Journal of Convex Analysis
Volume 8 (2001), No. 2, 555-568

The Category Cvp, v-Cmod and MP

Helmut Rohrl

9322 La Jolla Farms Rd.,

La Jolla, CA 92087-1125, USA
hrohrl@math.ucsd.edu

Dedicated to Professor Holger Petersson on the occasion of his 60th birthday.

Received April 17, 2000

This paper deals with the halfing morphism of Cvp, y-convex modules, where Dy is the semiring of
non-negative dyadic rationals, and its use in the explicit construction of the left adjoint to the functor
Op,,n : Dp-Mod — Cwp, n-Cmod that assigns to each Djy-module its canonical C'vp,, y-convex
module. Furthermore it is shown that C'vp, y-Cmod is isomorphic to the category MP of midpoint
algebras .
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1. Introduction

For the purpose of this paper C' stands for a commutative cone semiring, that is a partially
ordered commutative semiring with 0 as its smallest element, and with the property that
1

2 =1+ 1 € C has a multiplicative inverse 5. The ring D := Z [%} of dyadic rationals

contains the commutative cone semiring Dy of non-negative elements.
Let N be any infinite class. By a finitary N-convexity theory over C' is meant a class I’
of maps a,, : N — C with the following properties:

(0) every a, € T has finite support supp a, and > {c, : n € supp .} < 1;

(i) for every n € N the Dirac map d7 (value 1 at n and 0 elsewhere) is in I

(ii) for every a, € I'and 8% € T, n € N, the map < ag, 82 > given by N > n
> {anB :m € supp .} isin I

The class Cvoy of all maps o, : N — C with finite support satisfying > {a, : n €

supp a, } = 1 is such an N-convexity theory. It is called the classical N -convezity theory

over C. Our main interest is in the classical convexity theory C'vp, y over Dj.

Given a (finitary) N-convexity theory I', a set X together with a map I' x (N, X) >
(e, %) =< ay, x* >€ X is called a I'-conver module if

(") for every n € N and z* € (N, X), < 0%, 2% > = a™;
(ii") for every o, € T, B2 € (N,T), and 2* € (N, X), < ag, 2 >, 2" > =
<og, < ﬁE,I* >.
Here, (N, X) stands for the conglomerate of all maps N — X, (N,T") the conglomerate

of all maps N — I, and < Y, z* > for the map N > n — < 8", z* >€ X. Sometimes it
is convenient to write Y {a,z™ : n € N} instead of < a,,z* >. Since < a.,z* > depends
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only on the values 2", n € supp a, (see [1], 3.5, [2], 4.4, and [3], §2) we may also write
> {a,z" : n € supp a.} instead of < a,z* >. In particular we use 2’ + 12" instead of

!

/ ! 7 /
< %5:} + %5;‘ ,x* > where ' := 2™ and 2" := 2™ .

A map f: X — X’ between two I'-convex modules is said to be a morphism from X to
X' if for all a, € " and 2* € (N, X)

f(<ay, " >) =< oy, fN(2*) >

where fV := (N, f) is the map induced by f. Hence we have the category I'-Cmod of
I'-convex modules and their morphisms, with compositions the set-theoretical ones. I'-
Cmod is an algebraic category. In [1], [2], and [3] various identities for I'-convex modules
can be found.

Given any homomorphism p : C' — C’ of semirings there is a functor p,, called “restriction
of scalars", from the category C’-Smod of C’-semimodules to the category C-Smod.
Similarly if ' is a finitary N-convexity theory over C' and I" is a finitary N-convexity
theory over C” such that for any a, € I' the map p~ (a,) = p™ oq, is in I, then there is the
functor p, : I'-Cmod— I'~-Cmod that assigns to each I'-convex module X’ the I'-convex
module p,(X’) given by the composition I' X (N, X') 3 (a, 2*) — < p™(ay),2* > € X'.

In section 2 we discuss the halfing morphism h,, for any Cve y-convex module X. If A, is
an automorphism of X then X becomes a Dy-semimodule (X, +). For any Cvg y-convex
module X, h, given rise to a congruence relation ~ on X x Ny and X x Ny/~ inherits the
structure of a C'vg n-convex module such that the map X 3 x — (2,0)/~€ X x Ny/~
is a morphism jx.

