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Let Conv(X) be the set of the convex functionals defined on a linear space X, with values in RU {4o0}.
In this paper we give an extension of the notion of duality for (convex) functionals to mappings which
operate from Conv(X) x Conv(X) into Conv(X).

Afterwards, we present an algorithm which associates, under convenient assumptions, a self-dual operator
to a given operator and its dual.

Finally, we give some examples which prove the generality and interest of our approach.

1. Introduction

In this paper, we present, mainly, a general algorithm to construct the square root of a
convex functional. This square root is always a convex functional and generally distinct
from the classical one. By the same algorithm we can associate a self dual operator to
any convex operator and its dual. Some examples can be found in [1]. We have given only
elementary applications of the theory of square root convex fuctionals (not to lengthen
this paper). Many others could be developped for example in the theory of variational
problems. To determine how to obtain - with convenient assumptions - the solution of
the reverse problem of the square root, is not obvious and very interesting.

This paper is divided into four parts: Firstly, we give a basic algorithm which, beginning
from arithmetic and harmonic means of two real positive numbers, converges to their
geometric mean. In the second part, we present an extension of the previous algorithm to
quadratic operators and one elementary physical example. Thirdly, we extend the results
obtained in the second part to convex functionals. We construct the convex geometric
mean of two convex functionals from which we deduce the construction of the convex
square root of a convex functional. In the last part, we study some geometrical examples.

ISSN 0944-6532 / $ 2.50 (© Heldermann Verlag



224 M. Atteia, M. Raissouli / Self Dual Operators on Convex Functionals

2. The numerical square root algorithm

Definition 2.1. Let R% =]0, +oo[. Given a € R%, we set below a* = £ € RY.

Proposition 2.2. Let a,b € R ; then:

(i) a*=(a")*"=a
(ii)) Ifa <b then a* > b*
(iii) For all A €]0,1[, we have: (Aa+ (1 — A)b)* < Aa* + (1 — \)b*

Proof. (i) and (ii) are obvious.

(iii) Because x — i is a convex mapping on |0, +00. ]

Definition 2.3. For any a,b € R7, we set:

a+b
5

VneN, a,i1(a,b) = =(an(a,b) + ;. (a,b))

ap(a,b) =

ag(a, b) = (ag(a”, b7))"

N[ —

where o (a,b) = (o, (a”,b"))"

Proposition 2.4. Let a,b € RY, then we have:

i) VneN, a,(a,b) € RY and o (a,b) € RY

i) vneN, ai(a,b) <ayla,b) and ayiqi(a,b) < ay,(a,b).

i) VneN, apqi(a,b) — oy (a,0) < 5(an(a,b) — aj(a,b))

iv) The sequence (a,(a,b),n € N) converges to 7(a,b) € RY.

v) VneN, of(a,b) =abla,(a,b))*

vi) 7(a,b) = Vab (geometric mean of a and b) and T(a,1) = \/a (positive square root
of a)

Proof. (i) We can verify that: af(a,b) = 3;1% € R%; we deduce the announced result
by recurrence on n € N.

(i) (@ b) = (ann(a”,0))" = (Fan(a”, b") + 5an(a”, 07))
1 1
< i(an(a*, b"))* + Q(an(a**, b)) (By Proposition 2.2(iii))
1 1
= éa;(a, b) + Qan(a, b) (By Proposition 2.2(ii)).

Thus, Vn € N, o (a,b) < a,(a,b).
We deduce that:
1
Unt1 (CL, b) = §(O(n((l, b) + a,’;(a, b)) < Oén(aa b)

(iii) To simplify the writing below, we omit the a and b, so we write that:

1
Ont1 = §(an + O‘;kz) and O‘; < a:z—i-l < o
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Since an41 < oy, then o) <« ; (according to Proposition 2.2(ii)).

We can deduce that:

Qny1 — Qg < 5(0% +ay) —a, <

(iv) From (iii) and (ii), we get that:
* 1 " *
VHEN, OSO&n—Oén S (_) (040_050)

Therefore Va,b € RY, lim,(ay,(a,b) — o} (a,b)) = 0.

Since the sequence (a,(a,b);n € N) is decreasing and lower bounded (resp. the sequence
(i (a,b);n € N) is increasing and upper bounded), then we have:

lim a,(a,b) =lim o (a,b) = 7(a,b)

and 7(a,b) > af(a,b) = % thus 7(a,b) € RY.
(v) Given a,b € R’ we let:

VneN, 0,=a, (a,b) and 6 =a’(a,b))
Then 6y = %5 and 0 = 225 = 2.

