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This paper deals with the halfing morphism of CvD0,N -convex modules, where D0 is the semiring of
non-negative dyadic rationals, and its use in the explicit construction of the left adjoint to the functor
OD0,N : D0 -Mod −→ CvD0,N -Cmod that assigns to each D0-module its canonical CvD0,N -convex
module. Furthermore it is shown that CvD0,N -Cmod is isomorphic to the category MP of midpoint
algebras .
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1. Introduction

For the purpose of this paper C stands for a commutative cone semiring, that is a partially
ordered commutative semiring with 0 as its smallest element, and with the property that
2 = 1 + 1 ∈ C has a multiplicative inverse 1

2
. The ring D := Z

[

1
2

]

of dyadic rationals
contains the commutative cone semiring D0 of non-negative elements.

Let N be any infinite class. By a finitary N -convexity theory over C is meant a class Γ
of maps α∗ : N −→ C with the following properties:

(0) every α∗ ∈ Γ has finite support supp α∗ and
∑

{αn : n ∈ supp α∗} ≤ 1;

(i) for every n ∈ N the Dirac map δn∗ (value 1 at n and 0 elsewhere) is in Γ;

(ii) for every α∗ ∈ Γ and βn
∗ ∈ Γ, n ∈ N , the map < α£, β

£
∗ > given by N 3 n 7→

∑

{αmβ
m
n : m ∈ supp α∗} is in Γ.

The class CvC,N of all maps α∗ : N −→ C with finite support satisfying
∑

{αn : n ∈
supp α∗} = 1 is such an N -convexity theory. It is called the classical N-convexity theory
over C. Our main interest is in the classical convexity theory CvD0,N over D0.

Given a (finitary) N -convexity theory Γ, a set X together with a map Γ × (N,X) 3
(α∗, x

∗) 7→< α∗, x
∗ >∈ X is called a Γ-convex module if

(i′) for every n ∈ N and x∗ ∈ (N,X), < δn∗ , x
∗ > = xn;

(ii′) for every α∗ ∈ Γ, β£
∗ ∈ (N,Γ), and x∗ ∈ (N,X),¼ α£, β

£
∗ >, x∗ > =

< α£, < β£
∗ , x

∗ ½.

Here, (N,X) stands for the conglomerate of all maps N −→ X, (N,Γ) the conglomerate
of all maps N −→ Γ, and < β£

∗ , x
∗ > for the map N 3 n 7→ < βn

∗ , x
∗ >∈ X. Sometimes it

is convenient to write
∑

{αnx
n : n ∈ N} instead of < α∗, x

∗ >. Since < α∗, x
∗ > depends
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only on the values xn, n ∈ supp α∗, (see [1], 3.5, [2], 4.4, and [3], §2) we may also write
∑

{αnx
n : n ∈ supp α∗} instead of < α∗, x

∗ >. In particular we use 1
2
x′ + 1

2
x′′ instead of

< 1
2
δn

′
∗ + 1

2
δn

′
∗ , x∗ >, where x′ := xn′

and x′′ := xn′′
.

A map f : X −→ X ′ between two Γ-convex modules is said to be a morphism from X to
X ′ if for all α∗ ∈ Γ and x∗ ∈ (N,X)

f(< α∗, x
∗ >) =< α∗, f

N(x∗) >

where fN := (N, f) is the map induced by f . Hence we have the category Γ-Cmod of
Γ-convex modules and their morphisms, with compositions the set-theoretical ones. Γ-
Cmod is an algebraic category. In [1], [2], and [3] various identities for Γ-convex modules
can be found.

Given any homomorphism ρ : C → C ′ of semirings there is a functor ρ∗, called “restriction
of scalars", from the category C ′-Smod of C ′-semimodules to the category C-Smod.
Similarly if Γ is a finitary N -convexity theory over C and Γ′ is a finitary N -convexity
theory over C ′ such that for any α∗ ∈ Γ the map ρN(α∗) = ρN ◦α∗ is in Γ′, then there is the
functor ρ∗ : Γ

′-Cmod−→ Γ-Cmod that assigns to each Γ′-convex moduleX ′ the Γ-convex
module ρ∗(X

′) given by the composition Γ× (N,X ′) 3 (α∗, x
′∗) 7→ < ρN(α∗), x

′∗ > ∈ X ′.

In section 2 we discuss the halfing morphism ha for any CvC,N -convex module X. If ha is
an automorphism of X then X becomes a D0-semimodule (X, Ú+). For any CvC,N -convex
module X, ha given rise to a congruence relation ∼ on X×N0 and X×N0/∼ inherits the
structure of a CvC,N -convex module such that the map X 3 x 7→ (x, 0)/∼∈ X × N0/∼
is a morphism jX .

In section 3 we prove that CvD0,N -structure on X × N0/ ∼ equals that of OD0,N(X ×
N0, Ú+) where OD0,N(M) for any D0-semimodulo M is the obvious CvD0,N -structure on
M . This observation enters into the explicit construction of the left adjoint of the functor
OD0,N from the category D0-Mod of D0-modules to the category CvD0,N -Cmod. The
corresponding universal arrow is

X
jX−→ OD0,N(X × N0/∼, Ú+) → OD0,N(X × N0/∼, Ú+)2 → OD0,N(X × N0, Ú+)2/∼

B
,

where the map in the middle sends each (x, n) to ((a, 0), (x, n)) and the map on the right
is the quotient map with respect to the Bourne relation ∼

B
.