In section 3 we prove that Cvp, y-structure on X x Ny/ ~ equals that of Op, nv(X X
No, +) where Op, y(M) for any Dy-semimodulo M is the obvious Cvp, y-structure on
M. This observation enters into the explicit construction of the left adjoint of the functor
Op,,n from the category Dy-Mod of Djy-modules to the category Cvp, y-Cmod. The
corresponding universal arrow is

X J—X> ODO,N(X X I\To/rv7 —|—) — ODO,N(X X NO/Nv +>2 - ODO,N(X X NO’ +)2/E’

where the map in the middle sends each (z,n) to ((a,0), (z,n)) and the map on the right
is the quotient map with respect to the Bourne relation E .

The last section deals with a structure that is well known in universal algebra. It is called
“commutative binary mode" (see [4], p. 91), and is a special case of an “alternation
groupoid" (see e.g. [5]) and of a “espace medial surcommutative" (see [6]). We prefer to
call a set equipped with this structure a “midpoint algebra". These midpoint algebras
and their homomorphisms from a category M P and we show that MP is isomorphic with
CUDO’N—CmOd.

I wish to thank Professor J. D. H. Smith for supplying me with the references [4], [5], and [6].

2. The Halfing Morphism

Let X be a Cvg y-convex module. For any a € X let h, : X — X be the map given
by he(z) := ta+ tz,2 € X. Moreover, for any a* € (N, X) denote by he the map
N > n hen € Set (X, X).
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Lemma 2.1. Let X be a Cvg n-convex module. Then for any a € X and A* € (N, X)

(i) h’;(x):2];;1 a+ 55w ,keNandx € X;
(i)  hg is @ morphism X — X of Cvg,n- conver mdoules;
(i) < au, hag > = hea, o>

Proof.
(i). k = 1 is clear by definition. Suppose we have (i) for k. Choose z* € (N, X)
such that ™ = a and 2" = z,n € N\{n;}. Then < 6™ + 16" z* > = a and

< oM + 16 2 > = he(x),n € N\{m}. Hence

hk—l—l _hk h _ 2k_16n1 1677,2 15n1 1(x)‘IZI * o
a (37)— a(a(x))_<2—k[|+ﬁ[|v<§* +§*7$>>_

%1 1, 1. 1,
- <<T5D1+§5D27§6*1+§5* >,x > =
2k‘+1_1 1 i
= S Torn 531+2k:+1 0%, 2" > =
2k+1_1 1
= il a+2k+1x.

(ii). Let a. € Cug,, and z* € (N, X). Choose a bijection ¢ : N — N\{n;} and let
2" € (n,X) be such that 2™ := @ and 2#" := 2" n € N. Let furthermore g™ := ¢™

and 87 == 67" for n € N\{ni1,n»}, and define 372 by 52 := 0 and 87 = am,m € N.

p(m
Then (2 is in (N, Cvoy) and we have

a y L =11,
<Pl > =40 <oyt > ,N = Ng,
" ,n € N\{ni,na}.

Hence
* 1 n 1 n O _x 1 n 1 n O *
he(< g, x™ >) =< §§D1 + 5652,< B, 2> =< 555 + 5552,6* > 2" >

Next let 7 := 267 + %&f(") € Cven. Then hy(z") = < 07, 2" >,n € N, and thus
<o, hN@) > =<ag, <P 2> =<ag P> >

But for any m € N,

—sna SN2 O — 2 ’ !
and
1 1 1 if m=n
O — A _ cp(n) . — 2 ’ !
<ap Y > = fan(Gvn + 59" in € N} { i m= (),

whence h, (< a.,z* >) = < ay, hlY (z*) >. So h, is a morphism.
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(iii). This follows similarly to (ii) with these choices: ¢ : N — N\{no} a bijection;
2" € (N, X) given by 2™ := z and 2™ := a",n € N; 3" := %510(”) + %5,’}2,71 € NP =
07,n € N\{n1}, and 7;} = 0 and ;! = @y, m = p(m/). O

m

Proposition 2.2. Let X be any Cvc n-convex module and let a € X be such that h, is
a bijection. Define the binary composition + : X x X — X by ho(z+a') := sz + Lo/
Then (X,+) is a commutative monoid (with neutral element a) that is uniquely divisible
by 2 and hence is a Dy-semimodule. Moreover for any k € N and x,...,25 € X

. . 1 1
hy(oi+. . Foo) = ok +- ﬁx%.

