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We are studying the relaxation of the integral functional involving argument deviations

I(u) :=

∫

Ω
f(x, u(g1(x)), . . . , u(gk(x))) dx,

in weak topology of a Lebesgue space Lp(Ω), 1 < p < +∞, with open bounded Ω ⊂ Rn. It is proven
that, unlike the classical case without deviations, the relaxed functional in general cannot be obtained as
convexification of the original one. However, we show that if the set functions gi: Ω → Ω satisfies certain
condition (called unifiability), which is just a natural extension of nonergodicity property of a single
function to sets of functions, and which is automatically satisfied when k = 1, then the relaxed functional
is equal to the convexification of the original one. We show that the unifiability requirement is essential
for such a convexification result for a generic integrand. Further slightly restricting this condition, we also
obtain the nice representation of the relaxed functional in terms of convexification of some new integrand,
but involving in general countably many new argument deviations .
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1. Introduction

This paper is concerned with the relaxation in the weak topology of Lebesgue spaces
Lp ≡ Lp(Ω) of integral functionals I: Lp → R ∪ {+∞} ≡ R· of the type

I(u) :=

∫

Ω

f(x, u(g1(x)), . . . , u(gk(x))) dx. (1)

Here Ω ⊂ Rn is an open bounded set, f : Ω × Rk → R· is an integrand (i.e. Σ ⊗ B(Rk)
measurable, Σ standing for the σ-algebra of Lebesgue measurable subsets of Ω, B(Rk)
standing for the Borel σ-algebra of Rk), and all gi: Ω → Ω, i = 1, . . . , k are measurable
functions satisfying

e ⊂ Ω, |e| = 0 ⇒ µgi(e) := |g−1
i (e)| = 0,

| · | standing for the Lebesgue measure. The latter condition is obviously necessary to
define the compositions u ◦ gi, for each u ∈ Lp stands for a class of equivalent functions.
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The functionals of the above type seem to be a rather unusual object in the classical
calculus of variations. They arize rather naturally in the study of various functional dif-
ferential equations (FDE’s) having variational structure (an overview of the literature and
of some results on the subject may be found in [11]), as well as in optimal control prob-
lems for for FDE’s with deviating argument [4]. It is the latter source that is motivating
for our study. In fact, it is well-known that many classical optimal control problems for
ordinary or partial differential equations are easily reduced to a purely variational formu-
lation like (1) but with k = 1 and g1 = idΩ the identity in Ω (see, for instance, [3]). This
appears to be possible because such problems involve only local operators like Nemytskǐı
or differentiation operators. However, if the underlying state equations of the optimal
control setting are not local, e.g. are equations with deviating argument, one can only
reduce the problem to the general variational formulation (1).

It is clear, that the problem of writing out an explicit relaxation of (1) in weak topology of
Lp presents essential difficulties. In fact, in the well-studied classical case k = 1 with g1 =
idΩ, sometimes (not quite correctly) referred to as local, it is known that the relaxation of
the functional in weak topology of Lp is equal to its convexification, and, moreover, can
be obtained by means of convexification of the integrand in the second variable. In this
paper we show that for general functionals with deviating argument this is not the case.
Namely, in general one even cannot expect to obtain the relaxation by convexifying the
whole functional, to say nothing of convexifying the integrand. Nevertheless, restricting
ourselves to a rather large class of such functionals involving “unifiableÔ set of deviations
gi (we give an exact definition below), we are able to prove that still the relaxed functional
coincides with the convexification of the original one. Note that we assume by definition
that a set consisting of a single function g1 is automatically unifiable, and hence in the case
k = 1 one always has the representation of a relaxed functional by means of convexification
of the original one. Moreover, in this case the relaxation admits a representation in terms
of some new convexified integrand. Much more difficult is the general case k ≥ 2. Here
the requirement of unifiablity is rather strong and in practice is nothing else than a
generalization of the nonergodicity property of a single function to sets of functions. It
is important to emphasize that it characterizes the collective behavior of functions. We
show that it is quite unavoidable, if one wants to have a general representation result
for a relaxed functional in terms of convexification of the original one. Also, slightly
restricting this condition, we are able to prove the representation of the relaxed functional
by an integral functional with deviating argument, involving a convexification of some new
“integrandÔ and, generally speaking, a countable sequence of new argument deviations.

At last let us remark that all the results we provide hold also in more general measure
situations. Namely, an open bounded subset in Rn with Lebesgue measure may be easily
replaced by a standard measure space with finite nonatomic measure. We try however
here to avoid such additional complications.

2. Notation and preliminaries

Let (X, τ) be a topological space. The relaxation of the functional I: X → R· in the
topology τ defined as the maximum τ -lower semicontinuous functional over X not greater
than I will be denoted by sc−(τ)I. If τ is a weak topology of a normed space X then this
we will denote the respective relaxation by sc−(w −X)I. It is well-known (see [3]) that
if X is a reflexive Banach space, then the latter relaxation coincides with the sequential
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one and, in particular, is uniquely characterized by the following two properties:

(i) if uν ⇀ u weakly in X, then sc−(w −X)I(u) ≤ lim infν I(uν);

(ii) for every u ∈ X there is a sequence {uν} ⊂ X, such that uν ⇀ u weakly in X, and
sc−(w −X)I(u) = limν I(uν).

The same is true, if X is dual to a separable Banach space, while the weak topol-
ogy/convergence are substituted by ∗-weak ones.

Let (X,X∗) be dual pair of locally convex topological spaces with the pairing denoted
by < ·, · >. The Fenchel conjugate of a functional I: X → R· is a new functional I∗:
X∗ → R· defined by the formula

I∗(u′) = sup
u∈X

< u, u′ > −I(u).

The second Fenchel conjugate I∗∗: X → R· is given by

I∗∗(u) = sup
u′∈X∗

< u, u′ > −I∗(u′).

Further on we will always assume that there is at least one continuous affine functional less
than I (in particular, this is true when I is nonnegative). It is well-know (see theorem I.5
of [5]) that in this case I∗∗ is the convexification of I in the sense that it is the maximum
lower semicontinuous in the strong topology and convex functional not greater than I.

The linear shift (composition, inner superposition) operators, is defined formally by the
relationship

(Tgu)(x) := u(g(x)),

where g: Ω → Ω is a given function. The operator Tg is well-defined by the above formula
over Lebesgue spaces, if and only if the generating function g is measurable and satisfies
the additional requirement

e ⊂ Ω, |e| = 0 ⇒ µg(e) := |g−1(e)| = 0, (2)

which we will always consider fulfilled in the sequel. Although unlike the Nemytskǐı
operator, the shift Tg is not local (see [16] for the precise definition of a local operator),
it has many properties similar to those of local operators. For instance, the shift Tg in
Lebesgue spaces is never compact and posesses some deterioration properties, i.e. maps
smaller spaces into larger ones [1, 10]. However, under only the condition (2) the operator
Tg maps L∞ in itself and is automatically bounded over this space. We find it important
to remark that in spite of its intrinsically variational nature, the question of relationship
between the relaxation of the functional (1) in weak topology of Lp and its convexification
is intimately related to the operator theory. In fact, it depends on an interplay between
the properties of Nemytskǐı operator, and linear shifts.

