Anisotropic Elliptic Equations in L^{m*}

Li Feng-Quan

Department of Mathematics, Qufu Normal University, Qufu 273165, Shandong, China lifq079@ji-public.sd.cninfo.net

Received June 20, 2000

In this paper, we prove the existence of solutions to anisotropic nonlinear elliptic equations with right hand side term in $L^m(\Omega)$ and obtain the appropriate function space for the weak solutions. This paper gives a generalization of some results given in [1] and [3].

 $Keywords\colon$ Anisotropic elliptic equations, L^m data

1991 Mathematics Subject Classification: 35D05, 35D10, 35J65

1. Introduction

Let Ω be an open bounded set of $\mathbb{R}^N (N \geq 2)$, $p_i > 1$, $(i = 1, 2, \dots, N)$ and $a : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ be a Carathéodory function. We assume that there exist two real positive constants α, β and a nonnegative function $h \in L^1(\Omega)$ such that for any $s \in \mathbb{R}, \xi \in \mathbb{R}^N$, $\eta \in \mathbb{R}^N$ and for almost every $x \in \Omega$, every component $a_j(x, s, \xi)$ of a,

$$a(x,s,\xi)\xi \ge \alpha \sum_{i=1}^{N} |\xi_i|^{p_i},\tag{1}$$

$$|a_j(x,s,\xi)| \le \beta (h(x) + |s|^{\overline{p}} + \sum_{i=1}^N |\xi_i|^{p_i})^{1 - \frac{1}{p_j}},$$
(2)

where \overline{p} satisfies $\frac{1}{\overline{p}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{p_i}$.

$$[a(x, s, \xi) - a(x, s, \eta)][\xi - \eta] > 0, \quad \xi \neq \eta.$$
(3)

The aim of this paper is to obtain a solution of the anisotropic elliptic equation

$$(P) \quad \begin{cases} -\operatorname{div}(a(x, u, Du)) = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

in the sense of the distributions. When $f \in L^m(\Omega)$ with m satisfies

$$1 < m < \overline{m} = \frac{N\overline{p}}{N\overline{p} - N + \overline{p}}.$$
(4)

*This work is supported by NSF of Shandong province(NoY98A09012, NoQ99A05).

ISSN 0944-6532 / \$ 2.50 © Heldermann Verlag

We also assume

$$2 - \frac{1}{N} < p_i < \frac{(N-1)\bar{p}}{N-\bar{p}}, \text{ and } \bar{p} < N, i = 1, 2, \cdots, N.$$
 (5)

Set

$$m^* = \frac{Nm}{N-m} \tag{6}$$

and

$$W_0^{1,(r_i)}(\Omega) = \{ u \in W_0^{1,1}(\Omega) \mid D_i u \in L^{r_i}(\Omega) \}, (r_i \ge 1, i = 1, 2, \cdots, N).$$
(7)

If a does not depend on x and s, namely $a(x, s, \xi) \equiv a(\xi)$, $a(\xi)$ is the vector field whose components are $|\xi_i|^{p_i-2}\xi_i$ $(i = 1, 2, \dots, N; p_i > 1)$. In [1], it has been proved that there exists a weak solution $u \in \bigcap_{i=1}^N W_0^{1,(r_i)}(\Omega)$ with $1 \leq r_i < \frac{p_i(\overline{p}-1)N}{\overline{p}(N-1)}$ when $f \in M_b(\Omega)$, and there exists a weak solution $u \in \bigcap_{i=1}^N W_0^{1,(q_i)}(\Omega)$ with $q_i = \frac{p_i(\overline{p}-1)N}{\overline{p}(N-1)}$ when $f \in L^1 \log L^1(\Omega)$ too.

If $p_1 = p_2 = \cdots = p_N = p$, the existence results have been proved in [3] when $f \in M_b(\Omega), f \in L^1 \log L^1(\Omega)$ and $f \in L^m(\Omega)$ with $1 < m < \frac{Np}{Np-N+p}$.

We consider the existence of weak solutions to problem (P) when $f \in L^m(\Omega)$ (m > 1)here. If $\overline{p} = N$, then $\overline{m} = 1$, and if f is in $L^m(\Omega)$, then $m > \overline{m} = 1$, and problem (P) is known to have a weak solution in $\bigcap_{i=1}^N W_0^{1,(p_i)}(\Omega)$ by [4] (since $f \in (\bigcap_{i=1}^N W_0^{1,(p_i)}(\Omega))'$).