Assume that Vp € N, p <n, ¢} = g—:, then: 6,41 = 3(0, + 0%) = 3(0,, + %) and

s = i 0) = [ (a9 + (anla0))|
o= st * ey ~ 3G+

ab ab

0F ) = - Ot
HTIE D) Hon(@h) + =) B

>

N
ERE

Then 6£L+1 = -2 and thus o’ (a,b) = ab(ay,(a,b))*.

Ot
(vi) One has lim,, 6, =lim, «a,(a,b) = 7(a,b).
Since 0,11 = 3(0, + 0%), we deduce that: 7(a,b) = #’jb), but 7(a,b) € R%, thus 7(a,b) =

Vab, and in particular 7(a,1) = /a. O

Remark 2.5. We can prove the assertion (v) of Proposition 2.4 in a different way as
follows:

By a recurrence, it is easy to verify that:
Va,b € R ,Vn € N, a*.a,(a,b).b" = a,(a*, b")

then o (a,b) = (a,(a*,b*))* = a(ay,(a, b))*d, this concludes the proof.
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Remark 2.6 (Connected to Newton’s algorithm). Let us consider the Newton’s algo-
rithm to calculate the approximation of the square root of a positive number ¢: x, 1 =
iz, +1 L (n > 0) with 2y > 0 is given.

We know that for a fixed zy > 0, (z,,) converges to /q.

We note according to the above study that, if q can be written ¢ = ab with a,b € R,

then ay,(a,b) converges, to \/q = Vab as rapidly as (z,,). Observe that in the following
example: ¢ = 6 = 2x3(a = 2:b = 3); (2, 3) = 2, 5: (2, 3) = 2,45 and (2,45)? = 6,0025
thus v/6 ~ 2,45. For (x,), with o = 1,2, = 3,5, 25 = 2,607...

Now, we shall give an electrical interpretation of the previous algorithm.

Let 71 and ro be two fixed electrical resistances, and we consider the following circuits:

The equivalent resistance of (T}) is ag(ry,72) = 52,
The equivalent resistance of (1},) is agj(r1,72) = 1 s 1+ T = fﬁ’;z
23\ry ' rg

Proposition 2.7. Let r1 and ry be two given electrical resistances, and the following

algorithm:
wolzz] weli

L To T2 T2
Rn R:, * Rn Rn
Rn+1 = R, R n+1 — R* R*

T(r1,r9) = /7172 18 the equivalent electrical resistance of the limit of R, when n tends to
infinity.

3. First extension: Square root of a symmetric positive definite matrix
3.1. Preliminaries

In the following, the space R™ (m integer > 1) is endowed with the euclidian inner product
(.].) defined by:

Vo = (11,22, ..., Tm) € R™, Yy = (41,42, ) ER™, (2fy) =) 250
j=1
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and its associated norm ||z|| = ({z|z))2.

Let m € N*. We recall that a matrix A of the type (m x m) is said symmetric positive
definite (s.p.d) if: A= A" and Vu € R™ u#0, (Aulu) > 0.

Recall that, if A and B are two s.p.d matrices of type (m x m) then:

(i) Their sum A + B is a s.p.d matrix of type (m x m)
(ii) A (resp. B) is invertible and its inverse is s.p.d of type (m x m)

Indeed, let u € R™, u # 0, we have:
((A+ B)u|u) = (Au + Bu|u) = (Au|u) + (Bu|u) >0

(A u|u) = (A" u|A(A7 ) > 0 because A~1u # 0.

Definition 3.1. Let m € N*, and A be a matrix of type (m x m), we set:

1
Vu e R™, qa(u) = 5 (Aufu)

and (ga)*(u) = Sup{(u|v) — qa(v),v € R™}.

Below we write ¢%, ¢%y... instead of (qa)*, (¢%)*...

We say that g4 < gp if Vu € R™ ga(u) < gp(u) (resp. g4 < gp if Vu € R™ u # 0 and
qa(u) < gp(u)).
The following proposition is well-known.

Proposition 3.2. Let A and B be two s.p.d. matrices of type (m x m).