3. Relaxation versus convexification

The study of the relaxation of the functional (1) presents an essential difficulty in com-
parison with the classical “localÔ case without argument deviations. In fact, in the latter
case (i.e. when k = 1, g1(x) = x) it is well-known that under some not very restrictive
conditions on the functional and/or on the integrand the relaxation of the functional in
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the weak topology of Lp coincides with its convexification and, moreover, can be obtained
by convexifying the integrand in the last variable (see Chapter IX of [12]). However, we
will show here that there is no hope to obtain the relaxation of a general functional (1)
by means of any convexification technique. First of all, consider the example below which
involves very pathological argument deviations.

Example 3.1. Let Ω = (0, 1). Each x ∈ Ω can be written in a binary system

x = (0, x1x2x3 . . . xj . . .)2, where xj ∈ {0, 1}, j ∈ N.

Define the maps

g1(x) := (0, x1x3 . . . x2j−1 . . .)2,
g2(x) := (0, x2x4 . . . x2j . . .)2,

It is easy to prove following the lines of a similar example in [6] that these maps are mea-
sure preserving (in particular, they satisfy the condition (2)) and, what is more important,
the respective families of σ-subalgebrae g−1

i (Σ) generated by gi, i = 1, 2, are independent.
Define the functional I: L2 → R by the formula

I(u) := −
∫

Ω

u(g1(x))u(g2(x)) dx. (3)

In probabilistic terminology, −I is the expectation of the product of two independent ran-
dom variables u ◦ gi. Hence,

I(u) = −
∫

Ω

u(g1(x)) dx

∫

Ω

u(g2(x)) dx = −
(∫

Ω

u(x) dx

)2

,

where the measure preserving property of gi has been used. Thus I is weakly lower semi-
continuous (and even weakly continuous) but not convex.

Clearly, in the above example there is nothing specific to an interval (0, 1). In fact, it has
been shown in [6] using the theorem on isomorphism for measure spaces [14], that in a
standard probability space (Ω,Σ, µ) for each fixed k ∈ N there exists a finite collection of
measure preserving maps

gi : Ω → Ω, i = 1, . . . , k

such that a family of σ-subalgebrae {(gi)−1(Σ)}ki=1 is independent in totality. This gives
a possibility to construct, following the lines of the above example, more general weakly
continuous functionals with deviating argument which are neither convex nor concave.
However, such examples might be rather confusing. In fact, it is worth emphasizing that
the maps gi satisfying the above condition have some rather pathological properties, e.g.
they can be injective only on a set of zero measure, while the preimage of almost any
point is nondenumerable. Such properties possess, for instance, Wiener shifts along the
trajectories of a standard Brownian motion. One might have think then that for nicer
argument deviations (e.g. piecewise injective ones) everything works like in the classical
“localÔ case. Unfortunately this is not true, even for very nice argument deviations, as
we will show below. Therefore, what we will need is in fact not a property of a single
function, but a collective property of the set of functions g1, . . . , gk. We will call such
nice property “unifiabilityÔ and will prove that for functionals of the type (1) involving
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unifiable set of argument deviations the relaxation in weak topology of Lp still coincides
with convexification as in the “localÔ case.

In the following definition we introduce preliminary notions necessary to further specify
what exactly is meant by unifiable function set.

Definition 3.2. We say that a measurable function g: Ω → Ω

(i) is piecewise injective, if there exists a disjoint at most countable covering of Ω by
measurable sets Ω = tjΩj such that over each Ωj the function is injective;

(ii) satisfies ω-condition, if it is piecewise injective, satisfies (2), and the respective
inverses γj: g(Ωj) → Ωj, γj ◦ g|Ωj

= id, satisfy (2).

The notion of ω-condition has been introduced by M.E. Drakhlin in [9] to study a class
of shifts in Lebesgue spaces which have “niceÔ representation of adjoints.

Remark. Note that a piecewise injective function g: Ω → Ω satisfying (2) can always
be changed on a set of zero measure in order to satisfy the ω-condition. In fact, consider
the measures µj on Ω defined by

µj(e) := |g−1(e) ∩ Ωj|

for every measurable e ⊂ Ω. Since µj are absolutely continuous with respect to the

Lebesgue measure, we may consider the respective Radon-Nikodym derivatives
dµj

dLn and
set

Ej := g−1

({

y :
dµj

dLn
(y) = 0

})

⋂

Ωj.

Setting now

g̃(x) :=

{

g(x), x ∈ Ω \
⋃

j Ej,

x, x ∈
⋃

j Ej,

and observing that |Ej| = 0, one arrives at a conclusion that g(x) = g̃(x) a.e. in Ω, while
g̃ satisfies the ω-condition. Therefore, everywhere in the sequel we identify the piecewise
injective functions satisfying (2) with the functions satisfying ω-condition.

We would like to mention that a function which does not satisfy ω-condition is a real
pathology, and in fact given such a function one can easily construct an example of a
functional of the type (1) with the same properties as in example 3.1. To show this, let
us enlist some properties of such functions.

Proposition 3.3. The following statements about the function g: Ω → Ω satisfying (2)
are equivalent:

(i) g is piecewise injective;

(ii) for almost all x ∈ Ω the inverse image g−1(x) is at most countable.

Also, if g is not piecewise injective, then there is a measurable E ⊂ Ω, |E| > 0, and a
function h: E → Ω such that the σ-algebrae g−1(Σ) ∩ E and h−1(Σ) are independent.

Remark. It is clear that in particular, every locally Lipschitz continuous function is
piecewise injective.
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Proof. (i) ⇒ (ii) is trivial. We prove thus ¬(i) ⇒ ¬(ii). Suppose that (i) does not hold.
Restricting, if necessary, to a set of full measure in Ω, we may suppose, that g is Borel
measurable. Let E ′ ⊂ Ω, |E ′| > 0 be such that the restriction of g to E ′ is antiinjective,
that is, for every measurable e ⊂ E ′ one has |e| = 0 whenever g |e is injective. Suppose
also without loss of generality that |E ′| = 1 (otherwise just renorm the measure). By the
proposition 2.2 from [15], which is a consequence of Maharam theorem on homogeneous
measure algebrae, there exist then a Borel set E ⊂ E ′, |E| = |E ′| = 1, a compact metric
space M , a nonatomic Borel probability measure P on M , and a Borel measurable map
τ : E → M such that the following conditions hold

(a) the map g × τ : E → Ω×M defined by

(g × τ)(x) := (g(x), τ(x))

is invertible;

(b) the image measure µ′ over Ω×M defined by

µ′(B) := |(g × τ)−1(B)|

for all Borel sets B ⊂ Ω×M satisfies

µ′ = µg ⊗ P.

Note that here and below g is identified with its restriction to E, so that g: E → Ω.
Consider now the projection maps pM : Ω×M → M and pΩ: Ω×M → Ω. Clearly,

g(x) = pΩ((g × τ)(x)), τ(x) = pM((g × τ)(x)). (4)

From this representation of g and from (a) follows that for all x ∈ E the inverse image
g−1(x) is uncountable, since so is M . In other words, this means that (ii) does not hold.

A similar argument proves the last claim of the proposition. In fact, by the isomorphism
theorem [14] there is a bijection j: M → Ω providing the isomorphism of the respective
measure spaces (with Borel σ-algebrae). Define now h: E → Ω by h := j ◦ τ . We will
prove that the σ-algebrae h−1(B) and g−1(B), where B is the Borel σ-algebra of Ω, are
independent.