Proof.

(0). ho(atz) = 3a+ 22 = hy(z) and thus atz = z.

(). ho(z+a’) = to+ 32’ = 32/ + o = hy(2/+2) and thus z+2’ = 2/+x.
(ii). Due to (2.1) and [1], 3.6, resp. [2], 4.5,

11 1,11 1, 111 11, 1,
=5Grtar) +5Gat+gr) =gGatgr) + 5 (52 + 527) =
1 1 1 o
= Eha(x) —|- Eha(x'+ ”) = ha(éx —|— E(xl—l—x”)) = hZ(l’—F(ZE,—FI”))

(ili). hq(z42) = 32 + 32 = 2. So each z € X is uniquely divisible by 2.
The final formula follows by an obvious induction argument. O]

Let X be any Cvg n-convex module. On X x Ny define the relation “~" by “(z,n) ~
(«',n/)" if and only if “there is a p € Ny with AV P(z) = RIHP(2/)".

Lemma 2.3. The relation ~ on X X Ny is an equivalence relation.
Proof. Straight forward. O]

Given the Cve y-convex module X we define the composition < ,  >. Cugn X (N, X x
No) — X x Ny as follows. Let (z,m)* € (N, X x Np) and denote by z* € (N, X) resp.
m* € (N,Np) the composite of (z,m)* with the appropriate projection of X x Ny to its
factors. Let furthermore o, € Cuoy, put § = Sq, m+ = »_{m" : n € supp a.} and
s" 1= 5 — m",n € SUpp Qu, resp. s" = 0,n & supp a,. Denote by he*™ (z*) the map
N3 n+— hi(z") € X and let

<, (2,m)" >i= (< o, BE™ (7)) >, S me )

Lemma 2.4. Let a, € Cvcy and B2 € (N,Cucn). The for any Cvc y-convex module
X and any (x,m)* € (N, X x Nj)

(i) < 0%, (z,m)* > = (2™, m"), neN,

(ii) <ag, < B9, (z,m)* > ~ < ag, 2 >, (z,m)* >.
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Proof.
(i). This is an immediate consequence of the definitions involved.
(ii). Put

59 = Z{m” :n €supp B¢} and s:= Z{Sq 1 ¢ € Supp .
Then for any ¢ € N

< B9, (z,m)* > = (< B9, RF™ (2¥) >, 57 >

and by (2.1), (ii),

<ap, <A, (z,m)* > = (<ag,ht (< 8e, hfP:m* (x*

)
= (< ap, < B2, R8T (W (7)) >, 5) =
= (< ap, B2 >, ho (RIS (2%)) >, 5).

>) > 8) =

On the other hand, when putting 5 := Y {m" : n € supp < ag, 82 >},

< ap, B2 >, (z,m)* > = (< ag, B2 >, hZO0H>1 (%) 5 5),

Since supp < ag, B2 > = U{supp ¢ : ¢ € supp a.} we have n €

559

supp <ag, Y > if an only if there is a ¢ € supp «, with n € supp 9. For such an n the

value of hg‘*’s*(hg*m’m* (z*)) at n equals hS~*"(hS"~™" (z™)) = h:~™" (2™), while the value of

ha aD’ﬁ*D>m*(fE*) equals hS~™" (z"). Hence (2.1), (ii), implies our assertion (ii).

]

Lemma 2.5. Let o, € Cvoy and let X be any Cve n-conver module. If (x,m)* €
(N, X x Ng) and (z,m)* € (N,X x Ny) satisfy (x,m)* ~ (z,m)*, which by definition

means (z", m") ~ (", m") for alln € N, then < a,, (x,m)* > ~ < a,, (T,m)* >.

Proof. Since supp «, is finite there is a p € Ny with AT *P(z") = K™ P(z") for all

n € supp ay. Put s:=> {m" :n € supp a,.} and §:= > _ {m" : n € supp a.}. Then

h2+§(h27m” (xn)> — h£+§+sfm" (xn) — h£+m”+§—m”+s—m" (xn> —

— hg—i—m”—l—g—m"—&-s—m" (:Z,n) — hg+s+§—m” (:Z,n> _ hg—i—s(hi—m" (i,n))
Due to (2.1), (ii), we obtain

RS (< o b (a%) >) = <, IR () > =
= < WP (3) > = B o, BT (3) >)

and our claim follows.