The last section deals with a structure that is well known in universal algebra. It is called
“commutative binary mode" (see [4], p. 91), and is a special case of an “alternation
groupoid" (see e.g. [5]) and of a “espace medial surcommutative" (see [6]). We prefer to
call a set equipped with this structure a “midpoint algebra". These midpoint algebras
and their homomorphisms from a category MP and we show that MP is isomorphic with
CvD0,N -Cmod.

I wish to thank Professor J.D.H. Smith for supplying me with the references [4], [5], and [6].

2. The Halfing Morphism

Let X be a CvC,N -convex module. For any a ∈ X let ha : X −→ X be the map given
by ha(x) := 1

2
a + 1

2
x, x ∈ X. Moreover, for any a∗ ∈ (N,X) denote by ha∗ the map

N 3 n 7→ han ∈ Set (X,X).
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Lemma 2.1. Let X be a CvC,N -convex module. Then for any a ∈ X and A∗ ∈ (N,X)

(i) hk
a(x) =

2k−1
2k

a+ 1
2k
x , k ∈ N and x ∈ X;

(ii) ha is a morphism X −→ X of CvC,N - convex mdoules;

(iii) < α∗, haa∗ > = h<α∗,a∗>.

Proof.
(i). k = 1 is clear by definition. Suppose we have (i) for k. Choose x∗ ∈ (N,X)
such that xn1 = a and xn = x, n ∈ N\{n1}. Then < 1

2
δn1
∗ + 1

2
δn1
∗ , x∗ > = a and

< 1
2
δn1
∗ + 1

2
δn∗ , x

∗ > = ha(x), n ∈ N\{n1}. Hence

hk+1
a (x) = hk

a(ha(x)) = <
2k − 1

2k
δn1
£ +

1

2k
δn2
£ , <

1

2
δn1
∗ +

1

2
δ£∗ , x

∗ ½ =

= ¼ 2k − 1

2k
δn1
£ +

1

2k
δn2
£ ,

1

2
δn1
∗ +

1

2
δ£∗ >, x∗ > =

= <
2k+1 − 1

2k+1
δn1
∗ +

1

2k+1
δn2
∗ , x∗ > =

=
2k+1 − 1

2k+1
a+

1

2k+1
x.

(ii). Let α∗ ∈ CvC,n and x∗ ∈ (N,X). Choose a bijection ϕ : N −→ N\{n1} and let
z∗ ∈ (n,X) be such that zn1 := a and zϕ(n) := xn, n ∈ N . Let furthermore βn1

∗ := δn1
∗

and βn
∗ := δ

ϕ(n)
∗ for n ∈ N\{n1, n2}, and define βn2

∗ by βn2
n1

:= 0 and βn2
ϕ(m) := αm,m ∈ N .

Then β£
∗ is in (N,CvC,N) and we have

< βn
∗ , z

∗ > =







a , n = n1,
< α∗, x

∗ > , n = n2,
xn , n ∈ N\{n1, n2}.

Hence

ha(< α∗, x
∗ >) = <

1

2
δn1
£ +

1

2
δn2
£ , < β£

∗ , z
∗ ½ = ¼ 1

2
δn1
£ +

1

2
δn2
£ , β£

∗ >, z∗ > .

Next let γn
∗ := 1

2
δn1
∗ + 1

2
δ
ϕ(n)
∗ ∈ CvC,N . Then ha(x

n) = < δn∗ , z
∗ >, n ∈ N , and thus

< α∗, h
N
a (x

∗) > = < α£, < γ£
∗ , z

∗ ½ = ¼ α£, γ
£
∗ >, z∗ > .

But for any m ∈ N ,

<
1

2
δn1
£ +

1

2
δn2
£ , β£

m > =

{

1
2

, if m = n1

αm′ , if m = ϕ(m′)

and

< α£, γ
£
m > =

∑

{αn(
1

2
γn1
m +

1

2
γϕ(n)
m ) : n ∈ N} =

{

1
2

, if m = n1

αm′ , if m = ϕ(m′),

whence ha(< α∗, x
∗ >) = < α∗, h

N
a (x

∗) >. So ha is a morphism.



558 H. Röhrl / The Category CvD0,N - Cmod and MP

(iii). This follows similarly to (ii) with these choices: ϕ : N −→ N\{n2} a bijection;

z∗ ∈ (N,X) given by zn2 := x and xϕ(n) := an, n ∈ N ; βn
∗ := 1

2
δ
ϕ(n)
∗ + 1

2
δn2
∗ , n ∈ N ; γn

∗ :=
δn∗ , n ∈ N\{n1}, and γn1

n2
= 0 and γn1

m = am′ ,m = ϕ(m′).

Proposition 2.2. Let X be any CvC,N -convex module and let a ∈ X be such that ha is
a bijection. Define the binary composition Ú+ : X × X −→ X by ha(x Ú+x′) := 1

2
x + 1

2
x′.

Then (X, Ú+) is a commutative monoid (with neutral element a) that is uniquely divisible
by 2 and hence is a D0-semimodule. Moreover for any k ∈ N and x1, . . . , x2 ∈ X

h∗
a(x1 Ú+ . . . Ú+x2k) =

1

2k
x1 + · · ·+ 1

2k
x2k .

Proof.
(0). ha(a Ú+x) = 1

2
a+ 1

2
x = ha(x) and thus a Ú+x = x.

(i). ha(x Ú+x′) = 1
2
x+ 1

2
x′ = 1

2
x′ + 1

2
x = ha(x

′ Ú+x) and thus x Ú+x′ = x′ Ú+x.
(ii). Due to (2.1) and [1], 3.6, resp. [2], 4.5,

h2
a((x Ú+x′) Ú+x′′) = ha(

1

2
(x Ú+x′) +

1

2
x′′) =

1

2
ha(x Ú+x′) +

1

2
ha(x

′′) =

=
1

2
(
1

2
x+

1

2
x′) +

1

2
(
1

2
a+

1

2
x′′) =

1

2
(
1

2
a+

1

2
x) +

1

2
(
1

2
x′ +

1

2
x′′) =

=
1

2
ha(x) +

1

2
ha(x

′ Ú+x′′) = ha(
1

2
x+

1

2
(x′ Ú+x′′)) = h2

a(x Ú+(x′ Ú+x′′)).