To verify the latter claim, choose arbitrarily B1, B2 ∈ B. We will abbreviate j−1(B2) by
ÝB2. One has then

|g−1(B1) ∩ h−1(B2)| = µ′((g × τ)(g−1(B1) ∩ τ−1( ÝB2))) =

µ′(p−1
Ω (B1) ∩ p−1

M ( ÝB2)) = (µg ⊗ P)(p−1
Ω (B1) ∩ p−1

M ( ÝB2)) =

(µg ⊗ P)(B1 × ÝB2) = µg(B1)P( ÝB2),

where (a), (b) and (4) were used. Using the same formula with B1 := Ω, we have

|h−1(B2)| = P( ÝB2), (5)

and recalling that µg(B1) := |g−1(B1)|, we get finally

|g−1(B1) ∩ h−1(B2)| = |g−1(B1)| · |h−1(B2)|,

thus showing the desired independence.
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Now the proposition 3.3 provides the way to generalize the example 3.1. In fact, it
immediately implies that if g: Ω → Ω satisfies (2) but fails to satisfy the ω-condition,
then the functional I: L∞ → R defined by

I(u) := −
∫

Ω

1E(x)u(g(x))u(h(x)) dx,

where 1E stands for the characteristic function of E, is ∗-weakly continuous in L∞ but
not convex.

We stop with the examples of “pathologicalÔ functions and introduce the following defi-
nition which makes precise the idea of how nice the set of functions gi should be in order
that the relaxation of the functional (1) in weak topology of Lp be obtained by means of
convexification. Note that in view of the above examples this should be restrictive, but,
as we will show below, only for k ≥ 2, while if k = 1, i.e. when the functional involves
only one deviation, everything is similar to the “localÔ case without argument deviations.
This means that when k = 1, then the relaxation of the functional (1) in weak topology
of Lp coincides with the convexification of this functional whatever the deviation g1 is.

Definition 3.4. The set of functions g1, . . . , gk: Ω → Ω is called unifiable if there is a
measurable function γ: Ω → Ω (called unifier) satisfying (2) such that

γ(g1(x)) = . . . = γ(gk(x))

for a.e. x ∈ Ω. If a unifier can be chosen to satisfy also the ω-condition, then the respective
set of functions is called ω-unifiable. The set consisting of a single function (k = 1) is
always said to be ω-unifiable with unifier idΩ.

It is important to emphasize that unlike ω-condition, unifiability is not an individual
property of a function but a property of sets of functions. In fact, not every set of functions
even satisfying the ω-condition is unifiable. The simplest example of two nonunifiable
functions is given by g1 := idΩ and g2: Ω → Ω any ergodic map. In fact, the ergodicity
of g2 means that the only function γ satisfying γ(x) = γ(g2(x)) for a.e. x ∈ Ω is a
constant [13]. A classical particular example of the ergodic map is the rotation of a
circle Ω = S1 (equipped with the one-dimensional Hausdorff measure | · |) by the angle
2πα, where α is irrational. Therefore, the unifiability can be understood as the natural
extension of nonergodicity property to sets of functions.

It is rather easy to show now that the property of unifiability is unavoidable in order to
be able to represent the relaxation of the functional (1) in weak topology of Lp as the
convexification of the latter. Consider for this purpose the following construction.

Example 3.5. Consider the simplest nonunifiable function pair g1 := idΩ and g2: Ω → Ω
any ergodic map. Define f : R2 → R· by

f(y1, y2) :=

{

0, y1 = y2 ≥ 1 or y1 = y2 ≤ 0,
+∞, elsewhere.

Consider the functional

I(u) :=

∫

Ω

f(u(g1(x)), u(g2(x))) dx
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and observe that I(u) = 0, only if u ◦ g1 = u ◦ g2 a.e. in Ω, but this can happen only if
u = const in view of ergodicity of g2. Hence

I(u) =

{

0, u = const ≥ 1 or u = const ≤ 0,
+∞, elsewhere.

Now observe that I is weakly lower semicontinuous, i.e. I = sc−(w−Lp)I, but not convex,
namely I 6= I∗∗. As a matter of a fact,

I∗∗(u) =

∫

Ω

f ∗∗(u(g1(x)), u(g2(x))) dx.

It is easy to note that both functions g1 and g2 involved can themselfes be very nice, even
injective.

The following theorem is the first principal result of the paper.

Theorem 3.6. Let 1 < p ≤ +∞. If the set of functions g1, . . . , gk: Ω → Ω is unifiable,
then

sc−(w − Lp)I(u) = I∗∗(u).

In the case p = +∞ the relaxation is meant in the ∗-weak topology.

Let us emphasize again that according to the definition of unifiability 3.4 in the case k = 1
this theorem implies no extra condition on g1.

Proof. The announced claim will be shown, if we prove that sc−(w − Lp)I is convex.
To show the latter, consider arbitrary {u1, u2} ⊂ Lp and let the sequences {u1

ν}, {u2
ν} be

such that

ui
ν ⇀ ui weakly in Lp, while sc−(w − Lp)I(ui) = lim

ν
I(ui

ν), i = 1, 2.

Pick up a countable dense set {pj} ⊂ Lp′ , and fix an arbitrary λ ∈ (0, 1). Let γ: Ω → Ω be
a unifier of the set g1, . . . , gk (in particular, identity, if k = 1). Furthermore, set g := γ◦g1.
Consider for each fixed ν ∈ N the following systems of equations with respect to cν ∈ L∞:







































































∫

Ω

pj(x)(Tγcν)(x)u
1
ν(x) dx = λ

∫

Ω

pj(x)u
1
ν(x) dx,

∫

Ω

pj(x)(Tγ(1− cν))(x)u
2
ν(x) dx = (1− λ)

∫

Ω

pj(x)u
2
ν(x) dx,

∫

Ω

(Tgcν)(x)f(x, u
1
ν(g1(x)), . . . , u

1
ν(gk(x))) dx =

λ

∫

Ω

f(x, u1
ν(g1(x)), . . . , u

1
ν(gk(x))) dx,

∫

Ω

(Tg(1− cν))(x)f(x, u
2
ν(g1(x)), . . . , u

2
ν(gk(x))) dx =

(1− λ)

∫

Ω

f(x, u2
ν(g1(x)), . . . , u

2
ν(gk(x))) dx,

(6)

where j = 1, . . . , ν. This system represents, in fact, a momentum problem with respect
to the unknown cν , since it is linear and finite-dimensional. Since it admits at least one



E. Stepanov, A. Zdorovtsev / Relaxation of Some Nonlocal Integral Functionals ... 455

solution cν ≡ λ, satisfying 0 < cν < 1 a.e. in Ω, then by the Lyapunov convexity theorem
(theorem in the Appendix to Chapter IV, Section 4 of [5]) it has also another solution
cν = 1eν , where 1A stands for a characteristic function of a measurable A ⊂ Ω. Now, by
the first and second equations in (6) one has

1γ−1(eν)u
1
ν + 1Ω\γ−1(eν)u

2
ν ⇀ λu1 + (1− λ)u2

weakly in Lp, and hence, by definition of sc−(w−Lp)I with the help of the third and the
fourth equations of (6) we obtain

sc−(w − Lp)I(λu1 + (1− λ)u2) ≤ lim infν I(1γ−1(eν)u
1
ν + 1Ω\γ−1(eν)u

2
ν) =

λ limν I(u
1
ν) + (1− λ) limν I(u

2
ν) =

λ sc−(w − Lp)I(u1) + (1− λ) sc−(w − Lp)I(u2),

concluding the proof for the case p 6= +∞. If p = +∞, then the word-to-word restating of
the same proof substituting the weak topology by ∗-weak one shows the desired result.

