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1. Introduction and Preliminaries

The very important role that convexity plays in the optimization theory is well known.
There are several generalized convexity concepts and useful extensions of classic theorems
that have appeared in the last few years (see [13]). Particularly it has been possible to
establish results in vector optimization that allow us to characterize efficient and weak
efficient points under the concept of convexlikeness, which was introduced by Fan [1].
Likewise, the convexlikeness has been generalized by several authors, for example Jeyaku-
mar [5] defined the subconvexlikeness in Rn, Frenk and Kassay [17] studied a relaxed
concept of this, and Yang [9] extend these concepts and he defined generalized convex-
likeness and generalized subconvexlikeness working in normed spaces. Furthermore, all
these papers present alternative theorems adapted to the introduced concepts.
On the other hand, the convexlikeness has been generalized by Borwein, Craven, Gwinner
and Jeyakumar [6, 7, 8]. They consider notions such as near convexlikeness and moderate
convexlikeness, and they give new separation and alternative theorems.
Later, authors such as Paeck, Yang, Illés, Kassay, Breckner, Chen and Rong [10, 11, 12,
14, 15, 16] study these concepts and obtain several relations, characterizations and alter-
native theorems.
In this paper we present a relaxed subconvexlikeness and generalized subconvexlikeness
defined in real linear spaces. Likewise all the near convexity concepts have been adapted
to this new condition. On the other hand, it is normal in the literature to consider that
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the ordering cone is solid, instead we shall give definitions and theorems without this
restrictive condition, and since we don’t have any topology, we shall consider the rel-
ative algebraic interior instead of topological interior. Furthermore, because we study
constrained vector optimization with inequality and equality constraints, it is useful to
consider that the ordering cone is a product of cones. This fact invites us to define con-
cepts such as partial subconvexlikeness and partial generalized subconvexlikeness. The
second section is devoted to introducing and relating all these concepts. In the third sec-
tion we obtain new alternative theorems under generalized subconvexlikeness and partial
generalized subconvexlikeness, and as a consequence of these we can give necessary con-
ditions of weak efficiency in linear operators rule form for vector minimization problems
with inequality and equality constraints.
Let us consider a real linear space Y , a nontrivial ({0} 6= K 6= Y ) convex cone K ⊂ Y
and a nonempty subset A ⊂ Y . Sometimes we shall need to separate Y = Y1 × Y2, with
Y1, Y2 real linear spaces and K = K1×K2 with K1, K2 convex cones in Y1, Y2 respectively.
As usually, K is pointed if K ∩ (−K) = {0}, and cone(A), conv(A), aff(A) denote the
generated cone, convex hull and affine manifold of A respectively.
We use the following definitions:

1. For λ ∈ (0, 1), A is λ−convex if for all a1, a2 ∈ A, λa1 + (1− λ)a2 ∈ A.

2. A is nearly convex if there exists λ ∈ (0, 1) such that A is λ−convex.

3. The core or algebraic interior of A, and the intrinsic core or relative algebraic interior
of A are defined by:

cor(A) = {y ∈ A : ∀y′ ∈ Y, ∃λ′ > 0 such that y + λy′ ∈ A,∀λ ∈ [0, λ′]}

icr(A) = {y ∈ A : ∀y′ ∈ span(A− A),∃λ′ > 0 such that y + λy′ ∈ A,∀λ ∈ [0, λ′]}

where span(A) is the linear hull of A. We note that if A is a cone then span(A −
A)=span(A\{0} − A\{0})=aff(A)=aff(A\{0}).

4. The algebraic dual of Y is named Y ′, and K ′ = {µ ∈ Y ′ : ∀k ∈ K,µ(k) ≥ 0} is the
positive dual cone of K.

It is known that if cor(K) 6= ∅ then cor(K)∪ {0} is a convex cone, cor(K) +K = cor(K)
and cor(cor(K)) = cor(K) (see [4] ).

2. Partial and generalized subconvexity

Fan [1] gives the name convexlike to a set A if for all λ ∈ (0, 1), a1, a2 ∈ A there ex-
ists a3 ∈ A such that λa1+(1−λ)a2−a3 ∈ K, and it is easy to see that the convexlikeness
is equivalent to the convexity of A+K. This concept has been generalized by several au-
thors, and in the following definition we include some known concepts such as generalized
convexlikeness and we given a natural adaptation of the subconvexlikeness and generalized
subconvexlikeness to real linear spaces. For this we shall consider the algebraic interior
or the relative algebraic interior instead of topological interior. As we will establish later,
the following definitions are equivalent to those given by other authors. Likewise, since
we are interested in the particular case of K = K1 ×K2, we introduce new definitions.

Definition 2.1. Let Y be a real linear space, a nontrivial convex cone K ⊂ Y and a
nonempty subset A ⊂ Y .
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1. A is said to be convexlike (CL) if A + K is convex, and generalized convexlike
(GCL) if cone(A) +K is convex.

2. If icr(K) 6= ∅, A is said to be subconvexlike (SCL) if A+icr(K) is convex, and
generalized subconvexlike (GSCL) if cone(A)+icr(K) is convex.

