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The functional F(u) = [, f(x, Du)dz is considered, where B is the unit ball in R", u varies in the set of
the locally Lipschitz functions on R", and f belongs to a family of integrands containing, as model case,
the following one

| < z,2 > |
[

fi(z,2) eR" xR" — + 127, 1<p<n.

The computation of the relaxed functional of F is provided. The formula obtained shows the persistence
of the Lavrentieff Phenomenon. Examples of integrands not exhibiting the Lavrentieff Phenomenon are
also presented, showing that this phenomenon is not linked only to the non standard growth behaviour
of integrands.

1991 Mathematics Subject Classification: 46E30, 28A20, 49B, 60B12

1. Introduction

In [23] and [17] the authors considered a family of integrands of functionals of Calculus of
Variations exhibiting the Lavrentieff phenomenon (see for this phenomenon [3], [6], [13],

(7], [8], [22], [31], [32], [33], [35])-

In a recent work (cf. [18]), the Lavrentieff phenomenon has been examined in the context
of relaxation theory (see for this approach [12], [23], [17], [19], [15], [1]), and an explicit
representation formula for the Lavrentieff gap has been obtained but only in the two
dimensional case for this family of integrands.

In this paper we give the explicit representation formula also for the n-dimensional case
and for a more general integrands family by using a very different technical approach. By
this approach we are also able to prove that for some integrands, very similar to previous
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ones, the Lavrentieff Phenomenon does not occur. Then this phenomenon seems not to
be depending only on the non standard conditions on integrands.

More exactly, let (U, 7) be a topological space satisfying the first countability axiom and
let X be a 7—dense subset of U. If F is a functional defined on U, we define F' as the
relaxed functional of the restriction of F' to X as

iﬁ(u):inf{nqgnfffaw);{uhblg;x,uhlsu} wel. (1)

In this context the Lavrentieff phenomenon occurs when

for some wu.

A case of particularly significant Lavrentieff phenomenon is the one in which F' is a
functional of the Calculus of Variations naturally defined on some class of more or less
irregular functions (e.g. W'?) and X is a class of regular function (e.g. locally Lipschitz
continuous functions).

We consider the following integrands

faz)=g <i> '<|i’|fi>' t¢(r2), (2.2 €R" xR,

where g : S" ! — R is a nonnegative Lipschitz continuous function such that
Hr1 ({x c gn1 L g(z) = ()}) =0, (2)

H" 1 is the (n — 1)-dimensional Hausdorff measure on R", ¢(z,-) is a convex function,
for every x € R", satisfying the following standard growth conditions

|2l < ¥(x,2) <alz) +blzf", 1<p<n (3)
with a(z) € L, .(R") and b positive constant.

loc

Let B be the unit ball of R™. We pose

F(u) fo(JJ,Du)d:c ifuewl,p(B)
u) =

o0 if ue L' (B)\W (B)
and let F (u) be defined by (1) for every u € L' (B).

For every u € W' (B), let w and £ be the functions obtained from u and g by passing
to polar coordinates in R"™ and let

Y = (0,7)""2 x (0,27) C R*" (,0)
8(1‘1, ..,.CEn>
a(pa P11, -5 Pn—2, 9)

We first prove that if u is such that F(u) < +oo, then for L" t-a.e. (¢1,..., pn_2,0) €
R, w has the trace w™ for p = 0 and that Eénwt € LY(Y).

1-n 3

= sin"" 2 @,_gsin" 2, _5 - -sin? o sin ;. (4)

NP1, s Pn—2) = p



G. Cardone, C. D’Apice, U. De Maio / Lavrentieff Phenomenon and ... 513

By virtue of this, we can give for F' the following representation formula

2

P {F<u>+gg1ﬁo,ﬂn2 27 (0, 0)n() [w* (,0) — el dodd i T () < +oo

+00 otherwise

Eventually we prove that for the following integrand, very similar to the previous one,

z
f(x,z)—%+|z|p l<p<2 2= (21,29), 2 = (21, ) € R?,
the Lavrentieff phenomenon does not occur. We note also that in [27], it is proved that
it does not occur for a class of functionals with non standard condition of the p — ¢ type,
and in [25] under no coerciveness or growth conditions.

2. Notations and preliminary results
In this section we will list some notations we will keep still throughout all the paper.

In particular we need to consider a space of functions slightly more general than the space
of BV functions and we just summarize some standard results for BV functions that are
still valid for this space.