Let us remark now that the theorem 3.6 provides conditions under which the relaxation of
the functional (1) in weak topology of Lp coincides with the convexification of the latter
for a generic integrand f . In this case, as indicated in the example 3.5 the unifiability
condition is essential. It is however not necessarily so for particular integrands. For
instance, it is only a matter of a slight modification of the proof of the theorem 3.6
(namely, of the system of equations (6)) to show that if

f(x, y1, . . . , yk) = f1(x, y1, . . . , yl) + f2(x, yl+1, . . . , yk)

for some l ∈ {1, . . . , k}, then the statement of the theorem 3.6 remains valid under only
the condition that each of the two sets of functions g1, . . . , gl and gl+1, . . . , gk be unifiable
itself.

4. Representation of the relaxed functional

As we already mentioned in the section 3, in the classical “localÔ case without argument
deviations (i.e. when k = 1, g1 = idΩ) one easily obtains under some rather weak re-
quirements on the integrand also a representation of the relaxed functional by means of
certain convexification of the integrand. Intuitively, in view of the theorem 3.6 we may
expect a similar result in our general case only if the argument deviations gi involved
are unifiable, (which in particular is automatic, if k = 1). This happens to be true, as
we show below, with the two corrections. First, the notion of ω-unifiability should be
involved here instead of simple unifiability. Second, even if k = 1 but g1 is not an identity
function, then as we will show, the weak lower semicontinuity of the functional (1) does
not imply any kind of convexity of the integrand in the last variable. Hence even in such
a simple case, as opposed to the local setting, one cannot hope to obtain the relaxation
by convexifying the original integrand. nevertheless, we will show that everything works
well if one uses instead the convexification of some new integrand obtained in quite a
constructive manner. Therefore, even the simple setting with k = 1 in comparison with
the “localÔ case presents essential difficulties. One encounters even more difficulties in
the general case k ≥ 2. We show then that in a relaxed setting not only convexification
of a new “integrandÔ should be involved, but also the argument deviations will change,
and in general one will have a countable number of the latter.

Further on we make the following natural additional assumptions:
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(a) the integrand f : Ω× Rk → R· is normal, that is, f(x, ·) is lower semicontinuous for
a.e. x ∈ Ω, and nonnegative;

(b) the functional I is finite over every constant function, that is

I(u) < +∞ for every u ≡ y ∈ R.

Both requirements are not very restrictive, and can further be weakened.

First of all we prove the following simple representation result for functionals involving
only one deviation.

Theorem 4.1. Let 1 ≤ p < +∞. If k = 1, then there is a new integrand ψ: Ω×R → R·

such that

sc−(w − Lp)I(u) =

∫

Ω

ψ∗∗(x, u(g1(x))) dx,

where ψ∗∗ stands for the convexification of ψ in the last variable, that is,

ψ∗(x, y′1) := supy1∈R (y1y
′
1 − ψ(x, y1)) ,

ψ∗∗(x, y1) := (ψ∗)∗(x, y1).

Remark. It will be clear from the proof that the new integrand ψ can be obtained in a
quite constructive way from the original one by taking the conditional expectation of the
latter with respect to the σ-algebra generated by the function g1.

Proof. Without loss of generality assume f(x, 0) = 0 and consider

ψ(x, y) := E(f(·, y); g−1
1 (Σ))(x)

to be the conditional expectation of f(·, y) with respect to the σ-algebra g−1
1 (Σ). Since

f(·, y) ∈ L1 by assumption, then by a known property of a conditional expectation (see
p. 49 in vol. 1 of [13])

E(f(·, u(g1(·))); g−1
1 (Σ))(x) = ψ(x, u(g1(x))),

and therefore

I(u) =

∫

Ω

ψ(x, u(g1(x))) dx. (7)

Let us remark that the above construction should be appropriately understood. In fact,
the operator of conditional expectation is defined between classes of a.e. equal measur-
able functions, while different functions ψ(·, z) belonging to the same class can generate
different integral functionals of the type (7). The above construction should hence be
understood in the sense that in the class of functions given by the mentioned conditional
expectation there is a representative ψ satisfying the desired relationship (7) (cfr. theo-
rem III.2 of [2] where the existence of the respective version of the conditional expectation
has has been proven for generic σ-algebrae though only for convex integrands).

Since by definition of ψ there is a ϕ: Ω × R → R· such that ψ(x, y) = ϕ(g1(x), y), then
changing the variables in (7) we obtain that

I(u) =

∫

Ω

dµg1

dLn
(x)ϕ(x, u(x)) dx.
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Applying now the proposition 2.3 of [12, chapter IX], we have

sc−(w − Lp)I(u) =

∫

Ω

dµg1

dLn
(x)ϕ∗∗(x, u(x)) dx,

which further implies

sc−(w − Lp)I(u) =

∫

Ω

ϕ∗∗(g1(x), u(g1(x))) dx =

∫

Ω

ψ∗∗(x, u(g1(x))) dx,

concluding the proof.

Let us observe that in general sc−(w−Lp)I(u) 6=
∫

Ω
f ∗∗(x, u(g1(x))) dx. In fact, consider

the following

Example 4.2. Let Ω = (0, 1) and

f(x, y) := (1− exp(−y2))1(0,1/2](x) + (exp(y2)− 1)1(1/2,1)(x),

while

g1(x) :=

{

2x, 0 < x ≤ 1/2,
2− 2x, 1/2 < x < 1.

Then g−1
1 (Σ) consists of all Lebesgue measurable subsets of (0, 1) symmetric with respect

to 1/2, and so the conditional expectation of f in the first variable is given by

ψ(x, y) :=
1

2

(

(1− exp(−y2)− (exp(y2)− 1)
)

= sinh y2.

Note that it is already convex. Hence by the theorem 4.1 one has for the relaxation of the
functional

I(u) :=

∫

Ω

f(x, u(g1(x))) dx

the following representation:

sc−(w − Lp)I(u) =

∫

Ω

sinhu(g1(x))
2 dx.

But since g1 is measure preserving, we find out

sc−(w − Lp)I(u) =

∫

Ω

sinhu(x)2 dx.

On the other hand, it is a matter of simple computation to show

I(u) =

∫ 1

0

sinhu(x)2 dx,

and hence

sc−(w − Lp)I(u) = I(u) =

∫

Ω

sinhu(g1(x))
2 dx,

while
∫

Ω

f ∗∗(x, u(g1(x))) dx =

∫

Ω

(expu(g1(x))
2 − 1) dx.
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Now we pass to a difficult general case of functionals involving many deviations.

Theorem 4.3. If the set of functions g1, . . . , gk: Ω → Ω is ω-unifiable, then there is a
sequence of measurable subsets {Ων}∞ν=1 of Ω of positive measure, a new set of measurable
functions {Ýgν}∞ν=1: Ων → Ω satisfying (2) and a set of a.e. positive and finite measurable
weight functions {ων}∞ν=1: Ων → (0,+∞) defining the spaces

∆(x) :=

{

Ýy ∈ R{ν :x∈Ων} : |Ýy|px,p :=
∑

ν :x∈Ων

|ων(x)Ýyν |p < +∞

}

such that

sc−(w − Lp)I(u) =

∫

Ω

ψ∗∗(x, u(Ýg1(x)), . . . , u(Ýgν(x)), . . .) dx,

for some function ψ: {(x, Ýy) : x ∈ Ω, Ýy ∈ ∆(x)} → R·. Here

ψ∗(x, Ýy′) := supÝy∈∆(x) (< Ýy, Ýy′ >x −φ(x, Ýy)) for Ýy′ ∈ ∆′(x),
ψ∗∗(x, Ýy) := (ψ∗)∗(x, Ýy),

while

∆′(x) :=

{

Ýy ∈ R{ν :x∈Ων} :
∑

ν :x∈Ων

∣

∣

∣

∣

1

ων(x)
Ýyν

∣

∣

∣

∣

p

< +∞

}

and < ·, · >x stands for the duality between ∆(x) and ∆′(x) defined by

< Ýy, Ýy′ >x:=
∑

ν :x∈Ων

Ýyν Ýy
′
ν .