3. If K = K1 ×K2 with cor(K1) 6= ∅, A is said to be (K1, K2) partial subconvexlike
(PSCL) if A+cor(K1)×K2 is convex, and (K1, K2) partial generalized subconvexlike
(PGSCL) if cone(A)+cor(K1)×K2 is convex.

4. If in the above definitions we change the convexity by near convexity we shall add
ÔnearlyÔ and thus we shall have sets nearly convexlike (nearly CL), nearly general-
ized convexlike (nearly GCL), nearly subconvexlike (nearly SCL), nearly generalized
subconvexlike (nearly GSCL), nearly (K1, K2) partial subconvexlike (nearly PSCL)
and nearly (K1, K2) partial generalized subconvexlike (nearly PGSCL).

As it is obvious all the previous concepts given in (1,2,3) are stronger that their corre-
sponding ones in (4).
In this section we establish several characterizations and relationships for these concepts.
Firstly we need the following lemmas.

Lemma 2.2. Let Y be a real linear space, a nontrivial convex cone K ⊂ Y and a
nonempty subset A ⊂ Y .

1. If icr(K) 6= ∅, then icr(K)∪{0} is a convex cone, furthermore icr(K)+K = icr(K),
and icr(icr(K)) = icr(K).

2. If K = K1 × K2 with icr(K1) 6= ∅ and icr(K2) 6= ∅ then icr(K) = icr(K1) ×
icr(K2). Furthermore L = (icr(K1)×K2)∪ {0} is also a convex cone with icr(L) =
icr(icr(K1)×K2).

3. cone(A+K) ⊂ cone(A) +K. If 0 ∈ A then both sets are equal.

4. cone(A+ cor(K)) = (cone(A) + cor(K)) ∪ {0}.
5. cone(conv(A)) = conv(cone(A)).

6. K is convex if and only if K is nearly convex. Analogously for K\{0}.

Proof.

1. Since K is a cone, it is sufficient to observe that aff(icr(K)) is a linear subspace of
Y , and so icr(icr(K)) = cor(cor(K)) = cor(K) = icr(K), since all relative algebraic
interior is equal to algebraic interior in his affine hull.

2. As K = K1 × {0Y2} + {0Y1} ×K2 then icr(K) = icr(K1 × {0Y2} + {0Y1} ×K2) and
since both are convex cones in Y , it is icr(K) = icr(K1×{0Y2})+icr({0Y1}×K2) (see
[19 ]). Then, icr(K) = icr(K1)× icr(K2). On the other hand, icr(L) = icr(icr(L)) =
icr(icr(K1) × icr(K2)) ⊂ icr(icr(K1) ×K2) ⊂ icr(L), and so we obtain that icr(L) =
icr(icr(K1)×K2).

3. The inclusion ⊂ is evident. On the other hand, suppose that 0 ∈ A, if α > 0, a ∈
A, k ∈ K then αa+k = α(a+k/α) ∈ cone(A+K), and if α = 0 then k ∈ cone(A+K).
Consequently cone(A) +K ⊂cone(A+K).

4. Analogously the inclusion ⊂ is easy to see. Furthermore, if α > 0, a ∈ A, k ∈ cor(K)
then αa+k = α(a+k/α) ∈ cone(A+cor(K)), and if α = 0 we can see that cor(K) ⊂
cone(A + cor(K)). In fact, if k0 ∈ cor(K), then for any a ∈ A there exists λ′ >
0 such that for all λ ∈ [0, λ′], k0 − λa ∈ K. Thus there exists k ∈ K such that
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k0 = λa+k, and so k0 = λa/2+k/2+k0/2 ∈ cone(A)+K+cor(K) = cone(A)+cor(K).

5. If x ∈cone(conv(A)), then there exist α ≥ 0, λ ∈ [0, 1], and a1, a2 ∈ A such that
x = α(λa1+(1−λ)a2) = λ(αa1)+(1−λ)(αa2) ∈ conv(cone(A)). If x ∈conv(cone(A)),
then there exist λ ∈ [0, 1], a1, a2 ∈ A, and α, β ≥ 0, such that x = λ(αa1) + (1 −
λ)(βa2). If α, β = 0, then x = 0 ∈cone(conv(A)), and if (α, β) 6= 0 and let us denote
µ = λα+(1−λ)β, we have that x = µ((λα/µ)a1+((1−λ)β/µ)a2) ∈ cone(conv(A)).

6. If K is convex also it is nearly convex. Reciprocally, if α ∈ (0, 1), k1, k2 ∈ K since
there exists a λ ∈ (0, 1) such that for (α/λ)k1, ((1 − α)/(1 − λ))k2 ∈ K, then it is
λ((α/λ)k1)+ (1−λ)((1−α)/(1−λ))k2) ∈ K, and so αk1+(1−α)k2 ∈ K. The proof
is analogous for K\{0}.