Let us now assume that $\overline{p} < N$. Then $\overline{m} > 1$ and if f is in $L^m(\Omega)$, $m \ge \overline{m}$, Problem (P) is known to have a weak solution in $\bigcap_{i=1}^N W_0^{1,(p_i)}(\Omega)$ by [4] (since $f \in (\bigcap_{i=1}^N W_0^{1,(p_i)}(\Omega))'$). The only case of interest is when f is in $L^m(\Omega)$ with $1 < m < \overline{m}$, and we prove the following theorem.

Theorem 1.1. Assume that (1)–(3) and (5). Let $1 < m < \overline{m} = \frac{N\overline{p}}{N\overline{p}-N+\overline{p}}$ and f be in $L^m(\Omega)$. Then problem (P) exists a weak solution $u \in \bigcap_{i=1}^N W_0^{1,(q_i)}(\Omega)$, with $q_i = \frac{p_i(\overline{p}-1)m^*}{\overline{p}}$.

Remark 1.2. The Theorem extends the results of Proposition 1 in [2] and Theorem 3 in [3]. Furthermore it can be even as a regularity theorem regarding the solution u obtained in Theorem 1 in [1].

2. Proof of Theorem 1.1

In order to prove the Theorem 1.1, we need the following nonisotropic Sobolev inequality (cf. [1, 5]).

Lemma 2.1. If $u \in \bigcap_{i=1}^{N} W_0^{1,(r_i)}(\Omega)$, $r_i \ge 1 (i = 1, 2, \dots, N)$, then

$$\|u\|_{L^{s}(\Omega)} \leq C_{1} (\prod_{i=1}^{N} \|D_{i}u\|_{L^{r_{i}}(\Omega)})^{\frac{1}{N}},$$
(8)

where $s = \overline{r}^* = \frac{N\overline{r}}{N-\overline{r}}$ if $\overline{r} < N$, \overline{r} satisfies $\frac{1}{\overline{r}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{r_i}$, C_1 is a positive contant depending only on N and r_i , $(i = 1, 2, \dots, N)$; if $\overline{r} \ge N$, then (8) is satisfied for every $s \in [1, +\infty)$ and C_1 depends also on s and meas Ω .

By the density property, we may choose a sequence $\{f_k\} \subset C_0^{\infty}(\Omega)$,

$$f_k \longrightarrow f$$
 strongly in $L^m(\Omega)$, as $k \longrightarrow \infty$, (9)

such that

$$||f_k||_{L^m(\Omega)} \le ||f||_{L^m(\Omega)}, \ k = 1, 2, \cdots.$$
 (10)

We consider the following approximation problem:

$$(P_k) \qquad \begin{cases} -\operatorname{div}(a(x, u_k, Du_k)) = f_k & \text{in } \Omega, \\ u_k = 0 & \text{on } \partial\Omega. \end{cases}$$

In the following, we will give a generalization of Estimate 3 in [3].

Lemma 2.2. Assume (1)-(3), (9)-(10) and (5). Let $1 < m < \overline{m}$, then for any given $k \ge 1$, there exists a weak solution $u_k \in \bigcap_{i=1}^N W_0^{1,(p_i)}(\Omega)$ to problem (P_k) , moreover, we have

$$||D_i u_k||_{L^{q_i}(\Omega)} \le C_2, \ q_i = \frac{p_i(\overline{p}-1)m^*}{\overline{p}}, i = 1, 2, \cdots, N$$
 (11)

and

$$\|u_k\|_{L^{\overline{q}^*}(\Omega)} \le C_2,\tag{12}$$

where $\overline{q}^* = \frac{N\overline{q}}{N-\overline{q}}, \ \overline{q} = \frac{N}{\sum_{i=1}^{N} \frac{1}{q_i}}, \ C_2$ is a positive constant independent of k.

Proof. For any given $k \ge 1$, by [4], it is easy to prove that problem (P_k) admits a weak solution $u_k \in \bigcap_{i=1}^N W_0^{1,(p_i)}(\Omega)$ such that

$$\int_{\Omega} a(x, u_k, Du_k) Dv dx = \int_{\Omega} f_k v dx, \forall v \in \bigcap_{i=1}^N W_0^{1, (p_i)}(\Omega).$$
(13)

To prove Lemma 2.2, we use a choice of a test functions as in [6]. For 0 < s < 1, define ϕ as

$$\phi(y) = \int_0^y (1+|t|)^{-s} dt, \quad \forall y \in R.$$
 (14)