Again, it is important to note that both the new “integrandÔ ψ and the new argument
deviations {Ýgν} can be obtained in a quite constructive way (although not that simple
as in the case of just one deviation). For the reader who is not interested in following
horribly technical constructions of the proof we enlist several useful additional features of
the construction in the remark below.

Remark. In the conditions of the above theorem

1. If there is a unifier of the functions g1, . . . , gk with a finite number (say, l ∈ N) of
injectivity sets, then in fact in the sequence of new deviations only l are different.

2. The images of the functions Ýgν are pairwise disjoint (up to the set of zero measure).

3. Let T (x) := {ν ∈ N : x ∈ Ων} and ω(x) := {ων(x)}ν∈T (x) is the measure over the at
most countable set T (x). In this notation ∆(x) is the Banach space lp(T (x);ω1/p(x)).
Note that T (x) = ∅ implies ∆(x) = {0}. The assertion of the above theorem can
be written out as

sc−(w − Lp)I(u) =

∫

Ω

ψ∗∗(x, {u(Ýgν(x))}ν :x∈T (x)) dx,

4. Specific measurable properties of the new “integrandÔ ψ can be stated once one
introduces some kind of measure structure in the “fibrationÔ ∆ (in fact, we put the
word “integrandÔ in quotes here because strictly speaking the notion of an integrand
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on ∆ is not defined). We avoid here introducing any such precise notion, since for
our purpose it is enough to mention that the expression under the integration sign
in the representation formula for the relaxed functional is a measurable function for
any measurable u: Ω → R (which can also be taken as the definition of a notion of
“integrandÔ in this case).

The rest of the section will be dedicated to the proof of the theorem 4.3.

Proof of the Theorem 4.3:

Step 1. Without loss of generality we suppose that f(x, 0, . . . , 0) ≡ 0. Denote

T (u)(x) := f(x, u(g1(x)), . . . , u(gk(x))).

Our intention is to represent the formal operator T acting over the Lebesgue space Lp as
a composition of a Nemytskǐı operator with one linear shift. To fulfil this, we need to pass
from the Lebesgue space of scalar functions Lp to the Lebesgue space of functions with
values in an infinite-dimensional Banach space. The respective construction is provided
by the lemma below.

Lemma 4.4. There is a measurable set Θ ⊂ Ω, |Θ| > 0, a measurable function g: Ω → Θ,
a sequence of measurable subsets {Ων}∞ν=1 of Ω of positive measure, Ων ∈ g−1(Σ), and a
set of measurable functions {γν}: g(Ων) → Ω, satisfying (2), a set of a.e. positive and
finite measurable weight functions {wν}∞ν=1: g(Ων) → (0,+∞) defining the spaces

D(x) :=







Ýy ∈ R{ν :x∈g(Ων)} :
∑

x∈g(Ων)

|wν(x)Ýyν |p < +∞







,

a function Ýf : Ω× lp → R·, two linear continuous operators

P : Lp(Θ; lp) → Lp(Ω),
ÝP : Lp(Ω) → Lp(Θ; lp),

and two operator-functions of x ∈ Ω, the values of which are linear continuous operators

H(x) : lp → K(x),
ÝH(x) : K(x) → lp,

where K(x) = {y ∈ Rk : gi(x) = gi′(x) ⇒ yi = yi′}, and at last two operator functions of
x ∈ Θ, the values of which are linear continuous operators

A(x) : lp → D(x),
ÝA(x) : D(x) → lp,

satisfying the following conditions:

(i) T (P Ýu)(x) = Ýf(x, Ýu(g(x))) and in particular T (u)(x) = Ýf(x, ( ÝPu)(g(x))) for all
u ∈ Lp, Ýu ∈ Lp(Θ; lp) and for a.e. x ∈ Ω;

(ii) one has Ýf(x, Ýy) = f(x,H(x)Ýy), while Ýf is a normal integrand whenever so is f ;
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(iii) P ÝP = IdLp and A(x) ÝA(x) = IdD(x) for a.e. x ∈ Ω, where IdX stands for identity
in X, while

( ÝPu)(x) = ÝA(x){u(γν(x))}x∈g(Ων) (8)

for all u ∈ Lp and a.e. x ∈ Ω, while ÝA(x) is an isometry;

(iv) H(x) ÝA(g(x))A(g(x)) = H(x) for a.e. x ∈ Ω.

Remark. As it will be clear from the proof of the above lemma, (i) will follow directly
from a stronger assertion

H(x)Ýu(g(x)) = ((P Ýu)(g1(x)), . . . , (P Ýu)(gk(x))) a.e. in Ω (9)

for all Ýu ∈ Lp(Θ; lp).

By (i) of the lemma 4.4 one has

I(u) =

∫

Ω

Ýf(x, ( ÝPu)(g(x))) dx.

Step 2. Consider a new functional ÝI: Lp(Θ; lp) → R· defined by the formula

ÝI(Ýu) =

∫

Ω

Ýf(x, Ýu(g(x))) dx. (10)

We will prove that there exists a new integrand Ýψ: Ω× lp → R· such that

sc−(w − Lp(Θ; lp))ÝI(Ýu) =

∫

Ω

Ýψ∗∗(x, Ýu(g(x))) dx, (11)

where
Ýψ∗(x, Ýy′) := supÝy∈lp

(

< Ýy, Ýy′ > − Ýψ(x, Ýy)
)

for Ýy′ ∈ lp
′
,

Ýψ∗∗(x, Ýy) := ( Ýψ∗)∗(x, Ýy),

1/p + 1/p′ = 1 and < ·, · > stands for the duality between lp and lp
′
. The proof is only

a slight modification of that of the theorem 4.1 in order to deal with integrands defined
over infinite-dimensional spaces. In fact, first in a complete analogy with the mentioned
proof we show that

ÝI(u) =

∫

Ω

Ýψ(x, Ýu(g(x))) dx =

∫

Θ

dµg

dLn
(s) Ýϕ(s, Ýu(s)) ds,

where Ýψ: Ω× lp → R· is defined by

Ýψ(x, y) := E( Ýf(·, y); g−1(Σ ∩Θ))(x)

and Ýϕ: Θ× lp → R· satisfies Ýϕ(g(x), y) = Ýψ(x, y). We substitute now the proposition 2.3
of [12, chapter IX] with the theorem VII.7 of [5] in order to assert that

sc−(w − Lp(Θ; lp))ÝI(Ýu) =

∫

Θ

dµg

dLn
(s) Ýϕ∗∗(s, Ýu)(s) ds,
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and hence

sc−(w − Lp(Θ; lp))ÝI(Ýu) =

∫

Ω

Ýψ∗∗(x, Ýu(g(x))) dx,

which shows the claim.