Remark. The reverse inclusion in (3) does not hold, as can be seen considering A =
{(1, 1)} ⊂ R2 and K = R2

+.
According to the last of the preceding results it is obvious that

GCL ⇔ nearly GCL; PGSCL ⇔ (K1, K2) nearly PGSCL; GSCL ⇔ nearly GSCL.

Lemma 2.3. Let A,W be subsets of a real linear space Y with W convex.

1. A+W is convex if and only if conv(A) +W = A+W .

2. Let W be a cone, then A+W is convex if and only if conv(A) ⊂ A+W .

3. Let W be a cone, then cone(A)+W\{0} is convex if and only if conv(A)+W\{0} ⊂
cone(A) +W\{0}.

4. Let W be a cone, then cone(A)+W is convex if and only if conv(A) ⊂ cone(A)+W .

Proof.

1. (⇒) The inclusion ⊃ is evident. On the other hand, the reverse inclusion holds since
for all λ ∈ (0, 1), a1, a2 ∈ A,w ∈ W it is λa1 + (1 − λ)a2 + w = λ(a1 + w) + (1 −
λ)(a2 + w) ∈ A+W .
(⇐) If a1, a2 ∈ A, λ ∈ (0, 1), w1, w2 ∈ W then λ(a1 + w1) + (1 − λ)(a2 + w2) =
λa1 + (1− λ)a2 + λw1 + (1− λ)w2 ∈ conv(A) +W = A+W .

2. (⇒) As A + W is convex then conv(A) + W = A + W and so the inclusion holds,
since 0 ∈ W .
(⇐) Let a1, a2 ∈ A, λ ∈ (0, 1), w1, w2 ∈ W , then λ(a1 + w1) + (1 − λ)(a2 + w2) =
λa1 + (1− λ)a2 + λw1 + (1− λ)w2 ∈ conv(A) +W ⊂ A+W +W ⊂ A+W .

3. (⇒) It is a consequence of (1) since conv(A) +W\{0} ⊂ conv(cone(A)) +W\{0}.
(⇐) It is sufficient to see that conv(cone(A)) +W\{0} ⊂ cone(A) +W\{0}. Since
conv(cone(A)) = cone(conv(A)), for all m ∈ conv(cone(A)), w ∈ W\{0} there exist
σ ≥ 0, a1, a2 ∈ A, λ ∈ (0, 1) such that m+w = σ(λa1+(1−λ)a2)+w. If σ > 0 we can
write σ(λa1+(1−λ)a2+w/σ), and by hypothesis there exist α ≥ 0, a3 ∈ A,w′ ∈ W ,
such that m + w = σ(αa3 + w′) = σαa3 + σw′ ∈ cone(A) +W\{0}. For the case of
σ = 0 the proof it is evident.

4. (⇒) Since conv(A) ⊂ conv(cone(A)), this result is a consequence of (2)
(⇐) We shall see that conv(cone(A)) ⊂ cone(A) + W . Since conv(cone(A)) =
cone(conv(A)), for all m ∈ conv(cone(A)), there exist σ ≥ 0, a1, a2 ∈ A, λ ∈ (0, 1)
such thatm = σ(λa1+(1−λ)a2), and by hypothesis there exist α ≥ 0, a3 ∈ A,w ∈ W ,
such that m = σ(αa3 + w) = σαa3 + σw ∈ cone(A) +W .
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Several authors (see [4],[9],[10],[14],[15]) have given characterizations for some relaxed
convexity concepts considering a solid convex cone K in topological linear spaces. Now,
with the help of preceding lemmas, we show that these characterizations hold in our
context. Likewise we present some new results.

Proposition 2.4. Let us consider a real linear space Y , a nontrivial convex cone K ⊂ Y
and a nonempty subset A ⊂ Y .

1. Equivalent are:
(a) A is CL (nearly CL).
(b) ∀(∃)λ ∈ (0, 1),∀a1, a2 ∈ A,∃a3 ∈ A such that λa1 + (1− λ)a2 − a3 ∈ K.

2. Equivalent are:
(a) A is SCL (nearly SCL).
(b) ∀θ ∈ icr(K),∀(∃)λ ∈ (0, 1),∀a1, a2 ∈ A,∃a3 ∈ A such that θ+λa1+(1−λ)a2−

a3 ∈ icr(K).
(c) ∃θ ∈ icr(K) such that ∀(∃)λ ∈ (0, 1),∀a1, a2 ∈ A,∀ε > 0,∃a3 ∈ A such

that εθ + λa1 + (1− λ)a2 − a3 ∈ K.

3. Equivalent are:
(a) A is GCL.
(b) ∀λ ∈ (0, 1),∀a1, a2 ∈ A,∃a3 ∈ A,∃ν > 0 such that λa1 + (1− λ)a2 − νa3 ∈ K.

4. Equivalent are:
(a) A is GSCL.
(b) ∀θ ∈ icr(K),∀λ ∈ (0, 1),∀a1, a2 ∈ A,∃a3 ∈ A,∃ν > 0 such that θ+ λa1 + (1−

λ)a2 − νa3 ∈ icr(K).
(c) ∃θ ∈ icr(K) such that ∀λ ∈ (0, 1),∀a1, a2 ∈ A,∀ε > 0,∃a3 ∈ A,∃ν > 0 such

that εθ + λa1 + (1− λ)a2 − νa3 ∈ K.