(i) ¢i=qar and @5 =qa
(i) qa<qgp = ¢ > ¢}
(iil) VA€ [0,1] (A\ga + (1 — Ngp)* < Mg+ (1 — N

Proposition 3.3. Let A and B be two s.p.d matrices of type (m x m). One has:
(i) 3(aa+gp) = qase
(i) (G(2h +a3)" = quazrs-r) -

Proof. (i) For all z € R™, we have:

(504 +48))(&) = ({dza) + (Balz)) = (227

Jola) = qase (z).

1 * * * 1 * *
(i(qA + qB>) = (5(%4—1 + QB—l)) = (QA—1+B—1) = Q(A—1+B—1)71'
2 2
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3.2. The matrix algorithm

Definition 3.4. Let A and B be two s.p.d matrices of type (m x m); we set in the
following:

ao(A,B) = qa+ap), (A B)= (g + )

VneN, a,41(A,B) =

N

(an(A, B) + (A, B))
where af(A,B)) = (an,(A™Y, B 1)

and

0(A,B) = YA+ B), (A B)= (XA + B
W eN, 3un(AB) = 0u(A B)+ (4 B))

where 75(A,B) = (Yu(A™L, B7H)) 7t

We can easily verify that:
VneN, a,(A4,B) = a,(B,A), a’(A,B) = a(B,A)
WA, B) = (B, A), (A B) = 7(B,A)

Proposition 3.5. Let A and B be two s.p.d matrices of type (m x m); one has:

(i) VneN, ay(A, B) =gy, (a8, % (A, B) = ¢y:(a,),
(i) VneN, ai(A,B) < ay(A, B) and anH(A B) < a,(A, B)
Eiii) Vn €N, ayi1(A, B) — o 1 (A B) < 5 (n(A, B) — (A, B))

iv) The sequence (a,(A, B),n € N) converges pointwise to a limit denoted by 7(A, B)
B

B

(i. e: Yo € R™, lim, (o, (A, B))(z) = (1(A, B))(z)) such that: T7(A, B) = 7(B, A)
and 7(A, B) = 7*(A,B) = (1(A™!, B71))*
(v)  There exists a s.p.d matriz of type (m x m) such that: 7(A,B) = qya,p) with
0(A,B) = 0(B,A) and 0(A,B) = 0*(A,B) = (¢(A™!, B71))~!

(vi) Vn €N, (A, B) = A(W(A,B))™' B = B(m(4, B))” A
and 0(A, B) = A(o(A, )) 1B B( (A,B))tA
) Az

(vii) o(A,B) = B2(B 2AB"2):B (A"2BA2)2 A,
In particular o(A, 1) = Az, and if A and B are commuting then o(A, B) = (AB)2 =
A2 Bz,

Further, if B'A is s.p.d (resp. A™'B s.p.d) then we have: o(A, B) = B(B~*A)2 (resp.
o(A,B) = A(A"'B)3).

Proof. (i) It’s easy by recurrence on n € N.

(ii) (resp. (iii), (iv)) can be proved as (ii) (resp. (iii), (iv)) of Proposition 2.4.

(v) The existence of o(A, B) can be proved by using (i); the properties of o(A, B) can
be deduce from (iv).
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(vi) Remark that:
WA B) = (AT +BY)) = 24 A+ B)B )
= 2B(A+B)'A = B(#E)'A=B(w(A B)) 4
Since 1§ (A, B) = v;(B, A) and (A, B) = (B, A), then:
% (A, B) = A(70(A, B))™'B

Assume that there exists n € N* such that: for all s.p.d matrices C' and D of type (m xm)
we have:

Y1(C, D) = C(%,-1(C, D))™'D = D(7,1(C, D))*C

this property is true for n = 1; and
AB) = (A7 BT = (bluaa(A BT 4y, (A7 BT

= 2qua (A7 B + A7 (s (A7, BT B
= 2(y-1(A7L, BT + A7y (A, B)BT) ™
= 2(A7N Ay (AT, BB+, 1(A B))B™) ™
= 2B(Av, 1 (A", BTYB++:_ (A, B))'A

But we have

Aya-1(A™H, BB = A(v,1(A, B) 7' B = 7,7 1(A, B) = 7u-1(4A, B)

then v*(A, B) = B(y.(A, B)) ' A = A(7,(A, B))"'B so when n tends to +o00, we deduce
that:
0(A,B) =0"(A,B) = B(c(A,B)) 'A= A(c(A,B))"'B

(vii) Now, we set 0(A, B) = X; according to (vi) we have: X = BX !4 = AX"!'B and
thus XB™'X = A and XA™'X = B.