Step 3. We use the lemma below with X = Lp(Ω), ÝX = Lp(Θ; lp), the functional ÝI given
by (10), and I the original functional to prove that

sc−(w − Lp)I(u) = sc−(w − Lp(Θ; lp))ÝI( ÝPu) =

∫

Ω

Ýψ∗∗(x, ( ÝPu)(g(x))) dx, (12)

the latter equality being valid in view of (11).

Lemma 4.5. Let X and ÝX be normed spaces, P : ÝX → X and ÝP : X → ÝX be lin-
ear bounded operators satisfying P ÝP = IdX . If I: X → R· and ÝI: ÝX → R· are such
functionals that I(P Ýu) = ÝI(Ýu) for every Ýu ∈ ÝX, then

sc−(w −X)I(P Ýu) = sc−(w − ÝX)ÝI(Ýu). (∗)

In particular,
sc−(w −X)I(u) = sc−(w − ÝX)ÝI( ÝPu). (∗∗)

Proof. To deduce (∗∗) from (∗) it is enough to substitute Ýu = ÝPu into (∗). Hence, we
are to show (∗), i.e.
(i) If Ýuν ⇀ Ýu weakly in ÝX, then sc−(w −X)I(P Ýu) ≤ lim infν ÝI(Ýuν).

(ii) For every Ýu ∈ ÝX there is a sequence {Ýuν} ⊂ ÝX, such that Ýuν ⇀ Ýu weakly in ÝX, and
sc−(w −X)I(P Ýu) = limν

ÝI(Ýuν).

To prove (i), assume Ýuν ⇀ Ýu weakly in ÝX and note that since P Ýuν ⇀ P Ýu weakly in X,
then

sc−(w −X)I(P Ýu) ≤ lim inf
ν

I(P Ýuν) = lim inf
ν

ÝI(Ýuν).

To prove (ii) note that for each Ýu ∈ ÝX there is a sequence {uν} ⊂ X satisfying uν ⇀ P Ýu
weakly in X and

sc−(w −X)I(P Ýu) = lim
ν

I(uν).

Setting Ýuν := ÝPuν , we obtain uν = P Ýuν and, therefore, (ii) holds.

Step 4. Set ων
i (x) = wν

i (g(x)) and observe that ∆(x) = D(g(x)), since all Ων ∈ g−1(Σ)
according to the lemma 4.4. Define the function f̄ : {(x, Ýy) : Ýy ∈ ∆(x)} → R· by the
relationship

f̄(x, Ýy) := Ýf(x, ÝA(g(x))Ýy).

Note that
Ýf(x, Ýy) = f̄(x,A(g(x))Ýy).

In fact, this claim follows easily from

Ýf(x, Ýy) = Ýf(x, ÝA(g(x))A(g(x))Ýy).

The latter is valid due to (iv) of the lemma 4.4 and the definition of f̄ .
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Now define the function ψ by

ψ(x, Ýy) = E(f̄(·, Ýy); g−1(Σ))(x).

Clearly, since A(g(·))Ýy is g-measurable, one has

Ýψ(x, Ýy) = ψ(x,A(g(x))Ýy).

Applying the lemma below with ÝX = lp, X = ∆(x), ÝF = Ýψ(x, ·), F = ψ(x, ·), ÝH =
ÝA(g(x)), H = A(g(x)), we obtain

Ýψ∗∗(x, Ýy) = ψ∗∗(x,A(g(x))Ýy)

and in particular
ψ∗∗(x, Ýy) = Ýψ∗∗(x, ÝA(g(x))Ýy),

which concludes the proof.

Lemma 4.6. Let X and ÝX be normed spaces, H: ÝX → X and ÝH: X → ÝX be linear
bounded operators satisfying H ÝH = IdX . If F : X → R· and ÝF : ÝX → R· are such
nonnegative functionals that ÝF (Ýu) = F (HÝu) for every Ýu ∈ ÝX, then

ÝF ∗∗(Ýu) = F ∗∗(HÝu).

In particular, for every u ∈ X one has

F ∗∗(u) = ÝF ∗∗( ÝHu).

Remark. Clearly, for the above lemma to be valid, it is enough to require instead of
nonnegativity of F that there exist at least one continuous affine functional less than F .

Proof. The condition ÝF (Ýu) = F (HÝu) is equivalent to the fact that

epi ÝF = (H × IdR)
−1(epiF ),

where epi stands for the epigraph of the functional, the operator P×IdR: ÝX×R → X×R
is given by (H × IdR)(Ýu, λ) := (P Ýu, λ). Since the functionals ÝF ∗∗ and F ∗∗ are determined
by the conditions

epi ÝF ∗∗ = co epi ÝF , epiF ∗∗ = co epiF,

where co stands for the closed convex hull, then to show the statement it is enough to
prove

co epi ÝF = (H × IdR)
−1(co epiF ).

The latter is true in view of (H × IdR)
−1coE = co(H × IdR)

−1E for every E ⊂ ÝX × R,
which holds sinceH×IdR is surjective and posseses the bounded right inverse ÝH×IdR.

We now concentrate on the proof of the lemma 4.4 which constitutes the heart of the
proved results.
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Proof of the Lemma 4.4:

Step 1. Preparatory constructions. According to the lemma A.2 we may consider that the
unifier γ: Ω → Ω satisfies the condition γ(x) ∈ O(x) for a.e. x ∈ Ω (the orbits O(x) are
defined in Appendix A). Let g(x) := γ(g1(x)) and observe that this function satisfies (2).

We set now Θ := γ(Ω) and remark that Θ is measurable with |Θ| > 0. We have cardO(x)∩
Θ = 1 for every x ∈ Ω. In fact, γ(x) ∈ O(x) ∩ Θ by construction. What is more, if for
some y ∈ O(x)∩Θ holds y 6= γ(x), then there is an x′ ∈ Ω such that y = γ(x′), due to the
definition of Θ. Now x′ 6∼ x (otherwise by construction of γ one would have y = γ(x)),
which leads to a contradiction y = γ(x′) 6∈ O(x) since γ(x′) ∼ x′ by construction of γ.

Since γ satisfies the ω-condition, we may consider its measurable injectivity sets Θν ⊂ Ω,
ν ∈ N with Ω = tνΘν . Without loss of generality we will assume that the sequence {Θν}
is countable (if γ is injective only on a finite number of pieces, just fill the rest of the
sequence with empty sets).

Note that the orbit O(x) of every x ∈ Ω intersects with Θν by at most one point, i.e.
cardO(x) ∩ Θν ≤ 1, where card stands for cardinality of a set. In fact, supposing the
existence of y1 6= y2, in O(x) ∩ Θν , we would have γ(y1) 6= γ(y2) since γ is injective
over each Θν , which contradicts the fact that γ is constant over each equivalence class
by construction. Moreover, if x ∈ O(Θν), then there is an x′ ∼ x, x′ ∈ Θν , and hence
O(x)∩Θν 6= ∅ whenever Θν 6= ∅. Let Ων := g−1(O(Θν)∩Θ). Now it is possible to define
the functions γν : g(Ων) → Θν by the relationship

γν(x) := O(x) ∩Θν .

Denote by µγν the measure over Θν defined by µγν (e) := |γ−1
ν (e)| and let

aν(x) :=

(

dµγν

dLn
(x)

)1/p

, x ∈ Θν .