5. If Y = Y1 × Y2 with Y1 and Y2 real linear spaces and K = K1 ×K2 with K1 and K2

convex cones in Y1 and Y2 respectively, and such that cor(K1) 6= ∅ then the following
statements are equivalent:
(a) A is (K1, K2) PSCL(nearly PSCL).
(b) ∀(θ1, θ2) ∈ cor(K1)×K2,∀(∃)λ ∈ (0, 1),∀a1, a2 ∈ A,∃a3 ∈ A, such that (θ1, θ2)+

λa1 + (1− λ)a2 − a3 ∈ cor(K1)×K2.
(c) ∃θ ∈ cor(K1) such that ∀(∃)λ ∈ (0, 1),∀a1, a2 ∈ A,∀ε > 0,∃a3 ∈ A such

that ε(θ, 0) + λa1 + (1− λ)a2 − a3 ∈ K.

6. If Y = Y1 × Y2 with Y1 and Y2 real linear spaces and K = K1 × K2 with K1 and
K2 convex cones in Y1 and Y2 respectively, and such that cor(K1) 6= ∅, then the
following statements are equivalent:
(a) A is (K1, K2) PGSCL.
(b) ∀(θ1, θ2) ∈ cor(K1) × K2,∀λ ∈ (0, 1),∀a1, a2 ∈ A,∃a3 ∈ A,∃ν > 0, such

that (θ1, θ2) + λa1 + (1− λ)a2 − νa3 ∈ cor(K1)×K2.
(c) ∃θ ∈ cor(K1) such that ∀λ ∈ (0, 1),∀a1, a2 ∈ A,∀ε > 0,∃a3 ∈ A,∃ν > 0, such

that ε(θ, 0) + λa1 + (1− λ)a2 − νa3 ∈ K.

Proof. We only show the proofs for convexlikeness, in case of near convexlikeness they are
similar. Firstly, (1) and (3) are obvious from Lemma 2.3.2 and Lemma 2.3.4 respectively.
The same way, we only prove (2) and (5), because the proofs of (4) and (6) are analogous.

2. Evidently (a) is equivalent to (b) by Lemma 2.3.1.(b)⇒(c). It is easy to see since if
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θ ∈ icr(K) then for all ε > 0 it is εθ ∈ icr(K).
(c)⇒(b). Let θ ∈ icr(K), there exist θ′ ∈ icr(K) and λ ∈ (0, 1) such that for all
a1, a2 ∈ A, ε > 0 there exists a3 ∈ A with εθ′ + λa1 + (1− λ)a2 ∈ a3 +K. Also there
exists µ′ > 0 such that for all µ ∈ [0, µ′/2] is θ + 2µ(−θ′) ∈ K because −θ′ ∈ aff(K).
Since µθ′ ∈ icr(K) then θ + 2µ(−θ′) + µθ′ ∈ K + icr(K), and this implies that
θ − µθ′ ∈ icr(K). Hence, setting µ small enough, it is (θ − µθ′) + (µθ′ + λa1 + (1−
λ)a2 − a3) ∈ icr(K) +K and therefore θ + λa1 + (1− λ)a2 − a3 ∈ icr(K).

5. Evidently (a) is equivalent to (b) by (1) in Lemma 2.3.1.
(b)⇒(c) It is sufficient to observe that if θ1 ∈ cor(K1) then for all ε > 0 it is
ε(θ1, 0) ∈ cor(K1)×K2 ⊂ K1 ×K2.
(c)⇒(b). Let (θ1, θ2) ∈ cor(K1) × K2. As there exist θ′1 ∈ cor(K1), λ ∈ (0, 1) such
that for all a1, a2 ∈ A, ε > 0 there exists a3 ∈ A with ε(θ′1, 0) + λa1 + (1 − λ)a2 ∈
a3+K1×K2, and for θ1 ∈ cor(K1, there exists µ

′ > 0 such that for all µ ∈ [0, µ′/2] is
θ1+2µ(−θ′1) ∈ K1. Since µθ

′
1 ∈ cor(K1) then θ1+2µ(−θ′1)+µθ′1 ∈ K1+cor(K1), and

so θ1 − µθ′1 ∈ cor(K1) and also (θ1 − µθ′1, θ2) ∈ cor(K1)×K2. Hence, setting µ small
enough, it is (θ1−µθ′1, θ2)+µ(θ′1, 0)+λa1+(1−λ)a2−a3 ∈ cor(K1)×K2+K1×K2

and therefore (θ1, θ2) + λa1 + (1− λ)a2 − a3 ∈ cor(K1)×K2.

