= f(b1) and f(C) ⊂ [−1, 1]. But then for all n ∈ N we obtain

nf(a1 − b1) = f(an − bn) = f(an)− f(bn) ∈ [−2, 2]

because f(an), f(bn) ∈ f(C) ⊂ [−1, 1]. But this yields f(a1)− f(b1) = f(a1 − b1) = 0, i.e.
f(a1) = f(b1), contradicting our hypothesis.

“⇐Ô For C = ∅ the statement is trivial. Otherwise, fix some c ∈ C. Then the map
C → C − C, x 7→ x− c is affine and injective. From 3.2 we get C − C ∈ Sep {[0, 1] and
hence C ∈ Sep{[0, 1]}.

A nicer condition than linear boundedness of C − C would be linear boundedness of C
itself, but we shall see soon that this condition is strictly weaker than linear boundedness,
of C −C. Since the class of linearly bounded convex sets is clearly separation-closed, one
might hope to find at least a single (linearly bounded) convex set C such that Sep{C}
is the class of all linearly bounded convex sets. We shall see below that this is not the
case. There is not even a set C of convex sets such that Sep C is the class of all linearly
bounded sets. Indeed, without loss of generality we could assume ∅ /∈ C, and for then the
(cartesian) product C of all elements of C we should get Sep C = Sep{C}.
This explains why we have to use cardinality arguments, because for every cardinality
κ there is a set C of convex sets such that each convex set of cardinality < κ is affinely
isomorphic to an element of C.
Similarly, the set of all line-free convex sets (i.e. convex sets containing no affine copy of
R) is the largest separation-closed class which is different from the class of all convex sets.
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Indeed, it is clearly separation closed, but for each C that contains a line, Sep{C} = SepR
is the class of all convex sets, because linear functionals on a vector space separate points.
Now 2.1 might suggest that it is equal to Sep{R+}. We shall see as well that it is not even
of the form Sep{C} for a single convex set C (or even Sep C for a set C of convex sets).
Moreover, there is no class between linearly bounded and line-free convex sets, which is
of the form Sep{C}, i.e. there is no C such that Sep{C} contains all linearly bounded
convex sets but not all convex sets. The following results generalizes Theorem 2.4. of [1].

Theorem 4.2. There exists no line-free convex set C such that for each linearly bounded
convex set D the affine maps from D to C separate points.

Proof. Assume that C is such a convex set, let I be an uncountable set of cardinality
#I > #C, and let V be a vector space with a basis consisting of #I many vectors
ei, i ∈ I and one more vector d. Then each vector in V has a unique representation
∑

i∈I αiei + βd as a formally infinite real linear combinations of basis vectors, i.e. αi ∈ R
for all i ∈ I, #{i ∈ I : αi 6= 0} < ℵ0, β ∈ R.

Now let D ⊂ V be the set of vectors for which the above representation satisfies the
following conditions:

(i) αi ≥ 0 for all i ∈ I,

(ii)
∑

i∈I
αi ≤ 1,

(iii) |β| ≤ #{i ∈ I : αi > 0}+ 1.

Then D is a convex set, because for
∑

i∈I
αi = ei + βd,

∑

i∈I
γei + δd ∈ D, λ =∈]0, 1[ we have

|λβ + (1− λ)δ| ≤ max(|β|, |δ|) ≤ max{#{i ∈ I : αi > 0},#{i ∈ I : γi > 0}+ 1

≤ #({i ∈ I : αi > 0} ∪ {i ∈ I : γi > 0}) + 1 = #{i ∈ I : λαi + (1− λ)γi > 0}+ 1.

We claim that D is linearly bounded. Indeed, assume

∑

i∈I

(αi + λγi)ei + (β + λδ)d =
∑

i∈I

αie+ βd+ λ(
∑

i∈I

γiei + δd) ∈ D

for all λ ∈ R+. For each i ∈ I, conditions (i) and (ii) give

0 ≤ αi + λγi ≤ 1 for all λ ∈ R+, hence γi = 0.

Now from condition (iii) we obtain

|β + λδ| ≤ #{i ∈ I : αi + λγi > 0}+ 1 = #{i ∈ I : αi > 0}+ 1

for all λ ∈ R+, hence δ = 0 and therefore
∑

i∈I
γiei + δd = 0, proving that D is linearly

bounded.

Obviously, we have 0, d ∈ D, and we shall show f(0) = f(d) for every affine map f : D →
C. Since #I > #C > ℵ0, there must be infinitely (even uncountably) many i ∈ I for
which f(ei) is the same element of C; otherwise we should get #I ≤ ℵ0 ·#C = #C. Thus
there are a u ∈ C and a sequence (in)n∈N in I such that in 6= im for n 6= m and f(ein) = u
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for all n ∈ N. Since f is affine, there is a linear map l from V to a vector space containing
C with f(x) = f(0) + l(x) for all x ∈ D, in particular l(ein) = u− f(0) for all n ∈ N. For

each λ ∈ R there is an m ∈ N with |λ| ≤ m+ 1 and hence 1
m

m
∑

n=1
ein + λd ∈ D. Since

f(
1

m

m
∑

n=1

ein + λd) = f(0) +
1

m

m
∑

n=1

l(ein) + λl(d)

= f(0) +
1

m

m
∑

n=1

(u− f(0)) + λl(d)

= f(0) + u− f(0) + λl(d) = u+ λl(d),

we obtain
u+ λl(d) ∈ f(D) ⊂ C for all λ ∈ R.

But C is line-free by hypothesis, thus we must have l(d) = 0 and therefore f(d) = f(0),
i.e. no linear map from D to C separates 0 and d.

If we have #I ≥ 2ℵ0 , then in the proof of 4.2 we obtain #D = #I. So for an arbitrary
cardinal κ ≥ 2ℵ0 and for Cκ the class of all convex sets or cardinality < κ, we see that
D /∈ SepAκ, but D ∈ Aκ′ ⊂ SepAκ′ for each cardinal κ′ > κ. Thus the separation-
closed class SepAκ and SepAκ′ are different whenever κ 6= κ′, κ, κ′ ≥ 2ℵ0 . So in general
there are many more separation closed classes than in the finite-dimensional or absolutely
convex situation.
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