(iii). ha(x Ú+x) = 1
2
x+ 1

2
x = x. So each x ∈ X is uniquely divisible by 2.

The final formula follows by an obvious induction argument.

Let X be any CvC,N -convex module. On X × N0 define the relation “∼" by “(x, n) ∼
(x′, n′)" if and only if “there is a p ∈ N0 with hn′+p

a (x) = hn+p
a (x′)".

Lemma 2.3. The relation ∼ on X × N0 is an equivalence relation.

Proof. Straight forward.

Given the CvC,N -convex module X we define the composition < , >. CvC,N ×(N,X×
N0) −→ X × N0 as follows. Let (x,m)∗ ∈ (N,X × N0) and denote by x∗ ∈ (N,X) resp.
m∗ ∈ (N,N0) the composite of (x,m)∗ with the appropriate projection of X × N0 to its
factors. Let furthermore α∗ ∈ CvC,N , put s := sa∗,m∗ :=

∑

{mn : n ∈ supp α∗} and
sn := s − mn, n ∈ supp α∗, resp. sn = 0, n 6∈ supp α∗. Denote by hα∗,m∗

a (x∗) the map
N 3 n 7→ hsn

a (xn) ∈ X and let

< α∗, (x,m)∗ >:= (< α∗, h
α∗,m∗

a (x∗) >, sα∗,m∗).

Lemma 2.4. Let α∗ ∈ CvC,N and β£
∗ ∈ (N,CvC,N). The for any CvC,N -convex module

X and any (x,m)∗ ∈ (N,X × N))

(i) < δn∗ , (x,m)∗ > = (xn,mn), n ∈ N ,

(ii) < α£, < β£
∗ , (x,m)∗ ½ ∼ ¼ α£, β

£
∗ >, (x,m)∗ > .
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Proof.
(i). This is an immediate consequence of the definitions involved.
(ii). Put

sq :=
∑

{mn : n ∈ supp βq
∗} and s :=

∑

{sq : q ∈ supp α∗}.

Then for any q ∈ N

< βq
∗ , (x,m)∗ > = (< βq

∗ , h
βq
∗ ,m

∗

a (x∗) >, sq >

and by (2.1), (ii),

< α£, < β£
∗ , (x,m)∗ ½ = (< α£, h

α∗,s∗

a (< β£
∗ , h

β£
∗ ,m∗

a (x∗) >) >, s) =

= (< α£, < β£
∗ , h

α∗,s∗

a (hβ£
∗ ,m∗

a (x∗)) ½, s) =

= (¼ α£, β
£
∗ >, hα∗,s∗

a (hβ£
∗ ,m∗

a (x∗)) >, s).

On the other hand, when putting s̄ :=
∑

{mn : n ∈ supp < α£, β
£
∗ >},

¼ α£, β
£
∗ >, (x,m)∗ > = (¼ α£, β

£
∗ >, h<α£,β£

∗ >,m∗

a (x∗) >, s̄).

Since supp < α£, β
£
∗ > = ∪{supp βq

∗ : q ∈ supp α∗} we have n ∈
supp <α£, β

£
∗ > if an only if there is a q ∈ supp α∗ with n ∈ supp βq

∗ . For such an n the

value of hα∗,s∗
a (h

β£
∗ ,m∗

a (x∗)) at n equals hs−sq

a (hsq−mn

a (xn)) = hs−mn

a (xn), while the value of

h
<α£,β£

∗ >m∗
a (x∗) equals hs̄−mn

a (xn). Hence (2.1), (ii), implies our assertion (ii).

Lemma 2.5. Let α∗ ∈ CvC,N and let X be any CvC,N -convex module. If (x,m)∗ ∈
(N,X × N0) and (x̄,m)∗ ∈ (N,X × N0) satisfy (x,m)∗ ∼ (x̄,m)∗, which by definition
means (xn,mn) ∼ (x̄n,mn) for all n ∈ N , then < α∗, (x,m)∗ > ∼ < α∗, (x̄,m)∗ >.

Proof. Since supp α∗ is finite there is a p ∈ N0 with hmn+p
a (xn) = hmn+p

a (x̄n) for all
n ∈ supp α∗. Put s :=

∑

{mn : n ∈ supp α∗} and s̄ :=
∑

{mn : n ∈ supp α∗}. Then

hp+s̄
a (hs−mn

a (xn)) = hp+s̄+s−mn

a (xn) = hp+mn+s̄−mn+s−mn

a (xn) =

= hp+mn+s̄−mn+s−mn

a (x̄n) = hp+s+s̄−mn

a (x̄n) = hp+s
a (hs̄−mn

a (x̄n)).

Due to (2.1), (ii), we obtain

hp+s̄
a (< α∗, h

α∗,m∗

a (x∗) >) = < α∗, h
p+s̄
a (hα∗,m∗

a (x∗)) > =

= < α∗, h
p+s
a (hα∗,m∗

a (x̄∗)) > = hp+s
a (α∗, h

α∗,m∗

a (x̄∗) >)

and our claim follows.