Lemma 2.5. Let A,W be subsets of a real linear space Y , and let W be convex with
icr(W ) 6= ∅. If A + W is convex (nearly convex) then A + icr(W ) is convex (nearly
convex). If W = W1×W2 with icr(W1) 6= ∅ then if A+W1×W2 is convex (nearly convex)
then also A+ icr(W1)×W2 is convex (nearly convex).

Proof. If λ ∈ (0, 1), a1, a2 ∈ A,w1, w2 ∈ icr(W ) then λ(a1 + w1) + (1 − λ)(a2 + w2) =
λ(a1 + w1/2) + (1− λ)(a2 + w2/2) + λw1 + (1− λ)w2 ∈ A +W + icr(W ) = A + icr(W ).
The remaining proofs are analogous. £

With the help of the preceding results, it is easy to prove that all these concepts are
related as follows.

Proposition 2.6. Let us consider a real linear space Y , a nontrivial convex cone K ⊂ Y
and a nonempty subset A ⊂ Y .

1. CL ⇒ GCL

2. If icr(K) 6= ∅ then

CL ⇒ SCL ⇒ GSCL, nearly CL ⇒ nearly SCL, and GCL ⇒ GSCL.

3. If K = K1 ×K2, with cor(K1) 6= ∅ then

CL ⇒ (K1, K2) PSCL ⇒ (K1, K2) PGSCL

nearly CL ⇒ (K1, K2) nearly PSCL, and GCL ⇒ (K1, K2) PGSCL.

4. If K = K1 ×K2, with cor(K1) 6= ∅, icr(K2) 6= ∅ then

(K1, K2) PSCL ⇒ SCL

(K1, K2) nearly PSCL ⇒ nearly SCL, and (K1, K2) PGSCL ⇒ GSCL.

The following examples show us that the converses does not hold. It is worth noting
that cone(A) is convex for all convex set A, but this property does not hold for near
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convexity. This fact means that nearly CL does not imply GCL, nearly PSCL does not
imply PGSCL, and that nearly SCL does not imply GSCL.

Example 2.7.

1. Let K1 = R+, K2 = R+ × {0}, and A = {(0, 0, q) : q ∈ Q, q 6= 1} ∪ {(x, y, z) : x >
0, y > 0}, then A is SCL and GCL but is not nearly PSCL.

2. Let K = K1 × K2 with K1 = {(x, y) : |x| ≤ y}, K2 = {0}, and M = {(x, y, z) :
2x2 ≤ y2, 0 ≤ y, x = z}. Then A = {(x, 0, z) : x 6= 0} is SCL with respect to K and
M and it is PSCL with respect to K, but neither nearly CL nor GCL with respect
to either. On the other hand B = {(x, 0, z) : z = 1/x, x 6= 1, x > 0} is PGSCL
with respect to K and GSCL with respect M but neither GCL with respect to K nor
nearly SCL with respect to M .

3. Let K = K1 × K2 with K1 = R2
+, K2 = {0}, then A = {0} × {0} × ([0, 1] ∪ Q) is

nearly PSCL but nor PSCL.

4. Let K = K1 × K2 with K1 = R+, K2 = {(0, 0)}, then A = {(0, 1, q) : q ∈ Q} is
nearly CL but neither GSCL nor PGSCL.

5. Let K = K1 ×K2 with K1 = R, K2 = {(y, z) : |y| ≤ z}, then A = {(x, y, 0) : y 6= 0}
is GSCL but nor PGSCL.

The relations between these concepts are shown in the following diagram. The number
over the arrows makes a reference to the preceding counterexamples.

3. Necessary conditions of weak efficiency

Now, in this section, we obtain the announced results over characterization of weak effi-
ciency. Firstly, we give two alternative theorems, and as a consequence of these we obtain
necessary conditions of weak efficiency in vector optimization problems. The first result
(theorem 3.5) is an alternative theorem without the restrictive condition about the or-
dering cone being solid, and so, it is a generalization of several theorems given by Chen
and Rong (see theorem 3.1 in [15]), Yang (see theorem 1 in [9]) and Adán and Novo (see
theorem 3.1 in [18]). Later, the theorem 3.7 is a generalization of theorem 6.1 of Illés and
Kassay in [16], which is given for nearly SCL. As an outcome we obtain a linear operators
rule as necessary condition of weak efficiency under partial generalized subconvexlikeness
(theorem 3.8). Lastly, we give an analogous necessary condition of weak efficiency under
generalized subconvexlikeness (corollary 3.9), which generalizes the theorems 3.2 and 3.3
in [18].
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Let X be a nonempty subset of a real linear space E. Let Y, Z, Z1, and Z2 be real lin-
ear spaces with ordering convex cones K,M,M1, and M2 respectively. Let g : X −→ Z,
g1 : X −→ Z1, g2 : X −→ Z2, and f : X −→ Y be mappings. We consider the constrained
vector minimization problems:

K −Min{f(x) : x ∈ X, g(x) ∈ −M} (3.1)

K −Min{f(x) : x ∈ X, g1(x) ∈ −M1, g2(x) ∈ −M2} (3.2)

