When Can Points in Convex Sets be Separated by Affine Maps?

Reinhard Börger

Fachbereich Mathematik, FernUniversität - Gesamthochschule in Hagen, 58084 Hagen, Germany reinhard.boerger@fernuni-hagen.de

Holger P. Petersson in Anerkennung und Dankbarkeit zum 60. Geburtstag gewidmet

Received December 8, 1999

For a class \mathcal{A} of convex sets in (not necessarily finite-dimensional) real vector spaces, let Sep \mathcal{A} denote the class of all convex sets C such that the affine maps from C to elements of \mathcal{A} separate points. If we restrict our attention to finite-dimensional convex sets, there are only four possibilities for $\operatorname{Sep}_{f}\mathcal{A} :=$ $\operatorname{Sep}\mathcal{A} \cap \{\mathcal{C} : \mathcal{C} \text{ finite-dimensional convex set}\}$. Similarly, restriction to absolutely convex sets yields only three possibilities. In the general case, there are many possibilities for $\operatorname{Sep}\mathcal{A}$, at least as many as cardinals. In particular, there is no line-free convex set C such that for all linearly bounded convex sets D the affine maps from D to C separate points.

 $Keywords\colon$ (absolutely) convex set, (absolutely) affine map, linearly bounded convex set, line-free convex set

1991 Mathematics Subject Classification: 52A01, 52A05, 04A40, 18A99

1. Introduction

In this paper we shall study questions of the following type: Which convex sets D have the property that all affine maps from D to elements of a given class \mathcal{A} of convex sets separate points of D? For which classes \mathcal{A} of convex sets does there exist a $C \in \mathcal{A}$ such that for each $D \in \mathcal{A}$ the affine maps $D \to C$ separate points? It will turn out that a fairly easy complete answer can be obtained if we restrict the question either to finite-dimensional convex sets or to absolutely convex sets and zero-preserving affine maps. Categorically speaking, we are interested in regular-epireflective subcategories and cogenerators.

Throughout this paper, by a *convex set* we mean a (possibly empty) convex subset of a (not necessarily finite-dimensional) real vector space. For convex sets $D \subset V$, $C \subset W$ (in vector spaces V, W), a map $f: D \to C$ is called *affine* if $f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y)$ holds for all $x, y \in D$, $\lambda \in [0, 1]$. Obviously, f is affine if and only if there exist a $c \in C$ and a linear map $l: D \to C$ with f(x) = c + l(x) for all $x \in C$. The "only if" part is obvious. The "if" part follows by direct construction if D generates V as a vector space; otherwise we extend a linear map by Zorn's lemma. Observe that the category of convex sets (and affine maps) is the same as the category of *pre-separated convex modules* in the sense of Pumplün and Röhrl [3], who describe the structure of a convex sets intrinsically (without reference to a vector space containing them).

ISSN 0944-6532 / 2.50 \odot Heldermann Verlag

If \mathcal{A} is a class of convex sets, we denote by Sep \mathcal{A} the class of all convex sets D such that the affine maps from D to elements of \mathcal{A} separate points, i.e. for all $x, y \in D$ with $x \neq y$ there exist a $C \in \mathcal{A}$ and an affine map $f: D \to C$ with $f(x) \neq f(y)$. Equivalently, Sep \mathcal{A} is the class of all convex sets which can by embedded affinely into a (cartesian) product of elements of \mathcal{A} . The product of convex sets can be formed in the canonical way as a convex subset of the product of the containing vector spaces. We call \mathcal{A} separation closed if $\mathcal{A} =$ Sep \mathcal{A} holds. For arbitrary \mathcal{A} , we easily see Sep Sep $\mathcal{A} =$ Sep \mathcal{A} and Sep \mathcal{A} is the smallest separation closed class containing \mathcal{A} .

Our main result 4.2 is an improvement of Theorem 2.4 of [1].