Proposition 2.6. There is a unique composition < , >: CvC,N × (N,X×N0/∼) −→
X × N0/∼ that makes X × N0/∼ a CvC,N -convex module and satisfies

π(< α∗, (x,m)∗ >) = < α∗, π
N((x,m)∗) >

, for all α∗ ∈ DvC,N , (x,m)∗ ∈ (N,X × N0),

where π is the quotient map X × N0 −→ X × N0/ ∼.
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Proof. (2.4) and (2.5).

Denote the map X 3 x 7→ π(x, 0) ∈ X × N0/ ∼ by jX .

Proposition 2.7. For any CvC,N -convex module X the map jX : X −→ X × N0/∼ is a
morphism of CvC,N -convex modules.

Proof. Let α∗ ∈ CvC,N and x∗ ∈ (N,X). Denote by (x, 0)∗ the map N 3 n 7→ (xn, 0) ∈
X × N0. Then by (2.6)

< α∗, j
N
X (x∗) > = < α∗, π

N((x, 0)∗) > = π(< α∗, (x, 0)
∗ >)

= π(< α∗, x
∗ >, 0) = jX(< α∗, x

∗ >).

In the setting of (2.7) we denote, for any a ∈ X, the map hjX(a) :X×N0/∼ −→ X×N0/∼
by Ha. With this notation we have

Corollary 2.8. For any CvC,N -convex module X and any a ∈ X the diagram

X
ha - x

?
jX

?
jX

-X × N0/∼ X × N0/∼
Ha

commutes.

Proof. Since jX is a morphism by (2.7) we obtain

jX ◦ ha(x) = jX(
1
2
a+ 1

2
x) = 1

2
jX(a) +

1
2
jX(x) = Ha ◦ jX(x).

Proposition 2.9. For any CvC,N -convex module X and any a ∈ X,Ha is a bijection. In
particular, Ha(π(x, n)) = π(x, n− 1) for all x ∈ X and n ∈ N.

Proof. Let x ∈ X and n ∈ N. Then by (2.6)

Ha(π(x, n)) =
1

2
π(a, 0) +

1

2
π(x, n) = π(

1

2
(a, 0) +

1

2
(x, n)) =

= π(
1

2
hn
a(a) +

1

2
(x, n)) = π(

1

2
a+

1

2
x, n) = π(ha(x), n) = π(x, n− 1).

This formula proves that Ha is a surjection. Next let Ha(π(x, n)) = Ha(π(x̄, n̄)). Then
the preceding formulae show that Ha(π(x, n)) = π(ha(x), n), x ∈ X and n ∈ N0, whence
we have π(ha(x), n) = π(ha(x̄), n̄) that is hn̄+p

a (ha(x)) = hn+p
a (ha(x̄)) for some p ∈ N0.

Thus hn̄+p+1
a (x) = hn+p+1

a (x̄) or π(x, n) = π(x̄, n̄). So Ha is also an injection and therefore
a bijection.

Due to (2.2) and (2.9), (X × N0/ ∼, Ú+) is a D0-semimodule. This D0-semimodule is
cancellable under certain hypotheses involving X. They are stated in Proposition 2.11.

Definition 2.10. Let X be any CvC,N -convex module. Then X is called
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(i) cancellable at a if for all x′, x′′ ∈ X, 1
2
a+ 1

2
x′ = 1

2
a+ 1

2
x′′ implies x′ = x′′;

(ii) weakly cancellable at a if for all x, x′, x′′ ∈ X and n, n′, n′′, p ∈ N0,
1
2
hn+n′+n′′+p
a (x) + 1

2
h2n+n′′+p
a (x′) = 1

2
hn+n′+n′′+p
a (x) + 1

2
h2n+n′+p
a (x′′)

implies hn′′+q
a (x′) = hn′+q

a (x′′) for some q ∈ N0.

X is said to be cancellable if it is cancellable at any a ∈ X. £

Obviously cancellability at a of X implies weak cancellability at a of X.

Proposition 2.11. Let X be any CvC,N -convex module. Then

(i) the D0-semimodule (X×N0/∼, Ú+) is cancellable if and only if X is weakly cancellable
at a;

(ii) X is cancellable at a if and only if jX ;X −→ X × N0/∼ is an injection.

Proof. (i). π(x, n) Ú+π(x′, n′) = π(x, n) Ú+π(x′′, n′′) is equivalent with
Ha(π(x, n) Ú+π(x′, n′)) = Ha(π(x, n) Ú+π(x′′, n′′)) due to (2.9). Since

Ha(π(x, n) Ú+π(x′, n′)) = π(
1

2
hn′

a (x) +
1

2
hn
a(x

′), n+ n′)

due to (2.6), the initial equation is equivalent with

hn+n′′+p
a (

1

2
hn′

a (x) +
1

2
hn
a(x

′)) = hn+n′+p
a (

1

2
hn′′

a (x) +
1

2
hn
a(x

′′),

for some p ∈ N), which by (2.1), (ii), is the same as

(∗) 1

2
hn+n′+n′′+p
a (x) +

1

2
h2n+n′′+p′

a (x′) =
1

2
hn+n′+n′′+p
a (x) +

1

2
h2n+n′+p
a (x′′).

Hence weak cancellability leads to hn′′+q
a (x′) = hn′+q

a (x′′) for some g ∈ N0 and thus to
(x′, n′) ∼ (x′′, n′′) or π(x′, n′) = π(x′′, n′′). Conversely, cancellability of theD0-semimodule
X × N0/∼ means that (∗) implies π(x′, n′) = π(x′′, n′′) and thus hn′′+q

a (x′) = hn′+q
a (x′′)

for some q ∈ N0. Hence X is weakly cancellable.
(ii). jX(x

′) = jX(x
′′) is equivalent with (x′, 0) ∼ (x′′, 0) and hence with hp

a(x
′) = hp

a(x
′′)

for some p ∈ N0. Since h
p
a(x

′) = 1
2
a+ 1

2
hp−1
a (x′), cancellability at a of X implies hp−1

a (x′) =
hp−1
a (x′′) and thus x′ = x′′ by induction, which means that jX is an injection. Conversely

if jX is an injection and 1
2
a + 1

2
x′ = 1

2
a + 1

2
x′′ then we have ha(x

′) = ha(x
′′), that is

(x′, 0) ∼ (x′′, 0) and thus jX(x
′) = jX(x

′′), which leads to x′ = x′′ and therefore to the
cancellability at a of X.