This definition is correct since the Radon-Nikodym derivative dµγν

dLn (x) > 0 for a.e. x ∈
Θν . In fact, otherwise there would exist a measurable e ⊂ Θν with |e| > 0 such that
|γ−1

ν (e)| = 0, contradicting with

e ⊂ γν(γ
−1
ν (e)) ⊂ O(γ−1

ν (e))

which implies |e| = 0 due to the lemma A.2.

At last define the function ν̄: Ω → N by setting ν̄(x) := ν whenever x ∈ Θν . Note that
x ∈ Θν̄(x) for every x ∈ Ω.

In the sequel we will need the relationship

γν̄(x)(γ(x)) = x a.e. in Ω, (13)

as well as
γ(γν(x)) = x a.e. in Θ ∩O(Θν), (14)

In fact, (13) is proved by

γν̄(x)(γ(x)) = O(γ(x)) ∩Θν̄(x) = O(x) ∩Θν̄(x) = x,
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because x ∈ Θν̄(x) and x ∈ O(x) simultaneously. To prove the relationship (14) note
that γ(γν(x)) ∈ O(x) by construction of γ and γν , whereas γ(γν̄(x)(x)) ∈ Θ. Observing
Θ ∩O(x) = x one concludes the proof of the claim.

Step 2. We introduce now formally the operators H(x), ÝH(x) and A(x), ÝA(x) as indicated
in the statement of the lemma being proved. The operators P , ÝP will be defined on the
next step of the proof. Define H(x): lp → K(x) by the relationship

H(x)Ýy :=
(

aν̄(g1(x))(g1(x))Ýyν̄(g1(x)), . . . , aν̄(gk(x))(gk(x))Ýyν̄(gk(x))
)

.

It is easy to check that H(x) maps lp into K(x) and is continuous.

The operator ÝH(x): K(x) → lp is introduced by

( ÝH(x)y)ν :=

{

yi/aν(gi(x)), if there is an i ∈ {1, . . . , k} : ν̄(gi(x)) = ν,
0, otherwise.

This definition is correct since if for some ν ∈ N and x ∈ Ω one has gi(x) ∈ Θν and
gj(x) ∈ Θν , then yi = yj. In fact, gi(x) ∼ gj(x) and since Θν contains at most one point
of each orbit, gi(x) = gj(x), and hence yi = yj by definition of K(x). Furthermore, it is

clear that ÝH(x) maps K(x) into lp and is continuous between these spaces, because the
image of every y ∈ K(x) has only finite number of nonzero components by definition of
K(x).

Introduce now the operators A(x) and ÝA(x) for a.e. x ∈ Θ. Set

wν(x) := aν(γν(x))

and define A(x) by

A(x)ν Ýy := Ýyνwν(x),

and the operator ÝA by the formula

ÝAν(x)Ýy =

{

Ýyν/wν(x), x ∈ g(Ων),
0, elsewhere.

Here it was assumed 0 · ∞ = 0 and 0/0 = 0. It is matter of a simple excercise to verify
the acting and continuity of the operators A(x) and ÝA(x), as well as the fact that ÝA(x) is
an isometry. Also the identity A(x) ÝA(x) = IdD(x) is immediate.

Step 3. We dedicate a separate step to a more delicate construction of the operators P
and ÝP . The operator P : Lp(Θ; lp) → Lp(Ω) is defined by

(P Ýu)(x) := Aν̄(x)(γ(x)){Ýuν(γ(x))}∞ν=1 = aν̄(x)Ýuν̄(x)(γ(x)).

This definition is correct since for every x ∈ Ω one has γ(x) ∈ Θ and x ∈ Θν̄(x) by

construction of Θ and ν̄. The operator ÝP : Lp(Ω) → Lp(Θ; lp) is defined by

( ÝPu)(x) = ÝA(x){u(γν(x))}x∈g(Ων).
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We are to verify that P and ÝP act continuously between the indicated spaces. First we
concentrate on ÝP . We calculate for each m ∈ N the following integrals of finite sums

∫

Θ

m
∑

ν=1

∣

∣

∣( ÝPu)ν(x)
∣

∣

∣

p

dx =
m
∑

ν=1

∫

Θ∩O(Θν)

∣

∣

∣

∣

u(γν(x))

aν(γν(x))

∣

∣

∣

∣

p

dx =

m
∑

ν=1

∫

Θν

|u(x)|p dx ≤ ||u||pp,

(15)

where in the last equality the change of variables has been used together with the obser-
vation

γν(Θ ∩O(Θν)) = Θν . (16)

To show (16) one has to note that γν acts into Θν by definition, while for every x ∈ Θν

there is an x′ := O(x)∩Θ (this definition is correct since by construction Θ contains one
and only one element of each orbit) such that γν(x

′) = x, because O(Θ) = Ω.

The estimate (15) implies by Beppo Levi theorem that ÝP acts between Lp(Ω) and Lp(Θ; lp)
(the measurability of ÝPu is a simple excercise), while

|| ÝPu||Lp(Θ;lp) = ||u||p,

showing the desired continuity.

Note that by definition, the operator ÝP satisfies (8) with

(A(x)Ýy)ν :=

{

Ýyν/aν(γν(x)), x ∈ O(Θν),
0, x 6∈ O(Θν).

To verify that for a.e. x ∈ Ω one has A(x): lp → lp, we reiterate (15) with u(x) :=
∑

ν Ýyν1Θν (x) for arbitrary Ýy ∈ lp, hence showing A(x)Ýy ∈ lp for a.e. x ∈ Ω. The same
argument shows that A(x) is bounded.

Now we verify acting and continuity conditions of P . For this purpose compute

||P Ýu||pp =
∫

Ω

aν̄(x)(x)
p
∣

∣Ýuν̄(x)(γ(x))
∣

∣

p
dx =

∫

Ω

dµγν̄(x)

dLn
(x)

∣

∣Ýuν̄(x)(γ(x))
∣

∣

p
dx

Representing then the integral over Ω as a sum of integrals over Θν and changing variables,
we have

||P Ýu||pp =
∞
∑

ν=1

∫

O(Θν)∩Θ
|Ýuν(γ(γν(x)))|p dx =

∞
∑

ν=1

∫

O(Θν)∩Θ
|Ýuν(x)|p dx

due to (14). At last, the upper estimate of the latter integral shows

||P Ýu||pp ≤
∞
∑

ν=1

∫

Θ

|Ýuν(x)|p dx = ||Ýu||pLp(Θ;lp),

concluding the proof of the claim.
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Step 4. We conclude the proof of the claim (iii) of the lemma. by showing P ÝP = IdLp .
Given a u ∈ Lp, we have

(P ÝPu)(x) = aν̄(x)(x)( ÝPu)ν̄(x)(γ(x)). (17)

Since γ(x) ∈ O(x) ⊂ O(Θν̄(x)), then using the definition of ÝP one deduces from (17)
and (13) that

(P ÝPu)(x) =
aν̄(x)(x)

aν̄(x)(γν̄(x)(γ(x)))
u(γν̄(x)(γ(x))) = u(x),

which shows the claim.

Step 5. At this moment we are able to introduce the function Ýf and and verify its
properties. Define the function Ýf : Ω× łp → R· by setting

Ýf(x, Ýy) := f(x,H(x)Ýy).