2. The finite-dimensional situation

At first we shall study *finite-dimensional* (f.d.) convex sets, i.e. convex sets in finitedimensional vector spaces. For a class \mathcal{A} of finite-dimensional convex sets, let $\operatorname{Sep}_{\mathrm{f}}\mathcal{A}$ denote the class of all f.d. convex sets C such that the affine maps from C to elements of \mathcal{A} separate points. We shall see that the finite-dimensional situation is much simpler than the general case.

Proposition 2.1. There are only four classes, \mathcal{A} with $\text{Sep}_{f} = \mathcal{A}$, namely

- (i) the class of all convex sets with at most one point,
- (ii) the class of all bounded f.d. convex sets,
- (iii) the class of all line-free f.d. convex sets,
- (iv) the class of all f.d. convex sets.

Proof. " \Leftarrow " We show $\operatorname{Sep}_{f} \mathcal{A} = \mathcal{A}$ in the cases (i)–(iv). The case (i) is trivial. Now consider a $C \subset \mathbb{R}^{n}$ such that the affine maps from C to bounded f.d. convex sets separate points. Since C is f.d. there exist finitely many maps from C to bounded f.d. convex sets jointly separating points. Since the coordinate functions on a f.d. set separate points and assume only values in an interval and since all finite-dimensional intervals can be affinely embedded into $[0,1] \subset \mathbb{R}$, there exists an injective affine map from C to $[0,1]^m$ for some $m \in \mathbb{N}$. Since $[0,1]^m \subset \mathbb{R}^m$ is bounded, C is affinely isomorphic to a bounded subset of \mathbb{R}^n ; thus C is bounded, proving (ii).

Now assume that all affine maps from a convex set $D \subset \mathbb{R}^n$ to line-free convex sets separate points. Then we have to show that D is line-free, i.e. D does not contain a line, i.e. a convex subset affinely isomorphic to \mathbb{R} . Assume the contrary. Then there exists an injective affine map $l : \mathbb{R} \to D$; in particular we have $l(0) \neq l(1)$. Since the maps from D to line-free convex sets separate points, there exists an affine map $f : D \to C$ into a line-free convex set C with $f \circ l(0) \neq f \circ l(1)$. But each affine map with domain \mathbb{R} is either injective or constant. Since $f \circ l : \mathbb{R} \to C$ is not constant, it must be injective, contradicting our hypothesis. This settles case (iii). Case (iv) is trivial.

" \Rightarrow " Now assume $\operatorname{Sep}_{f}\mathcal{A} = \mathcal{A}$. Obviously, all convex sets with at most one point belong to \mathcal{A} . If there are no more sets in \mathcal{A} , we are in case (i) and hence finished.

So assume that \mathcal{A} contains at least one set C with two distinct points a, b. Then the map $[0,1] \to C$, $\lambda \mapsto \lambda a + (1-\lambda)b$ is injective, and thus we have $[0,1] \in \mathcal{A}$. Since the coordinate functions on a bounded convex set $D \subset \mathbb{R}^n$ separate points and are bounded,

the maps $D \to [0, 1]$ separate points, and we obtain $D \in \mathcal{A}$. Thus \mathcal{A} contains all bounded convex sets. If there are no more convex sets in \mathcal{A} , we are in case (ii) and hence finished.