Therefore:
(B2XB™:)*=B"3(XB™'X)B™: = B2 AB",
and:
B iXB":= (B AB )3
thus X = B2(B 2AB~2)2 B2 and symmetrically, X = Az(A"2BA"2)2 Az.

If A and B are commuting thus X = A2B? and in particular if B = I then X = Az,

Assume that B7'A is s.p.d; if we put Y = B7!'X then Y = Y'B~'A implies that
Y2=BAthus Y = (B'A)2 and X = B(B'A)z. O
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Definition 3.6. The matrix o(A, B), defined by Proposition 3.5, is called the geometric

mean of A and B. In particular o(A, ) = Az is the square root matrix of A.

Corollary 3.7. Let A and B be two s.p.d matrices, then the equation: Find a s.p.d matrizx
X such that XAX = B has one and only one solution given by X = o(A™1, B).

Remark 3.8. Without any difficulties, the above definitions and results can be general-
ized to the case where A and B are two symmetric positive invertible operators from a
Hilbert H into H.

We can give a physical signification of the algorithm of «,(A, B), and we have the:

Proposition 3.9. Let Ry and Ry be two given matrices (s.p.d) of some electrical resis-
tances, and we consider the following algorithm:

lh &) R E

R1 R2 RQ R2
(Th)
T, T; ; T, T,
Tn+1 - |: Tn T* :| Tn+1 = |: T* T* :|

o(Ry, Ry) is an equivalent electrical resistance of the limit of T,, when n tends to infinity.

4. Second extension: Square root of a convex functional

Let E be a Hilbert space and (. | .) its scalar product.

4.1. Preliminary

Let R = RU {+00} U {—o00}, we extend the structure of R on R by setting Vz € R:
—00 < & < 400,400 + T = 400, —00 + T = —00, +00 + (—00) = +00,0.(+00) = +o0.

Definition 4.1. We say that f : E — R is convex if:
Vo, € B, YAE0, 1], FOxr + (1= Naz) < Af(z) + (1= N\ f(@).
If f: E— RU{+o0}, we define the effective domain of f by:
dom f = {z € E; f(z) < +00}.

Definition 4.2. Let : E — R; we call the Legendre - Fenchel transform (or polar or
conjugate or dual) of f, the functional denoted by f*, defined as follows:

Yy B, f(y) =sup{{y|z) — f(z);2 € E}.
We denote by I'g(F) the cone of lower semi-continuous (l.s.c) convex functionals from E
into R U {+o00} not identically equal to +oo.

We recall the following results:

Proposition 4.3. Let f and g be two functions in I'o(E), then:
(i) frelo(E) and (f*)" = f
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(i) f<g=[=2¢g
(i) YAe[0,1] Af+ (1 —=XN)g) <Af*+(1—-N)g*
Proof. (i) and (ii) are classical.

(iii) It is a simple exercise, analoguous to (iii) of Proposition 3.2. O

4.2. The fundamental algorithm
Suppose that f and g belong to I'y(E), we set:

ao(f9) =5(F+9)  a5(f,9) =G +99))
Vn € N? an+1(f7 g) = %(&n(fa g) + Oé;:(fa g))

where o (f, g) = (an(f* g"))"
Proposition 4.4. For all f and g in T'o(F), we have:

(i)  VneN, a(f,g) € To(E) and aj(f, g) € To(E)

(ii) VneN, ap(f,9) < anlf,9); ans1(f.9) < aa(f,g) and o (f,9) < aj 1 (f,9)

(111) Vn € N7 an+1(f7 g) - O'/:z—i—l(fv g) < %(an(fa g) - O‘:;(f» g))

(iv) If we assume dom(ag(f,g)) = dom(ai(f,g)), then the sequence (an(f,g),n € N)
converges pointwise to a limit function T(f,g) € To(E), furthermore:

dom7(f,g) = dom fNdomg, and 7(f,9) = 7(g, f), 7(f,9) = 7(f,9) = (7(f*, 9"))".
Proof. (i) If f,g € I'o(E), then
aolf,9) = 5/ +9) €TolB) and aj(f.9) = (5(f" +47))" € Tu(B).