3. The Functor OD0,N : D0-Mod −→ CvD0,N -Cmod

Let M be a C-semimodule. For α∗ ∈ CvC,N and m∗ ∈ (N,M) let

< α∗,m
∗ >:=

∑

{αnm
n : n ∈ supp α∗}.

Note that in the finite sum on the right side supp α∗ can be replaced by any finite set
containing supp α∗.

Lemma 3.1. LetM be any C-semimodule. Then CvC,N×(N,M) 3 (α∗,m
∗) 7→< α∗,m

∗>
∈ M makes M a CvC,N -convex module OC,N(M).
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Proof. Straight forward.

Obviously the assignment to M of OC,N(M) and to C-homomorphisms f : M −→ M ′

of OC,N(f) := f is a functor OC,N : C-Smod−→ CvC,N -Cmod. Its restriction to the
full subcategory C-Mod of C-Smod generated by the class of all C-modules is also
denoted by OC,N . Note that C-Mod is a reflective subcategory of C-Smod and that
the reflector RC assigns to each C-semimodule M the C-module M2/∼

B
, where ∼

B
is the

Bourne relation, the C-semimodule congruence relation, “(m,m′)∼
B
(m,m′)" if and only if

“there is an m0 ∈ M with m0+m+m′ = m0+m+m′". The reflection rC assigns to each
M the composition of M 3 m 7→ (0,m) ∈ M2 with the quotient map M2 −→ M2/∼

B
.

Lemma 3.2. Let X be any CvC,N -convex module and let a ∈ X be such that ha is a
bijection. Then OD,N((X, Ú+)) = ρ∗(X).

Proof. In this proof we shall denote the operation of r ∈ D0 on the element x of the D0-
semimodule (X, Ú+) by Úrx. From the formula in (2.2) we obtain for all k ∈ N, x1, . . . , xp ∈
X, and n1, . . . , np ∈ N0 with n1 + · · ·+ np = 2k

Ún1

2k
x1 Ú+ . . . Ú+

Únp

2k
xp =

Ú1

2k
( Ún1x1 Ú+ . . . Ú+npxp) = hk

a( Ún1x1 Ú+ . . . Ú+ Únpxp) =

=
n1

2k
x1 + · · ·+ np

2k
xp = ρ(

n1

2k
)x1 + · · ·+ ρ(

np

2k
)xp,

where the last sum is actually the composition in the CvD0,N -convex module ρ∗(X).

Lemma 3.3. Let M be any C-semimodule and let a ∈ M be such that ha : M −→ M is
a bijection. Then (OC,N(M), Ú+) = ρ∗(M).

Proof. See proof of (3.2).

Theorem 3.4. The functor OD0,N : D0-Mod −→ CvD0,N -Cmod has a left adjoint.

Proof. Although the existence of a left adjoint of OD0,N , and indeed of OC,N : C-Mod
−→ DvC,N -Cmod, can be obtained from general principles we wish to present an explicit
construction of a left adjoint of OD0,N based on the halfing morphism. Let X be a CvD0,N -
convex module, M a D0-module, and f : X −→ OD0,N(M) a morphism of CvD0,N -convex
modules. Choose a ∈ X and put m0 := f(a). Define f̄ : X × N0/∼ −→ M by

f̄(π(x, n)) := h−n
m0

(f(x))−m0.

We claim that this definition makes sense. Firstly, since M is a D0-module hm0 is a
bijection and indeed h−1

m0
(m) = 2m − m0,m ∈ M . Secondly, if π(x, n) = π(x′, n′) then

hn′+p
a (x) = hn+p

a (x′) for some p ∈ N0. Due to (2.1), (ii), we have

f(ha(x)) = f(
1

2
a+

1

2
x) =

1

2
f(a) +

1

2
f(x) = hm0(f(x)).

Hence
hn′+p
m0

(f(x)) = f(hn′+p
a (x)) = f(hn+p

a (x′)) = hn+p
m0

(f(x)
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and thus h−n
m0

(f(x)) = h−n′
m0

(f(x′)). Therefore f̄(π(x, n)) = f̄(π(x′, n′)). Next we show
that f̄ is a homomorphism of D0-semimodules. Using (2.1), (ii), and the formula in (2.9)
we obtain

f̄(π(x, n) Ú+π(x′, n′)) = f̄(H−1
a ◦Ha(π(x, n) Ú+π(x′, n′))) =

= f̄(H−1
a (π(

1

2
hn′

a (x) +
1

2
hn
a(x), n+ n′) =

= f̄(π(
1

2
hn′

a (x) +
1

2
hn
a(x

′), n+ n′ + 1)) =

= h−n−n′−1
m0

(f(
1

2
hn′

a (x) +
1

2
hn
a(x

′)))−m0 =

= h−n−n′−1
m0

(
1

2
f(hn′

a (x)) +
1

2
f(hn

a(x
′)))−m0 =

= h−n−n′−1
m0

(
1

2
hn′

m0
(f(x)) +

1

2
hn
m0

(f(x′)))−m0 =

= h−1
m0

(
1

2
h−n
m0

(f(x)) +
1

2
h−n′

m0
(f(x′)))−m0 =

= h−1
m0

(
1

2
f̄(π(x, n) +

1

2
f̄(π(x′, n′) +m0)−m0 =

= f̄(π(x, n)) + f̄(π(x′, n′)) + 2m0 −m0 −m0 =

= f̄(π(x, n)) + f̄(π(x′, n′)).