Now assume that \mathcal{A} contains at least one unbounded set $C \subset \mathbb{R}^n$. Then from Proposition III, 2.2.3 (p. 109) of [3] we see that its closure \overline{C} contains a ray, i.e. a subset which is affinely isomorphic to $\mathbb{R}^+ := \{\xi \in \mathbb{R} : \xi \geq 0\}$. Thus there are $a, b \in \mathbb{R}^n$ with $b \neq 0$ and $a + \xi b \in \overline{C}$ for all $\xi \in \mathbb{R}^+$. From Theorem III, 2.1.3 (p.103) of [2] or Theorem 1.1.12 (p.7) of [4] we see that \overline{C} has an inner point c. Now from Theorem III, 2.1.6 (p.104) of [2] we see that $\frac{1}{2}(a+c) + \xi b = \frac{1}{2}c + \frac{1}{2}(a+2\xi b) \in C$ for all $\xi \in \mathbb{R}^+$. Thus $\xi \mapsto \frac{1}{2}(a+c) + \xi b$ yields an affine embedding from \mathbb{R}^+ to C. Hence we have $\mathbb{R}^+ \in \mathcal{A}$, and we shall show that for each line-free convex set $D \subset \mathbb{R}^n$ the affine maps $D \to \mathbb{R}^+$ separate points.

By the same argument as above we see that \overline{D} is also line-free. Thus without loss of generality we may assume that $D \subset \mathbb{R}^n$ is closed. Then D is an intersection of half-spaces (cf.[2], Theorem III, 4.1.1, p.121) or Theorem 1.3.4 (p.12) or Corollary 1.3.5 (p.13) of [4].

Now assume $x, y \in D$, $x \neq y$. Since D is line-free by hypothesis, D does not contain the line L connecting x and y. Thus there is a $z \in L$ with $z \notin D$. Since D is an intersection of half spaces, there exists a linear map $f : D \to \mathbb{R}$ and an $\alpha \in \mathbb{R}$ with $f(u) \geq \alpha$ for all $u \in C$ and $f(z) < \alpha$. In particular, we have $f(x) \geq \alpha > f(z)$ because $x \in D$, and since $x, z \in L$ we see that f is not constant on L. But then f must be injective on L; in particular we get $f(x) \neq f(y)$. Therefore the affine map $= D \to \mathbb{R}^+$, $u \mapsto f(a) - \alpha$ separates x and y. This shows that the affine maps from D to \mathbb{R}^+ separate points, proving $D \in \mathcal{A}$. Thus we have shown that \mathcal{A} contains all line-free f.d. convex sets. If D contains no more sets, we are in case (iii) and therefore finished.

Finally, assume that \mathcal{A} contains at least one convex set C which is not line-free. Then there exists an injective affine map from \mathbb{R} to C, and we conclude $\mathbb{R} \in \mathcal{A}$. Since the coordinate maps $\mathbb{R}^n \to \mathbb{R}$ separate points, we obtain $\mathbb{R}^n \in \mathcal{A}$ for all $n \in \mathbb{N}$, and thus all convex subsets of \mathbb{R}^n are also in \mathcal{A} . Thus we are in case (iv) and hence finished. \Box

For an arbitrary class \mathcal{A} of f.d. convex sets, $\operatorname{Sep}_{f}\mathcal{A}$ is the smallest class containing \mathcal{A} and closed under the operator Sep_{f} . For a single f.d. convex set C, $\operatorname{Sep}_{f}\{C\}$ is the class of all f.d. convex sets D such that the affine maps from D to C separate points. So from 3.1 we immediately obtain the following

Corollary 2.2. For a f.d. convex set C, $Sep_{f}\{C\}$ is:

- (i) the class of all f.d. convex sets D with at most one point if C has at most one point,
- (ii) the class of all bounded f.d. convex sets if C is bounded but contains at least two points,
- (iii) the class of all line-free f.d. convex sets if C is unbounded but line-free,
- (iv) the class of all f.d. convex sets if C contains a line.