We will need two different copies of R™: R" (1, ...,x,) and R" (p, @1, ..., n_2, 0); we will
ever consider a function denoted by u as a function v = u (xy, .., 2,), a function w as a
function w = w (p, p,0) , where ¢ = (@1, ..., pn_2) € R" 2.

We will denote by

B=DB(0,1) C R"(xy,...,x,) the unit ball,
Q = (a,b) x (¢1,dy) X - X (ch1,dn_1) CR"(p, ¢, 0) any open interval,

Q= (2a —b,b) x (c1,dy) X - X (cp1,dpn_1), for every @ as above,
R=1(0,1) x (0,m)" 2 x (0,27) C R™ (p, ¢,0),

R=(-1,1) x (0,7)"2 x (0,27),

Y = (0,7)"2 x (0,2m) C R"* (,0).

For every bounded open set 2 and ¢ > 0 we define the set - = {x € Q : dist (z,0Q) > €}.

We will moreover denote by o = « (z) a positive symmetric mollifier, i.e. a function that
satisfies the following properties

i) a(r)eCr(B);
i1) / a(x)de =1, (5)
i11) a(x) > 0;
and set, for every € > 0,

1
a(a):yERan—na<§>.

For every u € L' (Q), e > 0 and = € Q_ we define the regularization u. of u at = by

w(2) = (@) (2) = [ Oz =) ui)dy (©)
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We refer to §4.2 of [28] for the standard properties of convolutions with mollifiers.
In the sequel we assume that ¢ takes value in a countable set.

Proposition 2.1. Let §2 be an open subset of R™, h(z,2) : Q@ x R" — R a function such
that

i) for every z € R™, the function h(-,z) is Lebesque measurable on €,
ii) for a.e. x € ), the function h(z,-) is convexr on R",
iii) there exist a(x) € L*(Q) and b € R satisfying
—a(z) +b|z|" < h(z,2), p>1, (7)
for a.e. x € Q and for every z € R".
Then the functional

H(u) :/ﬂh(:p,Du(x))dx

is lower semicontinuous on WP(Q) with respect to the weak topology.

Proof. Cf. Example 1.24 of [21]. O
Proposition 2.2. Let Q2 be an open subset of R™, h(z,z) : Q@ x R" — R a function such
that

i) for every z € R"™, the function h(-,z) is Lebesque measurable on S0,
ii) for a.e. x €KY, the function h(z,-) is continuous on R™,
i) there exist a(z) € L'() and b € R™ satisfying
h(z, 2)| <alz) +0l2",  p=1,
for a.e. x € Q) and for every z € R™.
Then the functional

H(u) = / B, u(z))da
Q
is continuous on LP(S)) with respect to the strong topology.

Proof. Cf. Example 1.22 of [21]. O
Definition 2.3. Let © be an open subset of R" (p, ¢,0) and 1 < p < +o00. We will say
that a function w is in W}?(Q) if w € LP(Q2) and the distributional derivative g—z exists
and belongs to LP(£2).

Remark 2.4. We observe that it is possible to give the following characterization of
WP(Q) (see also Theorem 2, section 4.9 in [28]):

Wpl’p(Q) = {w cL”(Q):w(-,0,0) €W ((a,b)) ae. (p,0)€ (c1,dy) x - X (Cp_1, dn_l)}.

In particular for a.e. (p,0) € (¢1,dy) X+ X (¢h_1,dn_1), w (-, p, @) is absolutely continuous
in [a,b)] .
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Let w be in W;P(Q2). We define

lhysoey = 1] H

I llyw10 0y 18 clearly a norm on W, ().

Theorem 2.5. (Wl}’p(Q), ||'||Wp1,p(Q)) is a Banach space.

Proof. Cf. Proposition IX.1 of [10]. O

Theorem 2.6. Let Q = (a,b) x (¢1,dy) X -+ X (¢h—1,dn—1) and 1 < p < 4+00. Then there
exists a bounded linear operator

T: Wpl’p<Q) — LP ((Cljdl) XX (Cn—ladn—l)) .
such that
(Tw) (9, 0)) = w(a,,0)  for all (p,0) € (c1,dr1)x X (1, dnr) ,w € WP (Q)NC(Q)

Proof. The proof can be simply achieved by using the estimate

"o
<
wiaeol< [ |

_pw (87 P, 0) ds + "U} (T, 2 9)|

for every r € [a,b], for a.e. (¢,0) € (¢1,d1) X - X (¢p_1,dp—1) and for every w € Wpl’p(Q).
]

Definition 2.7. The function T'w is called the trace of w € Wpl’p(Q) on 0f). In the sequel
we denote the trace Tw with w™.