]

Proposition 2.6. There is a unique composition < , >: Cvcny x (N, X XNy/~) —

X x Ny/~ that makes X x No/~ a Cve n-conver module and satisfies

(<, (T, m)* >) = < a,, 7™ ((x,m)*) >
, for all o, € Dve n, (x,m)* € (N, X x Ny),

where 7 is the quotient map X x Ng — X X Ng/ ~.
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Proof. (2.4) and (2.5). O

Denote the map X 3 x +— 7(z,0) € X x Ny/ ~ by jx.
Proposition 2.7. For any Cve n-conver module X the map jx : X — X x Ng/~ is a

morphism of Cve n-conver modules.

Proof. Let o, € Cugy and 2* € (N, X). Denote by (x,0)* the map N > n+— (2",0) €
X x Ny. Then by (2.6)
<, jR @) > = <, ((2,00%) > =7(< a, (2,0)" >)
= (<, x" >,0) = jx(< a., " >).

[l
In the setting of (2.7) we denote, for any a € X, the map hj, (q): X xNy/~ — X xNy/~
by H,. With this notation we have

Corollary 2.8. For any Cvc n-convexr module X and any a € X the diagram

ha
X - T

Jx Jx

X x Ny/~ X x No/~

commautes.

Proof. Since jx is a morphism by (2.7) we obtain

Jx o he(x) = jX(%a + %@ = %jx(a) + %jx(x) = H, o0 jx(z). [

Proposition 2.9. For any Cvc ny-convexr module X and any a € X, H, is a bijection. In
particular, Hy(m(xz,n)) = m(z,n — 1) for allz € X and n € N.

Proof. Let x € X and n € N. Then by (2.6)

Holm(e,m) = 5(a,0) + 5(r,n) = 7(5(a,0) + 5 (¢, 1)) =
_ W(%hg(a) + %(x,n)) _ w(%a + %x,n) — r(ha(x),n) = 7(z,n — 1).

This formula proves that H, is a surjection. Next let H,(w(x,n)) = H,(7(Z,n)). Then
the preceding formulae show that H,(7(x,n)) = w(he(z),n),z € X and n € Ny, whence
we have 7(hy(z),n) = w(h(T),n) that is hl*P(hy(x)) = P (h,(Z)) for some p € Ny.
Thus AP (x) = h"™PH(Z) or w(z,n) = (%, n). So H, is also an injection and therefore
a bijection. O]

Due to (2.2) and (2.9), (X x Ny/ ~,+) is a Dg-semimodule. This Dy-semimodule is
cancellable under certain hypotheses involving X. They are stated in Proposition 2.11.

Definition 2.10. Let X be any Cve n-convex module. Then X is called
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(i)  cancellable at a if for all 2/, 2" € X, %a + %a:’ = —a +3 Lo 1mplies ' =a";

(ii)  weakly cancellable at a if for all z, 2’ 2" € X and n,n',n" p € Ny,
%h;z—l—n’—l—n”—i—p(x) 1h2n+n”+p( /) — lhn+n’+n”+p( ) + %hgn+n’+p(x//)
implies 2 +9(x") = h?'*+9(2") for some ¢ € Ny.

X is said to be cancellable if it is cancellable at any a € X. 0

Obviously cancellability at a of X implies weak cancellability at a of X.
Proposition 2.11. Let X be any Cvc n-convex module. Then

(i) the Dy-semimodule (X xNy/ ~, +) is cancellable if and only if X is weakly cancellable
at a;
(ii) X is cancellable at a if and only if jx; X — X X Ng/~ is an injection.

Proof. (i). m(x,n)+mr(z'

: (x >+7T(l’ n”) is equivalent with
Ha<7T(I7TL)—i-7T(I/,’I’L)) )

m(z”,n")) due to (2.9). Since

H,(m(x,n)+n(z',n')) = (QhZ( x) + 2hZ( ),n+n)

due to (2.6), the initial equation is equivalent with
n+n’ + 1 n 1 n ’ n+n’+ 1 n! 1 n ”
ha p<_h’a (.’ﬂ) + _ha (.CE )) = ha p(_ha ([L’) + _h‘a (iL‘ )7
2 2 2 2
for some p € Ny, which by (2.1), (ii), is the same as

(*> hZLJrn +n”+p( )+ hzn+n”+p (LE) hZLJrn +n”+p( )+ hzn+n +P<I )
2 2 2 2

Hence weak cancellability leads to h?'*9(z') = A *+9(2") for some g € Ny and thus to
(@', n') ~ (2",n") or m(z',n') = w(x”,n"). Conversely, cancellability of the Dy-semimodule
X x Ng/ ~ means that () implies 7(2/,n') = 7(z”,n") and thus h?"'*9(2') = h¥*9(2")
for some g € Ny. Hence X is weakly cancellable.