3. Absolutely Convex Sets

The aim of this section is to study the situation for *absolutely convex sets*, i.e. convex sets C with $0 \in C$ and $-x \in C$ for all $x \in C$. The results of this section are also valid for absolutely convex sets over the field \mathbb{C} of complex numbers, i.e. convex sets C with $0 \in C$ and $\alpha x \in C$ for all $x \in C$, $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1$. For real (or complex) vector spaces V, W and absolutely convex sets $D \subset V$, $C \subset W$ we call a map $f: D \to C$ absolutely affine if it is a restriction of a linear map from V to W. A map between real absolutely convex sets is absolutely affine if and only if it is affine and preserves the zero; in the complex situation, $f: D \to C$ is absolutely affine if and only if f is absolutely affine as a map between real absolutely convex sets and if moreover f(ix) = if(x) holds for all $x \in D$. For a class \mathcal{A} of absolutely convex sets, we denote by $\operatorname{Sep}_a \mathcal{A}$ the class of all absolutely convex sets D such that the absolutely affine maps from D to elements of \mathcal{A} separate points. But observe that point separation by affine maps is sufficient for $D \in \operatorname{Sep}_a \mathcal{A}$. Indeed, if $f: D \to C$ is affine with $f(a) \neq f(b)$ for some $a, b \in D$, then the map $D \to C$, $x \mapsto \frac{1}{2}f(x) - \frac{1}{2}f(0)$ is absolutely affine over \mathbb{R} and separates a and b. In the complex case, separation by absolutely convex spaces suffices because 3.1 below holds over both \mathbb{R} and \mathbb{C} .

We need an infinite-dimensional analogue of boundedness. An arbitrary subset C of a real vector space is called linearly bounded if its intersection with each line is bounded (as a subset of the line). Since all convex subsets of \mathbb{R} are intervals, a convex sets C is *linearly bounded* if and only if C contains no ray, i.e. no subset, which is affinely isomorphic to \mathbb{R}^+ . This is equivalent to saying that each affine map from \mathbb{R}^+ to C is constant or – equivalently – that for all vectors a, b with $a + \xi b \in C$ for all $\xi \in \mathbb{R}^+$ it follows that b = 0. An absolutely convex set is already linearly bounded if it does not contain a vector subspace $\neq 0$. Indeed, if $a + \xi b \in C$ for all $\xi \in \mathbb{R}^+$, then $(\xi - \eta)b = \frac{1}{2}(a + 2\xi b) - \frac{1}{2}(a + 2\eta b) \in C$ for all $\xi, \eta \in \mathbb{R}^+$, hence $\mathbb{R}b \subset C$ and even $\mathbb{C}b \subset C$ in the complex case.

Proposition 3.1. There exist only three classes \mathcal{A} of absolutely convex sets with $\operatorname{Sep}_{a} \mathcal{A} = \mathcal{A}$, namely:

- (i) the class of all one-point absolutely convex sets,
- (ii) the class of all linearly bounded absolutely convex sets,
- (iii) the class of all absolutely convex sets.

Proof. " \Rightarrow " In case (i), $\operatorname{Sep}_{\mathrm{a}} \mathcal{A} = \mathcal{A}$ is obvious. In case (ii), $\operatorname{Sep}_{\mathrm{a}} \mathcal{A} = \mathcal{A}$ is clear because for every $C \in \operatorname{Sep} \mathcal{A}$ the absolutely affine maps from C to linearly bounded maps from C to linearly bounded affine maps separate points; hence C cannot contain an absolutely affine copy of \mathbb{R} (or \mathbb{C}) and is therefore linearly bounded. In case (iii) $\operatorname{Sep}_{\mathrm{a}} \mathcal{A} = \mathcal{A}$ is trivial.