Definition 2.8. Let Q be an open subset of R" (p, ¢,6) and let w be in L' (Q). We will
say that w is in C () if

sup/ w—dpdapd@ < 400 (8)

el

where [ = {¢p € C! () : || < 1}. In this case we will moreover define

—sup/w—dpahpd@ 9)

pel

0
Remark 2.9. If w € C (2) then 0—1: (in the sense of distributions) is a bounded Radon

measure with total variation expressed by (9). O

Remark 2.10. If g—w € L' (Q) then
p

b

(cf. [30], Example 1.2 pag. 3). O

Ll



516 G. Cardone, C. D’Apice, U. De Maio / Lavrentieff Phenomenon and ...

Theorem 2.11. Let {wy}, be a sequence of functions in C () such that w, — w in
Li.(Q). Then it results

loc

awh

T (1)

h—o00

‘ < lim 1nf

In particular, if the iminf in the right hand side is finite, then w € C (2).
Proof. Adapt the proof of Theorem 1.9 of [30], pag. 7. O

Let w be in C (2). We define

ow
ol = ol + [ |52 12
@) veyt |15,

Ill¢(qy is clearly a norm on C ().

Theorem 2.12. (C (), H-||C(Q)> is a Banach space.

Proof. Cf. [30], Remark 1.12, pag. 9. O
Lemma 2.13. Let Q = (a,b) x (c1,d1) X -+ X (¢p-1,dn—1) and w € C(Q). Then there
exists a (unique) function wt € L' ((c1,dy) X -+ X (¢n_1,dn_1)) such that

lim L [750 [T (p,0,0) — wt (g, 0)| dpdipdd = 0

g1—n On—1—1 a

a.e. (0'1, .‘,Un_l) S (Clydl) X - X (Cn—ladn—l) .

Moreover if ¢ € C! (Q) we have (in distributional sense)

d1 dnfl
oY B ow n
JwSoptoas =[50 = [ [ (0.0)0 (0.0.0) dpas.
Q c1 Cn—1

Q

Proof. Adapt the proof of Lemma 2.4 of [30], pag. 32. O]

The function w™ defined on (c1,d;) X -+ X (¢,—1,d,—1) is the trace of w on the left side of
@; in the same way we define the trace w™ on the right side.

Proposition 2.14. Let Q1 = (r,s) X (c1,d1) X -+ X (Ch1,dn_1), Q2 = (5,t) X (c1,dq) X
X (Cp_1,dn—1) and let wy € C(Q1), wy € C (Qg) Let Q = (r, ) X (c1,dy) X -+ X (¢p_1,dp_1)
and let w : QQ — R defined by

w1 m Ql
w = _
Wo in Q.
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Then w € C(Q) and

L5 =L % ]
Qlop o @

Proof. Cf. [30], Proposition 2.8, pag. 36. [
Lemma 2.15. Ifw € C(R) and & (¢, 0) is a continuous function on'Y then wé € C (R).

Ow,
dp

8w1

dy dp—1
B [ [T o)~ wf (o,6)] s

Moreover
9 (wé)
dp

as measures on R and, if given a measure v we denote by |v| its total variation measure,

we have
d(wé)| . |ow
‘ p )_m‘@_/f

ow
_58_[)

Proof. Cf. Lemma 8 of [18]. O

In the sequel we will denote by |-|, _; is the (n — 1)-dimensional Lebesgue measure.

Definition 2.16. Let w be in L' (R) and let & (¢, 6) a continuous function on Y such
that w¢ € C(R). Let Z = {(¢,0) €Y : £(p,0) =0} and assume that |Z|, , = 0. We
define the trace w* of w on the left side of R as

wt = (wg) a.e. inY. (13)

Now let us introduce the following transformation into polar coordinates in R", defined
by the diffeomorfism

J:(p,p,0) € (0,400) XY — (21, ..,2,) € J((0,+00) X Y)

such that

x1 = psing,_ssing,_ ;3 - -sinyssin @, cos (14)
Ty = psine,_osing, 3 - -sin sy sin p; sinf
T3 = psing,_ssinp,_3 - -sin @, cos @1
Ty = pSiN@, 2SINE, 3 COS Py