Moreover, from the proof of (2.9),

f̄(Ha(π(x, n) = f̄(π(ha(x), n)) = h−n
m0

f(ha(x))−m0 =

= hm0(h
−n
m0

(f(x)))−m0 =
1

2
h−n
m0

(f(x))− 1

2
m0 =

1

2
f̄(π(x, n)).

Put ḡ(π(x, n)) := f̄(π(x, n)) + m0. Since f̄ is a morphism OD0,N(X × N0/ ∼, Ú+) −→
OD0,N(M) of CvD0,N -convex modules, denoted by OD0,N(f̄), ḡ is also a morphism
OD0,N(X × N0/∼, Ú+) −→ OD0,N(M) of CvD0,N -convex modules. In addition it satisfies
f = ḡ ◦ jX . Denote the reflection (X × N0/∼, Ú+) −→ (X × N0(∼, Ú+)2/∼

B
by r′X . Then

there is a unique homomorphism f ′ : (X × N0/ ∼, Ú+)2/∼
B

−→ M of D0-modules with

f̄ = f ′ ◦ r′X . Put r′X ◦ jX(a, 0) =: a′ and let g′ := f ′ + cm0 , where cm0 stands for the
constant map with value m0 and some appropriate domain. Clearly g′ is a morphism of
CvD0,N -convex modules from OD0,N((X × N0/∼, Ú+)2/∼

B
) −→ OD0,N(M) and we obtain

(on the set-level)

f = g ◦ jX = (f̄ + cm0) ◦ jX = (f ′ ◦ r′X + cm0) ◦ jX = f ′ ◦ r′X ◦ jX + cm0 =

= (g′ − cm0) ◦ r′X ◦ jX +m0 = g′ ◦ r′X ◦ jX .

ηX := r′X ◦ jX is a morphism of CvD0,N -convex modules from X to OD0,N((X × N0/∼
, Ú+)2/∼

B
). We claim that ηX is a universal arrow. Already we have the factorization

of f through ηX as f ′, being a homomorphism of D0-semimodules, is also a morphism
OD0,N(f

′) between the associated CvD0,N -convex modules. In order to prove uniqueness of
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the factorization it suffices to prove the uniqueness of g in terms of f . So let h̄ :OD0,N((X×
N0/∼, Ú+))−→ OD0,N(M) be a morphism with f = h̄◦jX . Then h̄(π(x, 0)) = f(x), x ∈ X,
whence h̄ is uniquely determined by f on {π(x, 0) : x ∈ X}. Let n ∈ N and let x ∈ X.
Since π(x, n) Ú+π(a, 0) = π(x, n) and Ha(π(x, n)) = π(x, n− 1) we have

h̄(π(x, n− 1)) = h̄(Ha(π((x, n))) = h̄(Ha(π(x, n) Ú+π(a, 0))) =

= h̄(Ha(π(x, n)) Ú+Ha(π(a, 0))) =
1

2
h̄(π(x, n)) +

1

2
h̄(π(a, 0)) =

=
1

2
h̄(π(x, n)) +

1

2
m0

or
h̄(π(x, n)) = 2h̄(π(x, n− 1))−m0 = h−1

m0
(h̄(π(x, n− 1)).

Hence an obvious induction argument shows that h̄ is unique in terms of f , that is h̄ = ḡ.
From ḡ we recover uniquely f̄ as f̄ = ḡ − cm0 , and the first part of the proof shows that
f̄ is a homomorphism. Thus g′ is uniquely determined by f .

Definition 3.5. Let X be any CvD0,N -convex module. Then X is said to be imbeddable
in a D0-module (resp. D0-semimodule) if and only if there is a D0-module (resp. D0-
semimodule) M and an injective morphism X −→ OD0,N(M) of CvD0,N -convex modules.

Proposition 3.6. Let X be any CvD0,N -convex module. Then X is imbeddable in a D0-
module if and only if X is cancellable.

Proof. X is imbeddable in a D0-module if and only if ηX is an injection. Let x, x′ ∈ X.
Then ηX(x) = ηX(x

′) means that (0, π(x, 0))∼
B
(0, π(x′, 0)), that is that π(y, n) Ú+π(x, 0) =

π(y, n) Ú+π(x′, 0) for some (y, n) ∈ X×N0. The latter is equivalent withHa(π(y,n)hspace∗
−0.3pt Ú+π(x,0)) = Ha(π(y, n) Ú+π(x′, 0)) and hence with π(1

2
y + 1

2
hn
a(x), n) = π(1

2
y +

1
2
hn
a(x

′), n) and thus with hn+p
a (1

2
y + 1

2
hn
a(x)) = hn+p

a (1
2
y + 1

2
hn
a(x

′)) for some p ∈ N0.
By (2.1), (ii), the last equality is the same as

(∗) 1

2
hn+p
a (y) +

1

2
h2n+p
a (x) =

1

2
hn+p
a (y) =

1

2
h2n+p
a (x′).

So if X is cancellable and (∗) holds then h2n+p
a (x) = h2n+p

a (x′) and therefore x = x′, which
means that ηX is an injection and consequently X is imbeddable in some D0-module.
Conversely if X is imbeddable in some D0-module and we have 1

2
y + 1

2
x = 1

2
y + 1

2
x′ then

(∗) is satisfied for n = p = 0, whence we obtain ηX(x) = ηX(x
′) and therefore x = x′,

which means cancellability.