" \Leftarrow " Assume Sep_a $\mathcal{A} = \mathcal{A}$. If we are not in case (i), there are $C \in \mathcal{A}$ and $a \in C$ with $a \neq 0$. Then for $B := \{\xi : | \xi | \leq 1\}$ (in \mathbb{R} or \mathbb{C}), the map $B \to C$, $\xi \mapsto \xi a$ is absolutely affine and injective; thus we have $B \in \mathcal{A}$. We show that \mathcal{A} contains all linearly bounded absolutely convex sets. So let $D \subset V$ be absolutely convex in a (real or complex) vector space V. Without loss of generality we can assume that D generates V as a vector space; otherwise replace V by the linear span of D. Now on V the Minkowski functional $\|\cdot\|_D$ is a norm, where $\|x\|_D := \inf\{\xi \in \mathbb{R}^+ : x \in \xi D\}$. By the Hahn-Banach theorem, the linear maps of norm ≤ 1 from V to \mathbb{R} (or \mathbb{C}) separate points, and they map D into B. Thus the absolutely affine maps from D to B separate points, and since $B \in \mathcal{A}$ we conclude $D \in \operatorname{Sep}_a \mathcal{A} = \mathcal{A}$. Therefore \mathcal{A} contains all linearly bounded spaces.

So, if we are neither in case (i) nor in case (ii), \mathcal{A} must contain at least one space C which is not linearly bounded. Thus C contains a non-trivial vector subspace and hence an affine copy of \mathbb{R} (or \mathbb{C}), proving $\mathbb{R} \in \mathcal{A}$ ($\mathbb{C} \in \mathcal{A}$ resp.) Since the maps from a vector space to the base field separate points, \mathcal{A} contains all vector spaces. Since every absolutely convex set can be embedded in a vector space, \mathcal{A} contains all absolutely convex sets. Therefore we are in case (iii).

By the same argument as in section 2 we obtain the following

Corollary 3.2. For an absolutely convex set C, Sep_a $\{C\}$ is

- (i) the class of all sets isomorphic to 0 if C = 0;
- (ii) the class of all linearly bounded absolutely convex sets, if $C \neq 0$ is linearly bounded;
- (iii) the class of all absolutely convex sets if C is not linearly bounded.

4. The General Case

From 3.2 we easily obtain a characterization of those convex sets for which the bounded affine functionals separate points. For each convex set C in a vector space, the pointwise difference $C - C := \{x - y : x, y \in C\}$ is symmetric about the orign, and if $C \neq \emptyset$ we have $0 \in C$, and C - C is therefore absolutely convex (over \mathbb{R}). The following proposition is a special case of proposition 2.3 from [1], but here we shall give a proof that avoids the abstract machinery used there.

Proposition 4.1. A convex set C belongs to $Sep\{[-1,1]\}$ (i.e. the bounded linear realvalued affine maps separate points) if and only if C - C is linearly bounded.

Proof. " \Rightarrow " Assume that C - C contains a ray. Then there are sequences $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ in C such that $a_1 \neq b_1$ and $a_n - b_n = n(a_1 - b_1)$ for all $n \in \mathbb{N}$. If $C \in \text{Sep}\{[0, 1]\}$ then there even exists a linear map f from the vector space containing C to \mathbb{R} such that $f(a_1) \neq f(b_1)$ and $f(C) \subset [-1, 1]$. But then for all $n \in \mathbb{N}$ we obtain

$$nf(a_1 - b_1) = f(a_n - b_n) = f(a_n) - f(b_n) \in [-2, 2]$$

because $f(a_n), f(b_n) \in f(C) \subset [-1, 1]$. But this yields $f(a_1) - f(b_1) = f(a_1 - b_1) = 0$, i.e. $f(a_1) = f(b_1)$, contradicting our hypothesis.

" \Leftarrow " For $C = \emptyset$ the statement is trivial. Otherwise, fix some $c \in C$. Then the map $C \to C - C$, $x \mapsto x - c$ is affine and injective. From 3.2 we get $C - C \in \text{Sep} \{[0, 1] \text{ and hence } C \in \text{Sep} \{[0, 1]\}.$

A nicer condition than linear boundedness of C - C would be linear boundedness of Citself, but we shall see soon that this condition is strictly weaker than linear boundedness, of C - C. Since the class of linearly bounded convex sets is clearly separation-closed, one might hope to find at least a single (linearly bounded) convex set C such that $\text{Sep}\{C\}$ is the class of all linearly bounded convex sets. We shall see below that this is not the case. There is not even a set C of convex sets such that Sep C is the class of all linearly bounded sets. Indeed, without loss of generality we could assume $\emptyset \notin C$, and for then the (cartesian) product C of all elements of C we should get $\text{Sep} C = \text{Sep}\{C\}$.