Tp—o = pPSINQ,_oSINQ,_3COSPY,_4

Tp_1 = pPSIQy_2COSP,_3
Tp = PCOSPp_2

where ¢ = (¢1, ..., pn_2) € (0,7)" 2
Let us remember that the jacobian of J is

‘8(301, s L)
A(p, »,0)

— pn_l Sinn_2 Pn—2 Sinn_B Pn—3 " Sin2 P2 sin P1- (15>
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Moreover let us define

w(p,p,0) =u(psing,_osing, 3 - -sin @y sin @y cosb, ..., pcos v, _2) . (16)
Lemma 2.17. Let u € W'P(B), w defined in (16) and & (¢, 0) be a continuous function
onY. Then w € C(R) if and only if Ew € W' (R).

Proof. Let us suppose that &w € C(R). Then

sup/ §w8—¢dpdgpd9 < 400
ver Jr~ Op

where I = {1y € C! (R) : |¢)] < 1}. Then there exists a constant k& > 0 such that

0
/ W)\ 1odpdd < k. for every v € I (17)
r Op
Now we observe that the distributional derivative gw is of function type, because
o
w e W'lifp(R) being defined as in (16). So by (17) we obtain the thesis. O

3. The computation of the relaxed functional

Let B the unit ball in R"*, (U,7) = L' (B) endowed with the strong topology, X = Lipj.
the set of locally Lipschitz functions on R"; let

flz,2)=y¢g <£> [z, )] + Y(z, 2) = (x1,..,Tpn), 2= (21,...,2n) € R"  (18)

=) |«
where g(x) and ¥(z, z) are the functions given respectively in (2) and (3).

We can observe that, by (3), f (z, z) only verifies a non standard growth condition:

2" < f(x,z)sm%pu@z)(x,z)g

_1 e
< qT| | q(n—1)/(q— 1)+ ’Z‘q—l—i/)(ﬁ Z)

where 4= Lig|a=D/=D ¢ 11 (R") if ¢ > n.

Let € is the unique Y-periodic function such that, passing to polar coordinates in R",

g (%) =¢(p,0)  for every (p,0) € R". (19)

Let

J5 [z, Du)dx uwe W' (B)
Clu) = {+oo ue L' (B)\WY(B) ,

F =G|y, (20)
and F (u) be defined by (1) for every u € L' (B).
We will hold these notations still troughout all the section.
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Lemma 3.1. Ifu ¢ W' (B) then F (u) = +oo0.

Proof. By contradiction, let u ¢ W' (B) and F (u) < +oo.

Then there exist a sequence {uy}, C Lipio., m > 0:

i) up — u in L' (B) as h — +oo
i) [y |Dup|’dx < F(up) <m  for every h € N.

Since u;, — w in L' (B) we have

. 1/ . 1/
up = — uplder — u = — u| dx. 21
VA 51/, 2y

By the Poincaré-Wirtinger inequality there exists m; € R:
[un = Unllyrop) < ml/ |Duy,|? dx < mym. (22)
B

By (21) and (22) we can suppose {uy}, bounded in W7 (B), so that by the reflexivity
of this space we can assume that

up, —=u  weakly in W (B). (23)

Then we have u € WP (B), that is a contradiction. O

Let w € L*((0,1) x Y'), Y periodic, 0 < & < 1 and set

c p<e, (p,0) e R,
w(p, p,0) = w(p,p,0) e<p<1 (p0) e R, (24)
w (2= p,p,0) 1<p<2 (p,0) e R

Proposition 3.2. Let u € W' (B) N L>®(B), w be defined by (16), £ by (19) and n by
(4). If F (u) < +oo then E&nw € W' (R) and

ceR

2m
_ | L
P2 [ s idesmin [ [ eo0pnt0) o (2.0) ] dpas.

Proof. Let {uy}, C Lip. be such that u, — w in L' (B) and h}ILIl infF(uy) < 4o00.

Let first prove that
/¢(x,Du)dx < li}lzninf/ (x, Duy)dx. (25)
B B

Obviously we can assume that li}rln inf [, 9 (x, Dup)de < 4oco. As in Lemma 3.1, there

exists a constant k such that [[us|y1,p) < k and we can take up — u in the weak
topology of W' (B). Then by Proposition 2.1 we obtain (25).
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Moreover we have for every h € N

Lo () e = [ 0mio|

wy, (p, p,0) = up (psin g, _osin@,,_3 - - sin @y sin ¢ cos b, ..., pcos @, _2),
for (p,,0) € (0,1) x R*%.

dpdpdf (26)

where

Let ¢, = uy, (0) = wy, (0, ¢, 0), for every (p,0) € R*1.
By Theorem 2.6, we have that {c,}, has a converging subsequence to c.