(ii). jx(2') = jx(2") is equivalent with (2/,0) ~ (z”,0) and hence with hE(z") = h2(x")
for some p € Ny. Since h%(2') = Ja+3hE*(a'), cancellability at a of X implies h2~!(z) =
h=1(z") and thus 2/ = z” by induction which means that jy is an injection. Conversely

if jx is an injection and 1a + 12’ = la + 32" then we have h,(2') = h,(z”), that is
(/,0) ~ (2”,0) and thus jx(2') = jX( ", Wthh leads to 2’ = z” and therefore to the
cancellability at a of X. m

3. The Functor Op, n : D-Mod — Cvp, n-Cmod
Let M be a C-semimodule. For a,, € Cvey and m* € (N, M) let

< e, m* >= {a,m" :n € supp a.}.

Note that in the finite sum on the right side supp a, can be replaced by any finite set
containing supp a.

Lemma 3.1. Let M be any C-semimodule. Then Cve yX(N, M) > (o, m*) —< a,, m*>
€ M makes M a Cvc,y-convexr module Oc,n(M).
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Proof. Straight forward. O

Obviously the assignment to M of O¢ (M) and to C-homomorphisms f : M — M’
of Ocn(f) == f is a functor O¢y : C-Smod— Cuve y-Cmod. Its restriction to the
full subcategory C-Mod of C'-Smod generated by the class of all C-modules is also
denoted by O¢ n. Note that C-Mod is a reflective subcategory of C-Smod and that

the reflector R¢ assigns to each C-semimodule M the C-module M?/~, where ~ is the
B
Bourne relation, the C-semimodule congruence relation, “(m, m’)~(m,m')" if and only if

“there is an mg € M with mg+m+m = mo+m+m’". The reflection r¢ assigns to each
M the composition of M > m + (0,m) € M? with the quotient map M? — M?/~.

B
Lemma 3.2. Let X be any Cvc n-conver module and let a € X be such that h, is a
bijection. Then Op y((X,+)) = pu(X).

Proof. In this proof we shall denote the operation of r € Dy on the element x of the Dy-
semimodule (X, +) by 7z. From the formula in (2.2) we obtain for all k € N, zy,..., 2, €
X, and ny,...,n, € Ny with ny + -+ +n, = 2"

ny . . N 1 . . . ) . ..
ﬁxl—i- . —l-Q—pr = ﬁ(nﬂﬁ— ) = RE (e ) =
n n ny n
=Rttt Q—Z% = plgp)ort - +P(2—Z)$p7

where the last sum is actually the composition in the Cvp, y-convex module p,(X). O

Lemma 3.3. Let M be any C-semimodule and let a € M be such that hy : M — M s
a bijection. Then (Ocn(M),+) = p.(M).

Proof. See proof of (3.2). O
Theorem 3.4. The functor Op, n : Do-Mod — Cuvp, n-Cmod has a left adjoint.

Proof. Although the existence of a left adjoint of Op, n, and indeed of O¢ n : C-Mod
— Duve n-Cmod, can be obtained from general principles we wish to present an explicit
construction of a left adjoint of Op, y based on the halfing morphism. Let X be a C'vp, n-

convex module, M a Dy-module, and f: X — ODO,NﬁM) a morphism of C'vp, y-convex
modules. Choose a € X and put mg := f(a). Define f: X x Ny/~ — M by

f(m(z,n)) = hoo(f(x)) — mo.

We claim that this definition makes sense. Firstly, since M is a Dy-module h,,, is a
bijection and indeed h;.! (m) = 2m —mg,m € M. Secondly, if 7(x,n) = w(2',n’) then
AP (z) = AP (') for some p € Ny. Due to (2.1), (ii), we have

1 1

Flhale)) = F(ga+ 52) = 5 (@) + 3 F(@) = by ().