By recurrence we deduce that: Vn € N, a,(f,g9) € I'o(E) and o (f, g) € To(E).
(ii)) We have:

0af.9) = (5" +50°)" < 51" + 50" = au(f.9)
e N, ah(F0) = (@ (F.0)" = Gan(F0%) + 5 (@nlF. )"
% n(f.9) + ;O‘n(f 9) = ans1(f, 9)-

We deduce that:

Ve N, ann(f.9) = gonlli0) + 05(F.0) < anlf.g)

and consequently: Vn € N, a3 (f,9) < a1 (f, 9).
(ii) Vn €N, anii(f,g9) —ai 1 (f,9) < san(f,g) + 3ai(f,9) — i (f, 9).

If o (f,g) is finite then we have:

< Lou(f9) = a2(f.9). (1)

VneN, api(f,g9) — a1 (f,9) < 5
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If o(f,9)) = +oo then a,(f,g9) = +o0o because «’(f,9)) < a,(f,g), thus the second
member of (1) is equal to +o00 and (1) holds.

(iv) From (ii) we deduce that:

VneN, o(f,g9) < ... <an(f,9) <anlf,g) < ... <alf,9). (2)

Assume that dom(ag(f, g)) = dom(ag(f,g)) and let x € E.

If z € dom(a(f, g)) then Vn € N, z € dom(a,(f,g)) and the sequence (o, (f, g)(z),n €
N) converges in R.

If x ¢ dom(ap(f,9)) = dom(af(f,g)) then Vn € N, = ¢ dom(a,(f,g)) and thus
an(f,9)(x) = 400, consequently a,(f, g)(z) tends to +o0.

We set:

lim o, (f, g)(x) if x € dom(ag(f,g))
+00 otherwise.

Ve e E, 7(f,9)(x) = {

and we obtain that (., (f, g)), converges pointwise to 7(f, g) and

dom(7(f, g)) = dom(ao(f,g)) = dom f N dom g.
Finally, by a recurrence on n € N, we prove that: 7(f,g) = 7(g, f) and by using (1) and
(2), we deduce that: 7(f,g) =7"(f,9) = (7(f*, 9))". =
Remark 4.5. If f and g belong to I'o(E) with finite values then the condition
dom(ap(f,g)) = dom(af(f,g)) holds.
Proposition 4.6. For f, g and h in T'o(FE), one has

©)  7(f.9)=7(9. /) =7"(f,9) and (3(f* + ") < 7(f,9) < 3(f +9)

(ii) 7 is not associative that is to say: 7(7(f,g),h) # 7(f,7(g,h))

(iii) Vf eTo(E), 7(f,f)=[f andif domf=domf*=E, 7(f, f*) = 3|.|I* where
||| is the euclidian norm of E.

(iv) Vf € To(E) such that dom f = dom f* = E, one has 7(f,0) = —1f*(0) and
Inf{f(z),z € E} =2.7(f,0)

(v) 7 is increasing: let fi,q1 € To(E) with f < fi and g < g1, then 7(f,9) < 7(f1,91)-

Proof. (i) It is proved in the above proposition.

(i) Let a>0,b> 0,c > 0 and put for every x € R,

1 1 1
f(l‘) = 5@1327.9(.%‘) = 2bl‘27 h(,ﬁl}) — 501‘2,

then we have
r(r(f,0), D)) = 5((ab)3e)ia?
~(f,7(g, 1)) () = %(a(bc););xz‘

Thus, in general, 7 is not associative.
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(iii) We prove, without difficulty, by a recurrence that:

Vn eN, a,(f,f)=f, then 7(f, f) = [.

Further, we know that: Vf € I'g(E) with dom f = dom f* = E, 7(f, f*) = (
But, the only function f, € To(E) such that f} = f, is f, = 3||.||* thus 7(f, f*
Observe that 7(f, f*) is independent of f.

(iv) Suppose that g = 0. Then for any y € E,

4 (y) = 5(4,0) = {0 ify = 0

400 otherwise,

we can verify that for every n € N|

0(£,0) = gy f ~ S £7(0)

a,(f,0) = Wf (0) + 2n+1f :

If dom f = dom f* = E we have

7(£,0) = limay (£,0) = Tima; (£,0) = —3 /(0

and thus Inf{ f(z),z € R™} = 2.7(f,0).