0,cp,

If we set yp, (p, ¢,0) = wh “h + & — ¢, we have that Eny, — Enw®© in Lt (R), where w,’
and w’° are given in (24).

Then by Theorem 2.11, Proposition 2.14, Lemma 2.15 and Definition 2.16 we get

0,cp
lim inf / |2 dpdpds = limint / gn‘aw dpdpdd (27)
h ap h ap
0.
— liminf / en |22 dpdipds > / 9(gm)
he Jr | Op Rl Op
Then &nu’© € C(R) and so énw € C(R). By Lemma 2.17, &nw € W)'(R). We have
9 (Enuw’*) / dw o _
— | = 577——1—/ / Enlw™ (¢, 0) —¢| dpdf 28
/R dp R dp [0,7"2Jo | ( ) ’ (28)
> /f'r]‘a—w +min/ /2ﬁ§n‘w+(<p 0) — c| dpdd
~ Jr7 | 0p] c€R Sz Jo ’ '
The thesis easily follows by (25), (26), (28) and (29). O

Remark 3.3. If we set ¢ (¢) = f[o a2 fo% En|wt (¢, 0) — c| dedf, then if ¢ # +oo it

can easily be seen that 1 is continuous and coercive so that there exists ¢ such that

¥ (€) = min ¢ (c). 0

In order to prove the opposite inequality, we state the following proposition.

Proposition 3.4. Let u € W'?(B) N L*(B), w be defined by (16), & by (19) and n by
(4). If E&nw € WEY(R), then F(u) < +oo and

ceR
[0,7]" 2

/f x, Du)dr + min / /§ (p,0)n(p) |w+ (p,0) — c‘ dpdf (29)

Proof. Let us consider the function

1
o(x) = EE such that 0 <~y < g - 1. (30)
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Let us consider the following sequences

2=

1 if|7] < (h+1)
en(x) =40 if|z| > (h)"~ (31)

1

p(x) = h if (h+1)77 < Jz| < ()

=

and, for every ¢ € R,
= con(x) + (1 — ¢n())u(x) (32)

up(z)
for every h € N and u € W,2*(R™). Obviously

Duy, = (1 — pp)Du + (¢ — u) Dy, (33)
Let us prove that

2

lin}L inf/f(x, Duy,)dz < /f(x, Du)dx + / /f (p,0)n(p) ‘w* (p,0) — c‘ dpdf.
B B [0,7x]""2 0
(34)
Now we prove that

lin}linf!g(’x‘) |D“h’ /gn‘ / /5 0.0 w (,0) — c| dipdf.

[0,7]" 2
(35)
For every h € N, we have

o) B« o) g

fol)

/Bg <1> (1= sthIDu, N g < (37)

|z]

[ a(z)ema,,
B—Bj 11 |z ||

We have

T
8y
=
s
™
GI
N———
— @
B
ﬁ/
=
IN

where B, = B (O, 11).
(h)7

We observe that, by Lemma 2.17, we have that

D
/ g <£> wdx = / fn‘ ‘ dpdpdf < +o00.
s~ \lz[/ |zl
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Then, by B.Levi Theorem we have

heJpop,” \lzl/) |z B \lz[/ ||

() R [ (2) B
Moreover

/ ; (£> 1{(c — u>€¢h’$>’daﬁ _
B || ||
— / 1 1
{xEB:(thl) 7 <|z|<(h) ’Y}

and so

Q

(1) [((c - Eﬁw,xn re

T

N
VR
s
N——

¢ —uldz.