Hence
Wt (f(x)) = f(hy TP (x)) = f(R2P(a")) = hiniP(f(x)
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and thus h "(f(z)) = h," (f(2')). Therefore f(m(z,n)) = f(m(2/,n’)). Next we show
that f is a homomorphism of Dy-semimodules. Using (2.1), (ii), and the formula in (2.9)
we obtain

[z, n)tn(@’,n) = f(H;' o Ha(r(z,n)+r(a’,n))) =

= U (G (@) + Ghaw)m 4 ) =

= Jlr(h (@) + P 1) =
= R (@) + hE ) — mo =
= T G (@) + SFR) — o =

= T B () i () o =

= I (G (F@) + gh () —mo =

Moreover, from the proof of (2.9),
f(Ho(m(z,n) = f(m(ha(x),n)) = hpp f(ha(2)) — mo =

= g (B (F(2))) =m0 = S (f(2)) = g = 5 Fl(,m).

Put g(w(z,n)) = f(n(x,n)) + mg. Since f is a morphism Op, y(X x Ny/ ~, +) —

Op,.n(M) of Cvp, y-convex modules, denoted by Op, n(f), g is also a morphism

Open(X X No/ ~,+) — Op, n(M) of Cvp, y-convex modules. In addition it satisfies

f = gojx. Denote the reflection (X x Ny/~,+) — (X x Ny(~,+)?/~ by ryx. Then
B

there is a unique homomorphism [’ : (X x Ny/ ~,+)?/~ — M of Dy-modules with
B

f = flory. Putryojx(a,0) = a and let ¢ := f' + ¢y, Where ¢, stands for the
constant map with value mg and some appropriate domain. Clearly ¢’ is a morphism of
Cvp,n-convex modules from Op, y((X x No/ ~,+)?/~) — Op, y(M) and we obtain

(on the set-level)
fo=gojx=(+em)ojx = (f ork +cm)ojx = f orkojx+cm =
= (9 = cmp) o7k 0 jx +mo =g ory o jx.

nx = 1’y 0 jx is a morphism of Cvp, y-convex modules from X to Op, n((X x No/ ~
,+)?/~). We claim that nx is a universal arrow. Already we have the factorization

of f through nx as f’, being a homomorphism of Dy-semimodules, is also a morphism
Opy.n(f") between the associated Cvp, n-convex modules. In order to prove uniqueness of
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the factorization it suffices to prove the uniqueness of g in terms of f. Solet h:O Do, N (X X
No/~, +)) — Op, x(M) be a morphism with f = hojx. Then h(w(z,0)) = f(z),z € X,
whence h is uniquely determined by f on {7 (2,0) : 2z € X}. Let n € N and let v € X.
Since 7(x,n)+7(a,0) = w(z,n) and H,(7(x,n)) = w(x,n — 1) we have

h(m(z,n — 1)) = h(Hy(m((x,n))) = h(Hy(7(z,n)+7(a,0))) =

= R(Hy(r(e, ) Ho(w(@,0))) = Sh(x(z,n)) + Sh(r(a,0)) =
1- 1
= §h(7r(a:, n)) + 5o

or

h(m(z,n)) = 2h(m(z,n — 1)) — mo = h,,. (h(7(z,n — 1)).

Hence an obvious induction argument shows that h is unique in terms of f, that is h = g.
From g we recover uniquely f as f = g — ¢y, and the first part of the proof shows that
f is a homomorphism. Thus ¢’ is uniquely determined by f. O

Definition 3.5. Let X be any Cvp, y-convex module. Then X is said to be imbeddable
in a Dy-module (resp. Dy-semimodule) if and only if there is a Do-module (resp. Dy-
semimodule) M and an injective morphism X — Op, (M) of Cvup, y-convex modules.

Proposition 3.6. Let X be any Cvp, y-conver module. Then X is imbeddable in a Dy-
module if and only if X is cancellable.