(v) If f < fi and g < ¢y, we prove easily by a recurrence that for all n € N, the
inequality an(f,g) < an(f1,91) implies 7(f,g) < 7(f1, 91). O
Definition 4.7. Let f,g be in I'o(E); 7(f, g) is called the convex geometric mean func-
tional of f and g. In particular, if g = f, = 3||.||?, then 7(f, f,), denoted by f12], is called
the convex square root functional of f.

Remark 4.8. The definition above extends the classical ones given in the section 3.
Proposition 4.9. Let ¢ : I'y(E) — To(E), we set: Vf € To(E), ¢*(f) = (o(f*))* (this
implies that ¢** = ¢).

We assume that:

(p1) {Vf g €To(E), 6(a0(f,9) = aolé(f), (g))
1 o (a(f,9)) = ao(d™(f),d"(9)).

(p2) For any sequence (h,,n € N) of elements of T'o(E) which converges pointwise in E,
to a function h € T'o(E), the sequence (¢(hy))n converges pointwise to ¢(h).

Let fo,90 € To(E) such that dom fy = dom gy then 7(é(fo), #(90)) = o(7(fo,90)) and
(67 (fo), #"(90)) = ¢"(7(fo, 90))-

Proof. Let 1o = ¢(fy) and vy = ¢(go) and for each n € N

1 1 * N Y k) \*
Hn41 = E(H’n + Vn) = ao(lunvyn>7 Vpt1 = (5(“7@ + Vn)) = (O'/O(lu’myn)) :
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Suppose that there exists n € N such that: u, = ¢(f,), vn = ¢(gn), then

i1 = (P fn), (gn)) = ¢(a0(frs gn)) = O(frr1)
where fn-i—l = aO(fmgn) and

Vni1 = (ao((9(fn))" (0(9n))*)" = (a0 (¢"(f2), " (92)))" = (&7 (0 (S5, 90)))" =
= (@((a0(f7,92))))" = ¢((ao(fn, 92))") = D(gn41)

where g1 = (ao(f, 95))"
Thus for any p € N, p, = o(f,), v, = ¢(gp), but

lim i, = lim vy, = 7(6(fo)), ¢(g0)) = lim ¢(f,) = lim ¢(gn) = ¢(7(fo, 90))-

Furthermore:
7(0"(fo), 9" (90)) = T((&(f5))", (¢(90))")
= (T(6(f5), ¢(95)))" = (&(7(f5,90)))"
= (0((7(f0,90))7))" = &"(7(f0, 90))-
[
Proposition 4.10. Let f,g € T'o(E) such that dom (o (f, g)) = dom(c(f,g)). Then one
has:

(i) VaeR, 7(f+a,g9)=7(f9)+2
(i) YAeRy 7(M,\g) = M (f,9), an
have: T(f.\, g \) =7(f,g9).A

(iii) Vy € R™,

d if we set: Vh € I'o(R™), h.A = Ah(5), then we

T(f(-+v),9(.+y)=7(f,9)( +vy)
(f = l), g = wl) =7(f"9") — (Wl

(iv) If S is an invertible linear mapping from E onto E, then we have 7(f 0 S,go S) =

(7(f,9)) oS

Proof. This proposition is a corollary of the above Proposition 4.9, by setting:

i) of)=/f+5

(i) o(f) = Af (resp. ¢(f) = fA)

(iii) ¢(f) = ( )(reSp o(f*) = = (l)
(iv) o(f)=f

]

Proposition 4.11. Let f,g € T'o(E) and let for eachn € N, a,,(f, g) = hy, and & (f, g) =
kn. Then one has for alln,p € N

(1) an(f*g%) =k, and a(f*,g") = hy,
(ii) Prnipi1 = O‘p(hnv kn) and knipr1 = (hm kn)
hoipir = ap(hy k) and Ky = (h* kr)

n)»'’'n
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(i) 7(f,9) = 7(hn, kn).

Proof. (i) an(f*,9%) = (an(f",97))™ = (o},(f.9))" = k;, and
an(f*,97) = (an(f™,97))" = (an(f, 9))" = h3,.