/ 1 1
{xEB:(h-i—l) 7 <|z|<(h) 7}
Passing to polar coordinates, setting

w(p,p,0) = u(psin g, _osin @, _3 - -sin pg sin 1 cos b, ..., pcos Y, _2) .

it results

T
/ N . g( ) Z+n|c—u|d:c:
{:ceB (h+1)"7 <|z|<(h) W} || ||

N 2 (40)
:/hl 1/0] 2/ 7+1 (¢, 0) () [c — w| dpdpd?.
+1) 7 Pk

Since &nw € W' (R), we can consider Enw™ for p = 0 (given by definition 2.16)

1
(h) 7
/(h 1)_1/[0 | 2/ p%q (0, 8)n(p) |c —w| dpdpdd <
+1) 7 "
(h)~ 2
S/( 1/ ] 2/ pv+1 (¢, 0 U(%O)\C—wﬂdpd@dwr (41)
h+1)" 7 J[0,7]""

l
(h) 7 2m
+/ 1/ / —f 0, ) n(e) lw™ — w|dpdpds.
"3 Jomr2 o 7 (e 0)n()| |

Q\H

Then, since f

i1yt 7+1d’0 = 1, by Fubini Theorem
h+1) ,0

1

(h) 7 2T ~
—=E& (0, 0) () |c — w' | dpdipdf =
/(h+1)'1v /[o,ﬂ]n—Q/o prt (,0)m( )| ’

1
I (h)~ 7
)
ool [T L @
[0,x]" % Jo ) (h+1)"7 P
=/H | et.000(0) e~ | doao,
077_(_n—2 0
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We have, by Fubini Theorem and the first two lines of Proposition 2.6 of [G],

[

ol 27
Y
) —f 0, ) n(p) lwt —w|dpdpdd =
[ [ [ el =
(h)~
+
0)n(p) |lw"™ —w|dpdedd <
[ =T

Q\*—‘

(h) A(&nw)
= N ‘dydpdgde <
[0,7]" /0 /(h+1 ’1% Pt / Jy ( ) 1
(7 5 w) W3
= / / / 77 a2 0>‘ dydpdd _1 v+1d/) =
(0.7 0 0 1 (h+1)"7 P
2 p(h) Y
B L (0,0,0)| dpdipde
07" Jo  Jo
So by (43)
3 _1
w7 o (h) 7 8
1§ (0, 0) n(p) {w+ - w‘ dpdpdf <
o+
(h+1)~7 (0" 7% 0 o2 0D
Moreover by Lemma 2.17, then
o ()
Iy TP
[0,7]" ™ 20 0

So by (39)+(42), (44) and (45)

11{}/9(%) '“C‘ﬁﬁ*"h’x”dm / 7§<so,0>n<so>|c—w+\dsode.

By (36), (38) and (46) we have

hrnmf/g(| |) |<Duh’ >|dx§
T

— , c—wh| dpdd.
/En‘ap’ /[oﬂnzO (0. 0)n(p) | | dep

Now let us prove that

lim /1/J(x,Duh)dx:/1/J(x,Du)dx
B

h—+o00 B

where (uyp,), is given by (32).
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(43)

’ddd&

(44)

(45)

(46)

(47)

(48)
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We have that
lim / |\ Dun|? dz = / \Dul? da. (49)
h JpB B

In fact, by (33) and convexity, for every A € (0,1)
[Dupl” < X7 Je —ul’ [Denl” + (1= AP [1 = onf” [Dul”. (50)
Let us observe that (), is a decreasing sequence such that

lifrlngoh(x) =0, for every z € B\{0}. (51)

By (51) and B.Levi Theorem, we obtain that
li}gn(l — / 11— onl” |Dul? dz = (1 — / | Dul? d. (52)
Moreover, taking E, = {x e€EB:(h+ 1)_% < |z < (h)fi} :
0< A1‘1"/8 ¢ —ul” [Dpn[” dz < N'7P <C+ HUHLw(m)p/E [Del” da. (53)
h

We have |Dy|" € L'(B), because |Dp|’ = and 0 < v < E—1; since li}rln |En|, =
p

|x|p(v+1)

we obtain by absolute continuity of the integral

hm | D" dz = 0. (54)

Ep

By (50), (52), (53) and (54) we obtain
hmsup/ |Duy, [P dx < (1 — / | Du|” dz.
Passing to the limit on A — 0, we have
limsup/ | Dup,|P dx < / | Dul? d. (55)
h B B

Moreover by (55), we have u; — u weakly in W'?(B), and so, by Proposition 2.1, with
h(x,z) = |z|”, we obtain

/ |Du|” dz < lim inf/ | Duy,|” dz. (56)
B h B

So by (55) and (56), we have (49).
Moreover, since Duy, — Du weakly in LP(B), by (49), we obtain that

Duy, — Du strongly in LP(B). (57)
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So by (57) and Proposition 2.2, we have (48).