This explains why we have to use cardinality arguments, because for every cardinality κ there is a set C of convex sets such that each convex set of cardinality $< \kappa$ is affinely isomorphic to an element of C.

Similarly, the set of all *line-free convex sets* (i.e. convex sets containing no affine copy of \mathbb{R}) is the largest separation-closed class which is different from the class of all convex sets.

Indeed, it is clearly separation closed, but for each C that contains a line, $\operatorname{Sep}\{C\} = \operatorname{Sep}\mathbb{R}$ is the class of all convex sets, because linear functionals on a vector space separate points. Now 2.1 might suggest that it is equal to $\operatorname{Sep}\{\mathbb{R}^+\}$. We shall see as well that it is not even of the form $\operatorname{Sep}\{C\}$ for a single convex set C (or even $\operatorname{Sep} C$ for a set C of convex sets). Moreover, there is no class between linearly bounded and line-free convex sets, which is of the form $\operatorname{Sep}\{C\}$, i.e. there is no C such that $\operatorname{Sep}\{C\}$ contains all linearly bounded convex sets but not all convex sets. The following results generalizes Theorem 2.4. of [1].

Theorem 4.2. There exists no line-free convex set C such that for each linearly bounded convex set D the affine maps from D to C separate points.

Proof. Assume that *C* is such a convex set, let *I* be an uncountable set of cardinality #I > #C, and let *V* be a vector space with a basis consisting of #I many vectors e_i , $i \in I$ and one more vector *d*. Then each vector in *V* has a unique representation $\sum_{i\in I} \alpha_i e_i + \beta d$ as a formally infinite real linear combinations of basis vectors, i.e. $\alpha_i \in \mathbb{R}$ for all $i \in I$, $\#\{i \in I : \alpha_i \neq 0\} < \aleph_0$, $\beta \in \mathbb{R}$.

Now let $D \subset V$ be the set of vectors for which the above representation satisfies the following conditions:

- (i) $\alpha_i \ge 0$ for all $i \in I$,
- (ii) $\sum_{i\in I} \alpha_i \le 1$,
- (iii) $|\beta| \le \#\{i \in I : \alpha_i > 0\} + 1.$

Then D is a convex set, because for $\sum_{i \in I} \alpha_i = e_i + \beta d$, $\sum_{i \in I} \gamma e_i + \delta d \in D$, $\lambda = \in]0, 1[$ we have

$$\begin{aligned} |\lambda\beta + (1-\lambda)\delta| &\leq \max(|\beta|, |\delta|) \leq \max\{\#\{i \in I : \alpha_i > 0\}, \#\{i \in I : \gamma_i > 0\} + 1 \\ &\leq \#(\{i \in I : \alpha_i > 0\} \cup \{i \in I : \gamma_i > 0\}) + 1 = \#\{i \in I : \lambda\alpha_i + (1-\lambda)\gamma_i > 0\} + 1. \end{aligned}$$

We claim that D is linearly bounded. Indeed, assume

$$\sum_{i \in I} (\alpha_i + \lambda \gamma_i) e_i + (\beta + \lambda \delta) d = \sum_{i \in I} \alpha_i e_i + \beta d + \lambda (\sum_{i \in I} \gamma_i e_i + \delta d) \in D$$

for all $\lambda \in \mathbb{R}^+$. For each $i \in I$, conditions (i) and (ii) give

$$0 \leq \alpha_i + \lambda \gamma_i \leq 1$$
 for all $\lambda \in \mathbb{R}^+$, hence $\gamma_i = 0$.