It is necessary to consider the problems (3.1) and (3.2) separately because we study
the cones M such that can be represented as a product of two cones: M = M1 × M2.
Furthermore, in (3.1) we suppose that the vector minimization problems have equality
constraints, nevertheless in (3.2) we consider inequality and equality constraints. The
feasible sets in (3.1) and (3.2) they are respectively:

Ω = {x ∈ X : g(x) ∈ −M}

Ω = {x ∈ X : g1(x) ∈ −M1, g2(x) ∈ −M2}

Definition 3.1. A point x0 ∈ X is called an efficient solution of (3.1) or (3.2) with
respect to K, if x0 ∈ Ω and if doesn’t exist x in Ω such that f(x0) ∈ f(x) + K. If
cor(K) 6= ∅, a point is called a weakly efficient solution of (3.1) or (3.2) with respect to
K, if x0 ∈ Ω and if doesn’t exist x in Ω such that f(x0) ∈ f(x)+cor(K).

These conditions are respectively equivalent to:

f(Ω) ∩ (f(x0)−K) = {f(x0)}

f(Ω) ∩ (f(x0)− cor(K)) = ∅

Since K ×M and K ×M1 ×M2 are ordering convex cones in the real linear space Y ×Z
and Y × Z1 × Z2 respectively, we can establish the next definitions.

Definition 3.2. If icr(K) 6= ∅,icr(M) 6= ∅, (f, g) is said to be generalized subconvexlike
(GSCL) on X with respect to (K,M) if the image set (f, g)(X) is GSCL with respect to
K×M . If cor(K) 6= ∅, (f, g) is said to be partial generalized subconvexlike (PGSCL) on
X with respect to (K,M) if the image set (f, g)(X) is PGSCL with respect to (K,M).

Definition 3.3. It is said that (3.1) satisfies the Slater type constraint qualification if
there exists x ∈ Ω such that g(x) ∈ -cor(M). It is said that (3.2) satisfies the Slater type
constraint qualification if there exists x ∈ Ω such that g1(x) ∈ -cor(M1) .

Let L(Z, Y ) be the set of linear operators from Z into Y , we denote by Γ = {T ∈ L(Z, Y ) :
T (M) ⊂ K}.
Because it will be useful, we show a know result (see [2]), with a little adaptation for our
needs.

Theorem 3.4. Let S be a convex cone of a real linear space Y with icr(S) 6= ∅ and let
y0 ∈ Y , then y0 /∈ icr(S) if and only if there exists a linear functional l ∈ Y ′ \ {0} such
that l(s) ≤ 0 ≤ l(y0) for all s ∈ S, and l(s) < 0 for all s ∈ icr(S).
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Theorem 3.5. Let Y be a real linear space and let K ⊂ Y be a pointed convex cone
with icr(K) 6= ∅, 0 /∈ icr(K). Suppose that the nonempty A ⊂ Y is GSCL satisfying
icr(cone(A) + icr(K)) 6= ∅. Consider the following statements

(i) ∃a ∈ A, a ∈ -icr(K)

(ii) ∃µ ∈ K ′, µ(cone(A) + icr(K)) 6= {0}, ∀a ∈ A, µ(a) ≥ 0

Then not (i) implies (ii). Moreover, if aff(icr(K)) = aff(cone(A)+icr(K)) then (ii) implies
not (i).

Proof. By hypothesis it will be 0 /∈cone(A)+icr(K), because otherwise there exist
a ∈ A,α ≥ 0, k ∈ icr(K) such that 0 = αa + k, and so, for α > 0 is a = −k/α ∈ icr(K),
and for α = 0 is 0 ∈ icr(K). In both cases there exists a contradiction. Furthermore,
as cone(A)+icr(K) is convex it will be cone(A)+icr(K)∪{0} 6=aff(cone(A)+icr(K)), and
since aff(cone(A)+icr(K))=aff(cone(A)+icr(K)∪{0}), then 0 /∈icr(cone(A)+icr(K)∪{0})
Therefore by theorem 3.4, there exists a linear functional µ ∈ Y ′\{0} such that µ(αa+k) ≥
0 for all α ≥ 0, a ∈ A, k ∈ icr(K), being µ strictly positive in icr(cone(A) + icr(K)).
For α = 0 we obtain that µ(k) ≥ 0 for all k ∈ icr(K) and so µ ∈ K ′. Furthermore,
if µ(a) < 0 for some a ∈ A, then taking any k ∈ icr(K) and a large enough α is
µ(αa+ k) = αµ(a) + µ(k) < 0 but this is contradictory.
Lastly, if we assume that aff(icr(K)) = aff(cone(A) + icr(K)), then since icr(K) ⊂
cone(A) + icr(K) then icr(icr(K)) = icr(K) ⊂ icr(cone(A) + icr(K)), and so µ is strictly
positive in icr(K). Therefore, if there exists a ∈ A such that a ∈ −icr(K) must be
µ(a) < 0 and this is contradictory.