(ii) First, observe that for each n € N, we have

hn+l = an—&-l(faQ) = O‘O(O‘n(fag)aa;);(fag)) - Oég(hn,k’n)

and
knp1 = ;:+1(f 9) = (Oén+1(f* 9)" = (aolan(f* g%), (" 9%)))

In the same way, we prove that

W = op(h k) amd kL, = ao(h, k).

n’''n n)''n

Now, suppose that there exists p € N* such that

{hn+p = (s k), Ky = a;—l(hnakn)
h:H—p = (h:vk;) k;;—l-p = ap—l(hz7k:>
We deduce that
hn+p+1 = OZ()( n+p» n+p) = ao(ap—l(th{: )aa;—l(hnakn ):ap(hnakn)
knipt1 = (Oén+p+1(f g)) = (QO(Oéner(f* 9*)7042+p(f*,9*)))*
= ( (k;+p7h2+p))* = (Oéo(Oép 1(hn7k;)7a; 1(h:;>k;;)))*
= (op(hy. k7)) = ay(hn, kn)
Furthermore
k;+p+1 = an+p+1(f g*> = &0(an+p(f*7g*)aa:;-l,-p(f*:g*))
= aolknip hiyp) = aolapi(hy, k), ap (R, k) = ap(hy, k)

h* *

_ *
ntp+l —  Ongptl (

g") (
= (040<O‘n+p( I)€7a;+p(f ,9))" = (O‘0<hn+p7kn+p>>*

= (ao(ap- 1(hn n)a% 1 (B, Kn)))*
= (aplhn, k)" = ag(hy, k7).

Then, we conclude by recurrence.

(iii) It is immediate from (ii).

5. A Geometrical interpretation

235

The above fundamental algorithm, associated with the functions f and g, can be written

otherwise:

Put

ap(f,g) = hy and O‘;(ﬁ 9) = op(f9%)" = kp.
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Then
hyir = ar(£,9) = 5 (p(f,9) +a3(f,9)),
thus
pir = 5y + hy) = ol By).
Also
koo = 3 (1,0) = (0 (*,0°))
= (a7, 07) + 03", 6)"
= (@3 (F.0))" + (£, 9))"
then

1 * * * *
kpy1 = (§<hp + kp)) = O‘O(hm kp)-
Note that by (A) the following algorithm:

ho, ko € (R™) are given
hpt1 = %(hp + kp) = ao(hp, kp) (p=>0) (A)
Fpt1 = (5(hy + k)" = a5y, k) (p 2 0).

The fundamental algorithm, studied in the above section, is a particular case of (A) with

hO = Oé(](f; g) and kO = aa(fa g)

Now, let M € R2, M # 0. We denote by M* the inverse of M in the inversion with center

N —
0 and ratio 1, and thus we have: OM* = WOM.

—_—
Let Ay, By € R% Ay # O, By # O. We suppose that OA,.OBy > 0, i.e, the angle of the

— —
vectors OAy and OBy is sharp. We consider the following algorithm:
— 1 — —_—
VneN, OA,. = §(OAn +O0B,)
—

4 1] — —_—
OA'y1 = 5 (04, + OB',)

where
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We can represent that by the following graph:

We can observe that the points A,, B,, B}, A} are cocyclical, the point B, is at the

—
intersection of the straight line which supports the vector OA’,, 1 and of the circle limited

by the points OA, B,. That circle is the inverse of the straight line which is the support

—_—
of the vector A} B;.

— —
Remark 5.1. When OAy = u.OBy with p € R, we find again the case of the first section.

We put for all n € N:

— —

0A,.0B,

—_— 7 / —_—
|OA,| = a,, |OA | = a,, |OB,| = b,,w, = arccos
nbn

Then |O—1)4n+1]2 = |Q4ntOBn |2 — 1(42 4 2 + 2a,b, cosw,), and thus a,.1 = 1(a2 + b2 +

1 )
2a,b, cosw,)z. Also, we can write

— 1, 0A OB 1.1 1 2
/ 2 n nN12
’OAn—i-ll = 5( CL?L +W)| —Z(G—?L‘FE—FECOSW”)
1 —
= a2b2 |OATL+1|
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Ant1
anbn °

/
and then a, , =

—
Since |OB,,11| = —F—, then we deduce that for each n € N

|OA n+1|
anby,
bn+1 = <~ Qp+1 bn+1 = ayb,,.
An1
Now we set
a; = g (Goa bo)
then
1 1
by = —, =) = at(ag, bo).
L= (el 5) ™ = i o)

Proposition 5.2. For each n € N, a, = an(ap,by) and b, = o} (ag,bo).

Proof. By recurrence, assume that there exists p € N such that: a, = a,(ag, by) and
by = (0p(, )" = 03(ao,bo).