Now from condition (iii) we obtain

$$|\beta + \lambda \delta| \le \#\{i \in I : \alpha_i + \lambda \gamma_i > 0\} + 1 = \#\{i \in I : \alpha_i > 0\} + 1$$

for all $\lambda \in \mathbb{R}^+$, hence $\delta = 0$ and therefore $\sum_{i \in I} \gamma_i e_i + \delta d = 0$, proving that D is linearly bounded.

Obviously, we have $0, d \in D$, and we shall show f(0) = f(d) for every affine map $f: D \to C$. Since $\#I > \#C > \aleph_0$, there must be infinitely (even uncountably) many $i \in I$ for which $f(e_i)$ is the same element of C; otherwise we should get $\#I \leq \aleph_0 \cdot \#C = \#C$. Thus there are a $u \in C$ and a sequence $(i_n)_{n \in \mathbb{N}}$ in I such that $i_n \neq i_m$ for $n \neq m$ and $f(e_{i_n}) = u$

for all $n \in \mathbb{N}$. Since f is affine, there is a linear map l from V to a vector space containing C with f(x) = f(0) + l(x) for all $x \in D$, in particular $l(e_{i_n}) = u - f(0)$ for all $n \in \mathbb{N}$. For each $\lambda \in \mathbb{R}$ there is an $m \in \mathbb{N}$ with $|\lambda| \leq m + 1$ and hence $\frac{1}{m} \sum_{n=1}^{m} e_{i_n} + \lambda d \in D$. Since

$$f(\frac{1}{m}\sum_{n=1}^{m}e_{i_{n}}+\lambda d) = f(0) + \frac{1}{m}\sum_{n=1}^{m}l(e_{i_{n}}) + \lambda l(d)$$
$$= f(0) + \frac{1}{m}\sum_{n=1}^{m}(u-f(0)) + \lambda l(d)$$
$$= f(0) + u - f(0) + \lambda l(d) = u + \lambda l(d),$$

we obtain

$$u + \lambda l(d) \in f(D) \subset C$$
 for all $\lambda \in \mathbb{R}$

But C is line-free by hypothesis, thus we must have l(d) = 0 and therefore f(d) = f(0), i.e. no linear map from D to C separates 0 and d.

If we have $\#I \ge 2^{\aleph_0}$, then in the proof of 4.2 we obtain #D = #I. So for an arbitrary cardinal $\kappa \ge 2^{\aleph_0}$ and for \mathcal{C}_{κ} the class of all convex sets or cardinality $< \kappa$, we see that $D \notin \operatorname{Sep} \mathcal{A}_{\kappa}$, but $D \in \mathcal{A}_{\kappa'} \subset \operatorname{Sep} \mathcal{A}_{\kappa'}$ for each cardinal $\kappa' > \kappa$. Thus the separation-closed class $\operatorname{Sep} \mathcal{A}_{\kappa}$ and $\operatorname{Sep} \mathcal{A}_{\kappa'}$ are different whenever $\kappa \neq \kappa', \ \kappa, \kappa' \ge 2^{\aleph_0}$. So in general there are many more separation closed classes than in the finite-dimensional or absolutely convex situation.

Acknowledgements. I am indebted to D. Pallaschke for some bibliographical hints, to H. P. Petersson for a suggestion that led to a simplification of the proof of 4.2, and to D. Pumplün for some helpful directions.

References

- R. Börger, R. Kemper: A cogenerator for pre-separated superconvex spaces, Applied Categorical Structures 4 (1996) 361–370.
- [2] J. B. Hiriart-Urruty, C. Lemaréchal: Convex Analysis and Minimazation Algorithms I, Grundlehren der mathematischen Wissenschaften 305, Springer-Verlag, Berlin et al., 1993.
- [3] D. Pumplün, H. Röhrl: Banach spaces and totally convex spaces I, Comm. Algebra 12 (1984) 953–1019.
- [4] R. Schneider: Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge (UK), 1993.