Remark. The additional condition for the converse is necessary as shown in the following
example: Y = R3, K = {(x, y, 0) : y ≥ |x|} and A = {(x, y, z) : z ≥ 0}.
The following result is a consequence of the preceding theorem and the elementary cones
properties whose algebraic cores are nonempty.

Corollary 3.6. Let Y be a real linear space and let K ⊂ Y be a pointed convex cone with
cor(K) 6= ∅. Suppose that the nonempty set A ⊂ Y is GSCL. Then exactly one of the
following statements hold

(i) ∃a ∈ A, a ∈ -cor(K).

(ii) ∃µ ∈ K ′ \ {0},∀a ∈ A, µ(a) ≥ 0.

Theorem 3.7 (PGSCL Alternative Theorem). Let Y1, Y2 be real linear spaces and
K1 ⊂ Y1, K2 ⊂ Y2 are pointed convex cones with cor(K1) 6= ∅. Suppose that the nonempty
set A ⊂ Y = Y1 × Y2 is (K1, K2)PGSCL satisfying icr(cone(A) + cor(K1) × K2) 6= ∅.
Consider the following statements

(i) ∃a = (a1, a2) ∈ A, a1 ∈ -cor(K1), a2 ∈ −K2

(ii) ∃µ = (µ1, µ2) ∈ K ′
1 ×K ′

2 \ {(0, 0)},∀(a1, a2) ∈ A, µ1(a1) + µ2(a2) ≥ 0.

Then not (i) implies (ii). Moreover, if µ1 6= 0 then (ii) implies not (i).

Proof.

1. Analogously to theorem 3.5 it is easy to see that 0 /∈ icr(cone(A) + cor(K1) × K2)
and so by theorem 3.4, there exists a linear functional µ = (µ1, µ2) ∈ Y ′

1 × Y ′
2 \
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{(0, 0)} such that (µ1, µ2)(α(a1, a2) + (k1, k2)) ≥ 0 for all α ≥ 0, (a1, a2) ∈ A, k1 ∈
cor(K1), k2 ∈ K2. For α = 0 we obtain that (µ1, µ2)(k1, k2) ≥ 0 for all k1 ∈
cor(K1), k2 ∈ K2. Particularly for k2 = 0 it is µ1(k1) ≥ 0 for all k1 ∈ cor(K1)
and so µ1 ∈ K ′

1. Furthermore, if there exists k2 ∈ K2 such that µ2(k2) = r < 0
then taking any k1 ∈ K1 such that µ1(k1) = s < −r we obtain a contradiction since
(µ1, µ2)(k1, k2) = s+ r < 0. So (µ1, µ2) ∈ K ′

1×K ′
2. Lastly, we obtain a contradiction

if we suppose that there exists (a1, a2) ∈ A such that (µ1, µ2)(a1, a2) < 0, since tak-
ing k1 ∈ cor(K1), k2 = 0 and α > 0 large enough, it is (µ1, µ2)(α(a1, a2) + (k1, 0)) =
α(µ1, µ2)(a1, a2) + (µ1, µ2)(k1, 0) < 0.

2. We obtain a contradiction if we suppose that there exists a = (a1, a2) ∈ A ∩
(−cor(K1) × (−K2)), since by hypothesis it will be µ1(−a1) > 0, µ2(−a2) ≥ 0, and
consequently µ1(a1) + µ2(a2) < 0. £

Remark. It is worth noting that the hypothesis icr(cone(A)+cor(K1) × K2) 6= ∅ is
weaker than the condition icr(K2) 6= ∅. To see this, let Y = R × C(0,1) where C(0,1)

is the real linear space of continuous real functions in (0,1). Let K1 = R+, K2 = {f :
(0, 1) → R such that f is continuous, f(x) ≥ 0 for all x ∈ (0, 1)} and A = R+ × {f :
(0, 1) → R such that f is continuous, f(x) ≤ 0 for all x ∈ (0, 1)}. It is easy to see
that icr(cone(A) + cor(K1) × K2) = R+ \ {0} × C(0,1). Likewise icr(K2) = ∅, since
for all f ∈ K2 if we denote h(x) = x and we take g = −f/h ∈ C(0,1), then for all
λ′ > 0 there exists 0 < λ < λ′ such that (f + λg)(x) < 0 for some x ∈ (0, 1). In effect
it is sufficient to do λ = λ′/2 and x = λ′/4 ∈ (0, 1) if λ′ < 1, and λ = 1/2λ′ and
x = 1/4λ′ ∈ (0, 1) if λ′ ≥ 1. Analogously we can see that icr(cone(A)) = ∅.
Theorem 3.8. For the problem (3.2), let K,M1,M2 be pointed convex cones such that
cor(K) 6= ∅ and cor(M1) 6= ∅. Let Z = Z1 × Z2 and let x0 ∈ X be a weakly efficient
solution for the problem (3.2). If (f(x) − f(x0), g1(x), g2(x)) is (K × M1,M2) PGSCL
with icr(cone((f(X) − f(x0), g1(X), g2(X))) + cor(K ×M1) ×M2) 6= ∅ and if the Slater
constraint qualification holds then there exists T0 ∈ Γ such that x0 is a weakly efficient
solution of the unconstrained problem:

K −Min{f(x) + T0(g1(x), g2(x)) : x ∈ X} (3.3)

and, in addition T0(g1(x0), g2(x0)) = 0.