Note that (2.11), (ii), furnishes a sufficient condition for imbeddability of a CvD0,N -convex
module in a D0-semimodule.

4. MP and the Category of CvD0,N -convex Modules

Definition 4.1. A midpoint adgebra with underlying set X is this set together with a
single binary composition X ×X 3 (x, y) 7→ xy ∈ X satisfying

(i) x2 = x , for all x ∈ X,
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(ii) xy = yx , for all x, y ∈ X,

(ii) (xy)(uv) = (xu)(yv) , for all x, y, y, v ∈ X.

A morphism f : X −→ X ′ of midpoint algebras is a map f from X to X ′ that takes
products to products.

The category of midpoint algebras and their morphisms, composition being the set-
theoretical one, is denoted by MP.

Let X be a midpoint algebra and let x1, . . . , xn ∈ X, where n = 2k and k ∈ N0. Define
inductively

(x) := x (x1 . . . xn) := (x1 . . . xn
2
)(xn

s
+1 . . . xn).

Lemma 4.2. Let n = 2k, k ∈ N, and let π be a permutation of {1, . . . , n}. Let further-
more X be a midpoint algebra and x1, . . . , xn ∈ X. Then

(x1 . . . xn) = (xπ(1) . . . xπ(n)).

Proof. By definition this is valid for k = 1. Suppose that statement is valid for k. Let
m := 2k+1 and let x1, . . . , xn ∈ X. Suppose that τ is the transposition of {1, . . . ,m} that
interchanges p and q. We wish to prove the formula in (4.2) for τ rather than π. We may
assume p < q. If q ≤ m

2
or m

2
+ 1 ≤ p then the formula is valid by induction hypothesis.

So let p ≤ m
2
and m

2
+ 1 ≤ q. Denote (x1, . . . , xp−1, xp+1, . . . , xm

2
) by (y1, . . . , ym

2 −1) and
(xm

2 +1, . . . , xq−1, xq+1, . . . , xm) by (z1, . . . , zm
2 −1). By induction hypothesis

(x1 . . . xm
2
) = (xpy1 . . . ym

2 −1) and (xm
2 +1 . . . xm) = (xqz1 . . . zm

2 −1).

Hence

(x1 . . . xm) = (xpy1 . . . ym
2 −1)(xqz1 . . . zm

2 −1) =

= ((xpy1 . . . ym
4 −1)(ym

4
. . . ym

2 −1))((xqz1 . . . zm
4 −1)(zm

4
. . . zm

2 −1)) =

= ((xpy1 . . . ym
4 −1)(xqz1 . . . zm

4 −1))((ym
4
. . . ym

2 −1)(zm
4
. . . zm

2 −1)) =

= ((xqy1 . . . ym
4 −1)(xpz1 . . . zm

4 −1))((ym
4
. . . ym

2 −1)(zm
4
. . . zm

2 −1)) =

= ((xpy1 . . . ym
4 −1)(ym

4
. . . ym

2 −1))((xpz1 . . . zm
4 −1)(zm

4
. . . zm

2 −1)) =

= (x1 . . . xp−1xqxp+1 . . . xm
2
)(xm

2 +1 . . . xq−1xpxq+1 . . . xm) =

= (xτ(1) . . . xτ(m2 ) . . . xτ(m)).

Since every permutation is a composition of transpositions the general formula follows.

Lemma 4.3. Let f : X −→ X ′ be a morphism of midpoint algebras and let x1, . . . , xn ∈
X, with n = 2k and k ∈ N. Then

f(x1 . . . xn) = (f(x1) . . . f(xn)).

Proof. By obvious induction.

Let α∗ ∈ CvD0,N . Since α∗ has finite support there is an ` ∈ N0 and an ∈ N0, n ∈ N with
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4.4. αn = an
2`

, n ∈ N.
Obviously we have

∑

an = 2`. Suppose we are also given x∗ ∈ (N,X). Put supp α∗ =
{k1, . . . , kq} and form

(< ak+1x
k1 > · · · < akqx

kq >) := (xk1 . . . xk1
︸ ︷︷ ︸

ak1−times

. . . (xkq . . . xkq
︸ ︷︷ ︸

akq−times

).

Lemma 4.5. Let α∗ ∈ CvD0,N , let X be midpoint algebra and x∗ ∈ (N,X). Then
(< ak1x

k1 > · · · < akqx
kq >) is independent of the presentation (4.4) of α∗.

Proof. We have to show the independence of the choice of ` in (4.4). It suffices to show
that the presentation

(4.4′) an = an
2`

= a′n
2`+1 , n ∈ N.

leads to (< a′k1x
k1 > · · · < a′kqx

kq >) = (< ak1x
k1 > · · · < akqx

kq >). Since a′n =
2an, n ∈ N , we have by (4.1), (i),

(< a′k1x
k1 > · · · < a′kqx

kq >) =

(< ak1x
k1 > · · · < akqx

kq >)(< ak1x
k1 · · · < akqx

kq >) =

(< ak1x
k1 > · · · < akqx

kq >).

Theorem 4.6. The categoryMP is isomorphic to the category CvD0,N -Cmod of CvD0,N -
convex modules.

Proof. Let X be a CvD0,N -convex module. Given any two distinct elements n1, n2 of N
we have 1

2
δn1
∗ + 1

2
δn1
∗ ∈ CvD0,N . Let x, y ∈ X and choose x∗ ∈ (N,X) such that xn1 = x

and xn2 = y. Since < 1
2
δn1
∗ + 1

2
δn1
∗ , x∗ > depends on x and y only, due to [1], 3.5 , and [2],

4.4 , we put

(∗) xy := <
1

2
δn1
∗ +

1

2
δn2
∗ , x∗ > .