Now we prove that there exists a sequence vy, in Lipj,. such that v, — v in L'(B) and

hmlnf/f x, Dvp,)dx < /f x, Du)dz+ / /f ©,0)n(p) |w (¢, 0) — c|dedd. (58)

[Oﬂ'n 2

Let us define u; the regularization of u;,. Let us prove that

e—0

lim / f(z, Due )z — / F(z, Dup)dz. (59)

In fact by (31), since Du5, = 0 on Bj19 and € small enough

Dus, Dug,
/ g (i) Ku—wdx :/ g (i> |<u—h,’lx>|dx, ¢ small enough (60)
B || 2] B—DBj 4o || ||

where B;, = B (O, 11).
(h)?

By the equiabsolute continuity of Duj, respect to e, we have the equiabsolute continuity
of the integrands in left side of (60). Then by Vitali’s convergence Theorem, we have

Dus D
i [ g (2 WP, / g (2 Pw ), (61)
=0 Jp" \Jal) o] po\lz[) Tzl

Moreover, since Duj — Duy, in LP(B), for ¢ — 0, by Proposition 2.2 it results

lim/¢(m, Dui)da::/qb(m, Duy,)dz. (62)
B B

e—0

and so by (61) and (62), we obtain (59).
By (59), for every h € N, there exists 5, such that

/f(l',DuZh)dflf < /f(x,Duh)da:+ %
B B

So
li}rlninf/f(:c,DuZh)d:c < li}rlninf/f(a;,Duh)dx.

By (34), we obtain (58) with v, = u;". For the arbitrariety of ¢ by (58) we obtain the
thesis. 0

Theorem 3.5. Let u € W' (B). Then F (u) is finite if and only if Enw € W) (R);

moreover
/f x, Du)dx + mln / /f ©,0)n(p) [w" (p,0) — c| dpdd (63)
0 71—]" 2

Proof. If uw € W'?(B) N L>*(B), (63) follows by Propositions 3.2 and 3.4; if u €
WP (B)\L*(B), (63) follows by Lemma 2.2 of [16]. O
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4. An example in which Lavrentieff phenomenon does not occur

Now we study the case in which instead of the function given in (18), we consider, for
n =2,
2l

]

We show that the presence of the Lavrentieff phenomenon, while depending on the non
standard growth condition of the integrand, is not implied by this.

+ |z[” l<p<2 2= (21,29), 2 = (21, ) € R%.

f(m,z) =

Let us consider the functional

/B f(z,Du)dz  uwe WY (B)
ue L' (B)\W" (B) ,

Let us define F = G |x, where X = Lipi,.(B).
Let us first state the following lemma:

Lemma 4.1. Let (ap), a non negative sequence such that there exists v > 0 such that

Then

Proof. It results

ghah:io (Zah> >Z “y = +o0.

Jj=1 \h=j

and so the thesis 0

We have the following result

Proposition 4.2. Letu € W'?(B)NL>(B), w be defined by w (p,0) = u (pcosb, psinf),
€ (0,1), § € R.

If
Du
/ | |dx < +o00.
2]

then w € C(R) and w*(0) is a.e. constant in [0, 27].

(i [ o]+

Proof. We have

a ; dpde. (64)
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By (64) and the boundedness of w we have that w € W!(R), and so by lemma 2.17 we
have that w € C(R)

Let us suppose that w™ is not constant. Then there exist 6; and 6, € R such that 6; < 0,,
wh(f) = A, wh(0;) =X and A > \.

By definition of trace, fixed ¢ > 0 such that A — A — 20 > 0, there exists € > 0 such that,
for a < e,
1

1
52 /.. w(p,0)dpdd > A—0c  and 57 /.. w(p,8)dpdd < X+ o (65)
2 1

where R} = (0,a) X (6; — «, 6; + a), i = 1,2. Let us observe that (p,0) € R if, and only
if, (p,0 + 65 — 0;) € RY. We have

ow(p,n) ‘ a0

0+62—01
w(p, 0+ 05 — 01) — w(p, 0)] < /
6 877

Integrating, by (65), it results

01+«
/ / [w(p, O + 61 — 02) —w(p,0)| dpdd >
0 01+
> / / (p, 0+ 01— 03) —w(p ,Q)dpde‘ =
0

= / w(p,Q)dde—/ w(p,H)dde'Z
> 202 (A — X — 20).