Proof. X is imbeddable in a Dy-module if and only if nx is an injection. Let =, 2’ € X.
Then nx(z) = nx(2') means that (0, 7(x,0))~(0,7(2’,0)), that is that 7(y, n)+m(z,0) =
B

7(y,n)+m(x’,0) for some (y,n) € X xNy. The latter is equivalent with H, (7 (y,n)hspacex*
—0. 3pt—|—7r(x,0)) H,(m(y, )+7T(x 0)) and hence with 7(3y + 1hZ(2),n) = w(iy +
th2(2'),n) and thus with h”“’( + $hi(z)) = hi*P(3y + 3h2(a’)) for some p € Ny.
By (2.1), (ii), the last equality is the same as
1
n+p 2n+p n+p 2n+p
(+ EHEP() + SR () = h() = SR,

So if X is cancellable and (*) holds then h2"*P(x) = h2"™P(z’) and therefore = 2/, which
means that 7nx is an injection and consequently X is 1mbeddable 1n some Dy- module
Conversely if X is imbeddable in some Dy-module and we have Sy + :,1: = 2y + 133 then
(%) is satisfied for n = p = 0, whence we obtain nx(z) = nx(x ’) and therefore r =1,

which means cancellability. D

Note that (2.11), (ii), furnishes a sufficient condition for imbeddability of a C'vp, y-convex
module in a Dy-semimodule.

4. MP and the Category of Cvp, y-convex Modules

Definition 4.1. A midpoint adgebra with underlying set X is this set together with a
single binary composition X X X 3 (z,y) — xy € X satisfying

(i) =z  forallz € X,
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(ii) TY = YT ,forall z,y € X
(ii) (xy)(uv) = (zu)(yv) ,for all z,y,y,v e X.

A morphism f : X — X’ of midpoint algebras is a map f from X to X’ that takes
products to products.

The category of midpoint algebras and their morphisms, composition being the set-
theoretical one, is denoted by MP.

Let X be a midpoint algebra and let z1,...,2, € X, where n = 2¥ and k € Ny. Define
inductively

(x) === (1. zn) = (21 xn) (B0 2y).

Lemma 4.2. Let n = 2% k € N, and let  be a permutation of {1,...,n}. Let further-
more X be a midpoint algebra and x1,...,x, € X. Then

(l’l .. :L‘n) = (xﬂ(l) c. :Bﬂ(n)).

Proof. By definition this is valid for £ = 1. Suppose that statement is valid for k. Let
m = 281 and let x1,..., 7, € X. Suppose that 7 is the transposition of {1,...,m} that
interchanges p and ¢q. We wish to prove the formula in (4.2) for 7 rather than 7. We may
assume p < q. If ¢ < 3 or 7 + 1 < p then the formula is valid by induction hypothesis.
Solet p < % and § +1 < g. Denote (z1,...,2p-1,Tpt1,...,2m) by (y1,...,ym 1) and

(Tmi1,. o Tgo1,Tgt1, - -+, Tm) Dy (21,...,2m_1). By induction hypothesis
(1. cxm) = (zpyr.. . ym_1) and (Tmyy...2p) = (T421. .. 2m ).
Hence

(X1 ... Tm)

8
bS]
<
lun
<
—
8
)
N
—
N
I\

N

—
—~
Ned
ISEREESE
<o
SRR RANR
L
N’ N N N

S
I3
|
—

— /I\T —
A3 eF »3
I
SERRSE RN
L
~— ~— ~— ~—
— — — —
I

N

a3

N
|
L

Tpyr - Ym 1) (ym . oym ) ((zp2r -

Since every permutation is a composition of transpositions the general formula follows. [

Lemma 4.3. Let f: X — X' be a morphism of midpoint algebras and let x4, ..., x, €
X, withn =2* and k € N. Then

Proof. By obvious induction. [

Let o, € Cup, n. Since a, has finite support there is an £ € Ny and a,, € Ng,n € N with
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4.4. an, = 5 ,n € N.
Obviously we have > a, = 2°. Suppose we are also given z* € (N, X). Put supp o, =
{k1,...,kq} and form

k1 k R k k
(< Qg™ > - <ap,a™ >) = (g .\.r.xj...(g:q.‘.,.xqj).
aj, —times Ak —times

Lemma 4.5. Let a. € Cvup, v, let X be midpoint algebra and z* € (N, X). Then
(< aga™ > -+ < ay,ake >) is independent of the presentation (4.4) of a..

Proof. We have to show the independence of the choice of £ in (4.4). It suffices to show
that the presentation

(4.4') an = % = 2}1/11 ,n€N.

leads to (< aj 2" > - < ar, " >) = (< ag " > - < apafe >). Since af, =
2a,,n € N, we have by (4.1), (i),

(<apah > < a;quq >) =

(< aga™ > < apahs >) (< apa™ - < gyt >) =

(< aga™ > - < g ake >). O
Theorem 4.6. The category MP is isomorphic to the category Cvp, x-Cmod of Cvp, n-
convex modules.