Due to [1], 3.8, (which remains valid for arbitrary infinite classes) we have x2 = x for all
x ∈ X, and [1], 3.6, (which remains valid for arbitrary infinite classes) implies xy = yx
for all x, y ∈ X. In order to obtain (4.1), (iii), let n1, . . . , n4 ∈ N be mutually distinct and
choose x∗ ∈ (N,X) such that xn1 = x, xn2 = y, xn3 = u, xn4 = v. Let α∗ := 1

2
δn1
∗ + 1

2
δn2
∗

and choose β£
∗ ∈ (N,CvD0,N) such that

βn1
∗ =

1

2
δn1
∗ +

1

2
δn2
∗ and βn2

∗ =
1

2
δn3
∗ +

1

2
δn4
∗ .

Then

(xy)(uv) = < α£, < β£
∗ , x

∗ ½ =¼ α£, β
£
∗ >, x∗ >

= <
1

4
δn1
∗ +

1

4
δn2
∗ +

1

4
δn3
∗ +

1

4
δn4
∗ , x∗ > .
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Let δ£∗ ∈ (N,CvD0,N) satisfy

γn1
∗ =

1

2
δn1
∗ +

1

2
δn3
∗ and γn1

∗ =
1

2
δn2
∗ +

1

4
δn4
∗ .

Then

(xu)(yv) = < α£, < γ£
∗ , x

∗ ½ =¼ α£, β
£
∗ >, x∗ >

= <
1

4
δn1
∗ +

1

4
δn2
∗ +

1

4
δn3
∗ +

1

4
δn4
∗ , x∗ > .

Hence (4.1), (iii), is valid and X equipped with the product (∗) is a midpoint algebra.

Conversely assume that X is a midpoint algebra. Given α∗ ∈ CvD0,N and x∗ ∈ (N,X)
we define

(∗∗) < α∗, x
∗ >:= (< ak1x

k1 > · · · < akqx
kq >)

and claim that CvD0,N × (N,X) 3 (α∗, x
∗) 7→< α∗, x

∗ >∈ X makes X a CvD0,N -convex
module. Obviously we have < δn∗ , x

∗ >= xn for all n ∈ X and x∗ ∈ (N,X). Next we have
to verify

(+) < α£, < β£
∗ , x

∗ ½ = ¼ α£, β
£
∗ , x

∗ >,

for all x∗ ∈ (N,X), α∗ ∈ CvD0,N , β
£
∗ ∈ (N,CvD0,N).

Let supp α∗ = {k1, . . . , kq}. Then there is an ` ∈ N0 such that for some an, b
m
n ∈ N0,m ∈

supp α∗ and n ∈ N ,

αn =
an
2`

and βm
n =

bmn
2`

,m ∈ supp α∗, n ∈ N,

hold.We have
∑

an = 2` and
∑

n

bmn = 2`,m∈ supp α∗.Denote supp βm
∗ by{`1,m, . . . , `pm,m}.

Then

< βm
∗ , x∗ > = (< bm1 x

`1,m > · · · < bmpmx
`pm,m >),m ∈ supp α∗

and thus
< α£, < β£

∗ , x
∗ ½ = (< ak1(< bk11 x`1,k1 > · · · < bk1p1x

`pk1 ,i1 >) > . . .

· · · < akq(< b
kq
1 x`1,kq > · · · < b

kq
pqx

`pkq ,kq >) >).

By applying (4.2) and the definition of (x1 . . . xn) repeatedly the right side of the last
equation turns out to be

(x`1,k1 . . . x`1,k1
︸ ︷︷ ︸

ak1b
k1
1 −times

. . . x
`pkq,kq . . . x

`pkq,kq
︸ ︷︷ ︸

akq b
kq
kq

−times

).

On the other hand,

< α£, β
£
m > =

∑

n

αnβ
n
m = 2−2`(ak1b

k1
m + · · ·+ akqb

kq
m ),m ∈ N,
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and
supp < α£, β

£
∗ > = ∪{supp βm

∗ : m ∈ supp α∗}.

Therefore
¼ α£, β

£
∗ >, x∗ > = (x`1,k1 . . . x`1,k1

︸ ︷︷ ︸

ak1b
k1
1 −times

. . . x
`pkq,kq . . . x

`pkq,kq
︸ ︷︷ ︸

akq b
kq
kq

−times

).

Having shown the validity of (+) we know that the composition given by (∗∗) makes X

a CvD0,N -convex module. A simple argument shows that both “midpoint algebra
(∗∗)−→

CvD0,N -convex module
(∗)−→ midpoint algebra" and “CvD0,N -convex module

(∗)−→ midpoint

algebra
(∗∗)−→ CvD0,N -convex module" produce the original structure.

Next let f : X −→ X ′ be a morphism of CvD0,N -convex modules. Then for any x, y ∈ X,
using the previous notation,

f(xy) = f(<
1

2
δn1
∗ +

1

2
δn2
∗ , x∗ >) = <

1

2
δn2
∗ +

1

2
δn2
∗ , fN(x∗) >= f(x)f(y),

whence f is a morphism of the associated midpoint algebras.

Finally let f : X −→ X ′ be a morphism of midpoint algebras. Due to (3.3) we have

f(< α∗, x
∗ >) = f(< ak1x

k1 > · · · < akqx
kq >) =

= (< ak1f(x
k1) > · · · < akqf(x

kq) >) =< α∗, f
N(x∗) > .

References
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