Clearly, if f(x, ·) is lower semicontinuous in Rk for a.e. x ∈ Ω, then so is Ýf(x, ·) in lp.
Hence, to complete the proof of (ii), it remains to show that if f is an integrand, then so
is Ýf . Observe that for this purpose it is enough to prove that the function

(x, Ýy) ∈ Ω× lp 7→ (x,H(x)Ýy) ∈ Ω× Rk

is (Σ⊗ B(lp),Σ⊗ B(Rk))-measurable. To show this claim we first note that the function
(x, Ýy) ∈ Ω× lp 7→ x ∈ Ω is clearly (Σ⊗B(lp),Σ)-measurable. It suffices now to show that
for each fixed i ∈ {1, . . . , k} the function ψi: Ω× lp → R defined by

ψi(x, Ýy) := aν̄(gi(·))(gi(·))Ýyν̄(gi(·)),

is (Σ⊗ B(lp),B)-measurable. Fixing an open U ∈ R, we compute

ψ−1
i (U) =

∞
⋃

ν=1

{(x, Ýy) ∈ Ω× lp : ν̄(gi(x)) = ν and aν(gi(x))Ýyν ∈ U} =

∞
⋃

ν=1

(

g−1
i (Θν)× lp

)

∩ {(x, Ýy) ∈ Ω× lp : aν(gi(x))Ýyν ∈ U} ,

the latter clearly belonging to Σ⊗ B(lp), which shows the claim.

Step 6. We prove (iv). Note that

g(x) = γ(gi(x)) ∈ γ(Θν̄(gi(x))) = g(Ων̄(gi(x))),

hence by definition of A(x) and ÝA(x) one has

(

ÝA(g(x))Ā(g(x))Ýy
)

ν̄(gi(x))
= Ýyν̄(gi(x)).

This implies
H(x) ÝA(g(x))A(g(x))Ýy = H(x)Ýy,

since the construction of H(x) involves only the coordinates Ýyν̄(gi(x)).
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Step 7. At last, we prove (9), and hence, also the most crucial claim (i). In fact, from (9)
and (ii) immediately follows

T (P Ýu)(x) = Ýf(x, Ýu(g(x))), (18)

for every Ýu ∈ Lp(Θ; lp). Then

T (u)(x) = Ýf(x, ( ÝPu)(g(x)))

is the immediate consequence of the latter due to (iii). At last, (9) is obtained by a
straightforward computation.

A. Some remarks on ω-unifiability

Let us remark first that there are unifiable sets of functions which are not ω-unifiable. In
fact, consider the following

Example A.1. Let Ω = (0, 1) and consider the Borel isomorphism j: Ω → Ω2 (the exis-
tence of the latter is guaranteed by the isomorphism theorem of Borel measure spaces [14]).
Now define the measurable functions g1, g2: Ω → Ω by the relationships

g1(x) := x and g2(x) := j−1(q(j(x))),

where q: Ω2 → Ω2 is given by

q(x1, x2) := (x1, {x2 + α})

for some irrational α ∈ (0, 1).

Clearly, g1 and g2 are unifiable, say, by the function p1◦j: Ω → Ω, where p1: Ω
2 → Ω is a

projection p1(x1, x2) := x1. Note that p1 ◦ j is measure preserving and hence satisfies (2).
On the other hand, g1 and g2 are not ω-unifiable.

We prove the latter assertion by contradiction. In fact, let γ: Ω → Ω be a unifier of g1
and g2 satisfying the ω-condition. Clearly then

γ(y) = γ(gν2 (y))

for a.e. y ∈ Ω and for all ν ∈ N. Let Θ ⊂ Ω be any injectivity set of γ of positive
measure. We first prove then that γ must be also injective on each Θν := gν2 (Θ). In fact,
if the latter is not true, i.e. when there exist y1 6= y2 in Θν such that γ(y1) = γ(y2), then
for x1 and x2 from Θ such that yi = gν2 (xi), i = 1, 2 we have from the above formula
γ(x1) = γ(x2), while x1 6= x2 contradicting the injectivity of γ over Θ. The next step is to
show that all Θν are pairwise disjoint. In fact, if for some µ > ν there is an x ∈ Θν ∩Θµ,
then, since Θµ = gµ−ν

2 (Θν), there is a z ∈ Θν satisfying x = gµ−ν
2 (z). Hence, γ(x) = γ(z),

while clearly x 6= z, because g2 has no periodic points, contradicting the injectivity of γ
over Θν. At last it remains to observe that all Θν are disjoint and have equal measures.
This implies

|Θ| = |Θν | = 0,

which contradicts the definition of Θ.
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Introduce now some auxiliary notions to be used in the paper. For any x ∈ Ω define the
orbit O(x) ⊂ Ω by

O(x) :=
⋃

l∈N

Ol(x),

where
O0(x) := {x},
O1(x) := {y ∈ Ω : g−1

i (y) ∩ g−1
j (x) 6= ∅ for some i 6= j},

Ol(x) := O1(Ol−1(x)).

Observe that O defines an equivalence relation x ∼ y ⇔ x ∈ O(y).

Using the above notion of orbits it is rather easy to formulate simple sufficient conditions
of ω-unifiability, in terms of the orbit structure, by means of selecting a unifier from the
orbits. Although we do not use such unifiablity criteria in the paper, we we will need the
following simple technical lemma show that in the case of ω-unifiability one can always
find a unifier as a selector from the orbits.

Lemma A.2. Let the set of functions g1, . . . , gk: Ω → Ω be ω-unifiable by a unifier δ:
Ω → Ω. Then there is an ω-unifier γ: Ω → Ω of this set, satisfying γ(x) ∈ O′(x) for a.e.
x ∈ Ω, where O′(x) := δ−1(δ(x)).

Proof. Let {Ωj}mj=1, where either m ∈ N or m = +∞, be the sequence of the injectivity
sets of a unifier δ. Let

Θ := Ω1 ∪

(

m
⋃

j=2

Ωj \O′

(

j−1
⋃

l=1

Ωl

))

.

Since for a.e. x ∈ Ω the set Θ obviously contains one and only one point of O′(x), we can
define a function γ: Ω → Ω by the formula

γ(x) := Θ ∩O′(x).

It is measurable since γ−1(B) = O′(Θ∩B) = δ−1(δ(Θ∩B)) is measurable for every Borel
set B ⊂ Ω. At last, γ is also an ω-unifier since O(x) ⊂ O′(x) for a.e. x ∈ Ω.

We remark that whenever the set of functions g1, . . . , gk is ω-unifiable, then the respective
orbits satisfy |O(e)| = 0 for all sets e ⊂ Ω with |e| = 0. Indeed, this is immediately implied
by O(x) ⊂ O′(x) = δ−1(δ(x)) (see the notations of the lemma A.2). Note however, that
this is not sufficient for ω-unifiability, even when the set of functions g1, . . . , gk is unifiable.
In fact, the lemma below implies that the same holds whenever each of the functions
g1, . . . , gk satisfies ω-condition. At the same time, the example A.1 provides a unifiable
but not ω-unifiable pair of functions, each of which is even injective.

Lemma A.3. Let g1, . . . , gk satisfy ω-condition. Then the respective set-valued map O:
Ω−◦Ω maps measurable sets into measurable ones and satisfies |O(e)| = 0 for every e ⊂ Ω
with |e| = 0.

Proof. It is enough to show that O1 maps measurable sets into measurable ones and if
|e| = 0, then |O1(e)| = 0. The latter holds, because

O1(e) =
⋃

i6=j∈{1,...,k}

gi(g
−1
j (e)), (19)
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while |e| = 0 implies both |g−1
i (e)| = 0 in virtue of (2) and |gi(e)| = 0 in virtue of

ω-condition.
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