Proof. Let X be a Cvp, y-convex module. Given any two distinct elements ny,n9 of N
we have $07 + 16m € Cup, v. Let 2,y € X and choose z* € (N, X) such that 2™ =z
and z"2 = y. Since < %61“ + %5,’}1,20* > depends on x and y only, due to [1], 3.5 , and [2],
4.4 | we put

1 1
=< S0 A S0t >

Due to [1], 3.8, (which remains valid for arbitrary infinite classes) we have z? = z for all
x € X, and [1], 3.6, (which remains valid for arbitrary infinite classes) implies zy = yx
for all z,y € X. In order to obtain (4.1), (iii), let nq,...,n4 € N be mutually distinct and
choose z* € (N, X) such that 2" = z,2™ = y,2" = u,2™ = v. Let a, = %(5}}1 + %(53}2
and choose B € (N, Cvp, ) such that

1 1 1 1
ni _ —sm1 = sno ny _ N3 iy
o8 25* + 2(5* and (3 25* + 2(5* .

Then

(zy)(wv) = <og,< ﬁ*D,J?* > =< aD,BE > " >

1 1 1 1
= <=0+ =04 04 0t >
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Let 62 € (N, Cup, n) satisfy
1 1 1 1
ny_ —gm —§ns d ni_ Zgne Zgna

Then
(zu)(yv) = <ap,<A2,2"> =< ap, B >, 2" >
1 1 1 1
= <=M+ =04 =0 4 =0t >
10 +4 . +4 . +4 Lo

Hence (4.1), (iii), is valid and X equipped with the product () is a midpoint algebra.

Conversely assume that X is a midpoint algebra. Given a, € Cvp, y and z* € (N, X)
we define

(xx) <y, 1t >i= (< aga™ > < agatt>)

and claim that Cvp, y X (IV, X) 3 (o, 2*) —< ., 2* >€ X makes X a Cvp, y-convex
module. Obviously we have < ¢7,2* >= 2" for all n € X and z* € (IV, X). Next we have
to verify
(+) <04D,<55a95*>>:<<0®, E7$*>7
for all z* € (N, X), . € Cupy.n, B2 € (N, Cvopy n)-

Let supp o = {ki,...,k;}. Then there is an ¢ € Ny such that for some a,, b € Ng,m €
supp a, and n € N,

a, by
=5 and  G'=op ,meEsupp ay,n €N,

hold. We have " a,, = 2° and >~ b7 = 2¢, m € supp ... Denote supp 87 by {l1.m, - - ., lp...m}-
n
Then
<M rt > = (< Vg > < b;”mxgpm’m >),m € supp
and thus ,
<oag, < B, 07> = (< ap (< ralh > o< phigan sy s
ko bikg < ... Ka ) boig kg
< g, (< byt > < bpla TRt >) ),

By applying (4.2) and the definition of (x;...x,) repeatedly the right side of the last
equation turns out to be

NS g )
Vv Vv

ky o . kg .
ak, by —times akqbkq—tlmes

On the other hand,

< a\jaﬁr% > = Zanﬁﬁn = 2_%(6%1642 + e+ akqbfrg)vm € N,
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and
supp < ag, 2 > = U{supp B : m € supp o, }.

Therefore
¢ ¢
<ap, B2 > 2" > = (phvm . ahe g PRake g PRk ),

/
~~ g

ki, kg ..
ag, by —times akqbkq —times

Having shown the validity of (4) we know that the composition given by (#*) makes X

a Cvp, n-convex module. A simple argument shows that both “midpoint algebra )

C'vp, n-convex module ﬂ midpoint algebra" and “C'vp, n-convex module ﬂ midpoint
algebra b Cvp,,n-convex module" produce the original structure.

Next let f: X — X' be a morphism of Cvp, y-convex modules. Then for any z,y € X,
using the previous notation,

Floy) = F(< 500+ 500 0" >) = < 200 + 5002, V) 5= @) f (),

whence f is a morphism of the associated midpoint algebras.

Finally let f: X — X’ be a morphism of midpoint algebras. Due to (3.3) we have
f(< anz* >) = f(< apa™ > < agaf >) =

= (<ap (@) > <ap, f(2F) >) =< a., [N (27) > .
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