Proof. By hypothesis, K ×M1 ×M2 is a pointed convex cone with cor(K ×M1) 6= ∅. If
x0 ∈ X is a weakly efficient solution of 3.2 then there is no x ∈ X such that (f(x) −
f(x0), g1(x), g2(x)) ∈ −cor(K) × (−M1) × (−M2) and thus it doesn’t exist x ∈ X such
that (f(x) − f(x0), g1(x), g2(x)) ∈ −cor(K × M1) × (−M2). Applying theorem 3.7,
there exists µ = (µK , µ1, µ2) ∈ K ′ × M ′

1 × M ′
2, \{(0, 0, 0)} such that < µ, (f(x) −

f(x0), g1(x), g2(x)) > ≥ 0 for all x ∈ X, and so we can write for all x ∈ X:

< µK , f(x) > + < µ1, g1(x) > + < µ2, g2(x) > ≥ < µK , f(x0) >

If we take x = x0 then < µ1, g1(x0) > + < µ2, g2(x0) > ≥ 0, but since x0 ∈ Ω then must
be < µ1, g1(x0) > + < µ2, g2(x0) > = 0. So we can write

< µK , f(x) > + < µ1, g1(x) > + < µ2, g2(x) > ≥
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< µK , f(x0) > + < µ1, g1(x0) > + < µ2, g2(x0) >

Furthermore, µK 6= 0, otherwise < µ1, g1(x) > + < µ2, g2(x) > ≥ 0 for all x ∈ X, which
contradicts the Slater constraint qualification.
Therefore there exists k1 ∈ K such that µK(k1) > 0, otherwise µK(K) = {0} and
so µK(−K) = {0}and then µK(K − K) = {0}, but since K has nonempty algebraic
core, it will be K − K = Y and thus µK(Y ) = {0} which is a contradiction. Then for
such k1 ∈ K let y1 = k1/µK(k1) ∈ K, and with it we can establish a linear mapping
h : R −→ Y, h(r) =< r, y1 >.
If r ≥ 0 then it is h(r) ∈ K and µK(h(r)) = < r, µK(y1) > = < r, 1 > = r, which means
that µK ◦ h is the identity mapping.
Let T0 be the linear mapping from Z1×Z2 to Y : T0 = h◦(µ1, µ2). For all (q1, q2) ∈ M1×M2,
it is T0(q1, q2) = h((µ1, µ2))(q1, q2) ∈ h(R+) ⊂ K. Furthermore µK◦T0 = µK◦h◦(µ1, µ2) =
(µ1, µ2), and then

< µK , f(x) > + < µ1, g1(x) > + < µ2, g2(x) > =

= < µK , f(x) > + < µK ◦ T0, (g1(x), g2(x)) >

therefore
< µK , f(x) > + < µ1, g1(x) > + < µ2, g2(x) > =

= < µK , f(x) + T0 ◦ (g1(x), g2(x)) >
and consequently, < µK , f(x)+T0◦(g1(x), g2(x)) > ≥ < µK , f(x0)+T0◦(g1(x0), g2(x0)) >
for all x ∈ X. This is equivalent to affirming that x0 is a weak efficient solution of the
problem:

K −Min{< µK , f(x) + T0(g1(x), g2(x)) >: x ∈ X} (3.4)

and so x0 is a weakly efficient solution of the problem 3.3. Otherwise if there exists x′ ∈ X
such that

f(x0) + T0 ◦ (g1(x0), g2(x0)) ∈ f(x′) + T0 ◦ (g1, g2)(x′) + cor(K)

then
f(x0) + T0 ◦ (g1, g2)(x0)− f(x′)− T0 ◦ (g1, g2)(x′) ∈ cor(K)

and so
< µK , f(x0) + T0 ◦ (g1, g2)(x0)− f(x′)− T0 ◦ (g1, g2)(x′) > > 0

and therefore

< µK , f(x0) + T0 ◦ (g1, g2)(x0) > > < µK , f(x
′) + T0 ◦ (g1, g2)(x′) >

which is a contradiction.
Finally, since < (µ1, µ2), (g1(x0), g2(x0)) > = 0 we have that T0(g1(x0), g2(x0)) = 0.
The proof of the following result is similar to the preceding.

Corollary 3.9. For the problem (3.1), let K,M be nontrivial pointed convex cones such
that cor(K) 6= ∅ and cor(M) 6= ∅. Let x0 ∈ X be a weakly efficient solution for the problem
(3.1). If (f(x)−f(x0), g(x))is K×M GSCL and if the Slater constraint qualification holds
then there exists T0 ∈ Γ such that x0 is a weakly efficient solution of the unconstrained
problem:

K −Min{f(x) + T0(g(x)) : x ∈ X} (3.5)

and, in addition T0(g(x0)) = 0.
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