On the other hand

01+a 0+4-02—61

By (66) and (67), we obtain

w(p,n)
o dndp.  (67)

) ‘ dndpdf < 2« /
(0,0) X (01 —,02+a)

/ M‘dndea(A—/\—%)
(0,0)% (O1—cfata) | ON
and so
/ w(p,n )‘dd > @ (A = 20). (68)
(0,c) x(0,27) on
Let us define, for every h € N
1
ah — E
and
e | dw(p, n)
ap = / / —’ dndp. (69)
0 Qp41 an
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Then by (68),

+o00
1 A—A—2

S an > > LAZAZ29, e (70)
h=j J 2

By (69) and (70), we have

w o0
— | =|dpdn > hay,.
Rp‘an ; "

By Lemma 4.1 we get a contradiction and so the thesis. U

Proposition 4.3. Let w € W' (B) N L>(B). Then
= D
Flu) > / \Dul? dz +/ 1Dul .. (71)
B B |7l

Proof. Let {us}, C Lipi(R?) such that u, — w in L' (B). Then

liminf/ | Duy, [P dx < liminf/ f (z, Duy) dz.
h B h B

We can assume that h/{n inffB fv(x, Duy) dx < +00. So, as in Lemma 3.1, u, — u weakly
in Wh?(B).
Then by Proposition 2.1

D
/|Du|1’dx+/ || ||dx<hm1nf{/ ’Duh’pdl‘—i—/ | ‘xu|h|dl}
B

and so, by definition (1), (71) follows. O

Proposition 4.4. Let u € W'?(B) N L>*(B). Then

= D
F<u)g/|pu|pdx+/ 1Dl
B B |zl

and so w € C(R). By Proposit1on 4.2, wt is constant, then let us pose wt = ¢, with
ceR.

Proof. We can assume that fB e < +o0. Then, by (64) fR ow dpdgpd& < 400

Let oy, the sequence as in (31). Moreover for every h € N, let u;, the sequence

un = Cpn(x) + (1 — pn(@))u()

for every h € N, and u € W'P(R?).

loc

D D
liminf/ mdxg / Mdx (72)
h 5 |zl B |7l

Let us prove that
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and

lim/ |Duy,|” dx :/ |Dul? dx.
hJB B
For every h € N, we have
D (1 —vn)D ¢—u)D
/ | uh| / | ©n) U| +/ (€ —w) %\dm
B |zl \:vl B ||

(1 —pn)D D
JRLEEALT Y TP
|| B—Bp41 ||

where Bh:B<0, 1 )

We have

()7

Then, by B.Levi Theorem we have

) |Du| /\Du|
lim
h JB-Bj1
and so
hm/l —¢n)Dy| < |Dyf
|z] s |2
Moreover

[le=upal,,

o .
{semmin Tz} 1ol
Y=
= |¢ — u| dz
/{meB;(hH)‘%gﬂg(h)—%} |7

Passing to polar coordinates, setting
w (p,0) =u(pcosh, psind), pe(0,1), 0 eR
it results

1
5

¢ —uldx = ¢ — w|dpdf
¥
/ ||’y+2| ’ / / +1‘ ‘p
1
(h+1)" 7

[aeB. i <o}

We have, by Fubini Theorem and Proposition 2.6 of [30],

;
/h / erl|C—w|dpal8—
+1)”
27 2w N 7y (h)
w|d d6</ / /
/ /h+1 % [dp K (a7 P

-

2

ow

dy
ow

1

A

1

~ 2 p(h) 7
—(y,0 dyd@/ ) dp :/ /
5’ ‘ (h+1)"7 Pt 0 0

o —(p, 9)‘ dpdf.

529

(73)

(76)

(77)

-, 9)’ dydpdt) =

(79)
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Since g—lg € LP(R) and w € C(R),

x (h
, ow
h}rln/ / a—p(p, 0)‘ dpdf = 0. (80)
0o o
So by (77)+(80), we have
im / [E@=w)Denl , _ (81)
h ]

By (74), (76) and (81), we have (72).
Moreover we obtain (73) as in Proposition 3.2. O

Theorem 4.5. Let u € WP (B). Then

E(u) :/|Du|pdx+/]3%dx (82)

B

= D
where F(u) = 400 if/ |—|u|d.73 = +00.
B

|z

Proof. If w € W'?(B) N L>*(B), (82) follows by Propositions 4.3 and 4.4; if u €

Whr (B)\L>(B), (82) follows by Lemma 2.2 of [16]. O
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