Then
1 1 . )
Upy1 = 5(% +by) = 5(%(@0» bo) + ay(ao, bo)) = i1 (ao, bo)
and
I apb, 2ay,(ao, bo)-cvy(ag, bo)
o apy1 p(ao, bo) + az(ao, bo)
but
1 1., 11 1 1.,
i —9 - (.
(ap+1(a0’ b())) (ap(a07 bO) + ap(a07 bo))
1 1 -1
=2 +
<a;;(a0,b0) ap(a07b0))
Then bys1 = (155, 50)) " = pp1(ao, bo)- 0

According to the study of the first section, we deduce the following proposition

Proposition 5.3. lim, a,, = lim, b, = 7(ag, by) = Vaobo.

When n tends to +o00, the behaviour of the straight line which supports the vectors O—/ln

—
and OB,, is given as follows

Proposition 5.4.

1 2a0b 2 42
(1) FOT a/ll n E N, COS wn_;’_l fnd @0 0+((ln+ n)COSwn

a2 +b2+2apbg cos wr,
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(ii)  If one put

— —
OA,_1.0A4,
COs gn =
Ap—1-Qn
|0B,_1.0A.|
COS Ty = —————,
bnfl.(ln

then cos&, = cosn,.

’

Proof. (i) We know that for all n € N, O—>n.OA n = an.a;. cos w,, then

’ et /
Apg1-Gpyyq- COSWpt1 = OA,11.OA 1

1 OA OB
—_— — n n
:Z(OAWLOB”).( ea )

O—/)l2 O—éQ 1 1 — —
5 T 02 —|—(a—2+b—2) A,.OB,

1
- Aa2 b2 (2@,21()% + (ai + bi)anbn coswn) .
a

n-n

’ 2 .
If we recall that: a,,.a,41 = =2 and  a,b, = agby, then we deduce the result of (i).

(ii) For each n € N,

1
cos&, = Yo e (OAn,1> ) (OAn,l + OBml)
nWn—1
and hence
1
cos &, = Yaa. . (ai_l + ap_1b,_1 cOs wn_l) .
Also
cos ! <O—B> > —A”_l + O—B>"_1
4 2a,bn—1 v ap_y by 1
1 ( an—lbn—l )
= 7 1 2 COS Wp—1
2anbn_1 a, _q
Then
1
COS Ty = W (0721_1 + ay,_1b,_1 CcOS wn_l) .

! ! !
But a,b, 102 | = a,(bp_10n_1) @Gpn_1 = a,byapan_1 = ay.a,—1 and finally cos&,, = cosn,.

]
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Proposition 5.5. When n tends to +oo, the vectors O—1>4n and O—B>n converge to a vector
0—1400 which is supported by the bisector of the angle limited by the vectors 0—1210 and O—B>0.
Moreover ‘0—1400’ = 7(ag, bo) = Vagbo.

Proof. By the above proposition, we deduce that lim, cosw, = 1 and consequently

lim, w, = 0. Further, the straight lines which support the vectors O—zzln and O—én

have the same bisector as the vectors 0—1)40 and O—B)o . We deduce that the straight

line which supports O—1>4n (resp.O—B>n) tends to the bisector of the angle limited by the

vectors 0_1)40 and O—B>0 when n tends to +oo. Since lim,, a,, = lim,, b, = v/agby, we have:
— — — —

lim, OA, =lim,, OB, = OA, with |OA,| = vagby. This concludes the proof. O

The complex version of the previous algorithm can be given as follows: Let zy,ty € C*,
20 = ap €™ and t, = bye'™ we put that for each n € N

1
Zn+1 = § (Zn + tn)

and

1 2zt
++5) zatte

Zn n

t+1:
n %(L

In fact, it is sufficent to note that if the point M € R2, M # 0, has the affix z = ae™ then
the inverse of M in the inversion of center 0 and the ratio 1 has the affix

According to the above study we deduce that:

- ug+vg

Proposition 5.6. lim,, z, = lim, t, = 250 = Vagby €' 2

then z,41 = (2, + %), we deduce:

Zntn
Zn+1

Yo

Observing that for each n € N ¢, =

Corollary 5.7. Let wy € C, wy = rg 0. The sequence of complex numbers (z,,n € N)

such that zg # 0 and VYn € N z,,1 = %(zn + ‘:—2) converges 10 zo = +/To e
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