It is easy to see that $\phi(u_k) \in \bigcap_{i=1}^N W_0^{1,(p_i)}(\Omega)$, taking $v = \phi(u_k)$ in (13), we obtain

$$\int_{\Omega} a(x, u_k, Du_k) \phi' Du_k dx = \int_{\Omega} f_k \phi(u_k) dx.$$
(15)

Noting (1) and (14), (15) yields

$$\sum_{i=1}^{N} \int_{\Omega} \frac{|D_i u_k|^{p_i}}{(1+|u_k|)^s} dx \le \frac{1}{\alpha(1-s)} \int_{\Omega} |f_k| (1+|u_k|)^{1-s} dx.$$
(16)

420 Li Feng-Quan / Anisotropic elliptic equations in L^m

For any $q_i < p_i$ and $1 \le i \le N$, Hölder's inequality and (16) imply that

$$\int_{\Omega} |D_{i}u_{k}|^{q_{i}} dx \leq \left(\int_{\Omega} \frac{|D_{i}u_{k}|^{p_{i}}}{(1+|u_{k}|)^{s}} dx\right)^{\frac{q_{i}}{p_{i}}} \left(\int_{\Omega} (1+|u_{k}|)^{\frac{sq_{i}}{p_{i}-q_{i}}} dx\right)^{1-\frac{q_{i}}{p_{i}}} \\
\leq \left[\alpha(1-s)\right]^{-\frac{q_{i}}{p_{i}}} \left(\int_{\Omega} |f_{k}|(1+|u_{k}|)^{1-s} dx\right)^{\frac{q_{i}}{p_{i}}} \left(\int_{\Omega} (1+|u_{k}|)^{\frac{sq_{i}}{p_{i}-q_{i}}} dx\right)^{1-\frac{q_{i}}{p_{i}}}.$$
(17)

If

$$\overline{q}^* = \frac{sq_i}{p_i - q_i},\tag{18}$$

(10), Hölder's inequality and (17) yield

$$\int_{\Omega} |D_{i}u_{k}|^{q_{i}} dx
\leq [\alpha(1-s)]^{-\frac{q_{i}}{p_{i}}} ||f_{k}||_{L^{m}(\Omega)}^{\frac{q_{i}}{p_{i}}} (\int_{\Omega} (1+|u_{k}|)^{(1-s)m'} dx)^{\frac{q_{i}}{m'p_{i}}} (\int_{\Omega} (1+|u_{k}|)^{\overline{q}^{*}} dx)^{1-\frac{q_{i}}{p_{i}}}
\leq [\alpha(1-s)]^{-\frac{q_{i}}{p_{i}}} ||f||_{L^{m}(\Omega)}^{\frac{q_{i}}{p_{i}}} (\int_{\Omega} (1+|u_{k}|)^{(1-s)m'} dx)^{\frac{q_{i}}{m'p_{i}}} (\int_{\Omega} (1+|u_{k}|)^{\overline{q}^{*}} dx)^{1-\frac{q_{i}}{p_{i}}}
= C_{3} (\int_{\Omega} (1+|u_{k}|)^{(1-s)m'} dx)^{\frac{q_{i}}{m'p_{i}}} (\int_{\Omega} (1+|u_{k}|)^{\overline{q}^{*}} dx)^{1-\frac{q_{i}}{p_{i}}},$$
(19)

where $C_3 = [\alpha(1-s)]^{-\frac{q_i}{p_i}} ||f||_{L^m(\Omega)}^{\frac{q_i}{p_i}}, m' = \frac{m}{m-1}.$ If

$$m'(1-s) = \overline{q}^*,\tag{20}$$

we get

$$\int_{\Omega} |D_i u_k|^{q_i} dx \le C_4 + C_5 (\int_{\Omega} |u_k|^{\overline{q}^*} dx)^{1 - \frac{q_i}{p_i} + \frac{q_i}{m' p_i}}$$
(21)

where C_4 and C_5 are two positive constant independent of k. By (18) and (20), we obtain

$$\overline{q} = (\overline{p} - 1)m^*, q_i = \frac{p_i}{\overline{p}}(\overline{p} - 1)m^*. \ i = 1, 2, \cdots, N.$$
(22)

Taking $r_i = q_i$, $s = \overline{q}^*$ in Lemma 2.1, we have

$$\left(\int_{\Omega} |u_k|^{\bar{q}^*} dx\right) \le C_1^{\bar{q}^*} \left(\prod_{j=1}^N \|D_j u_k\|_{L^{q_j}(\Omega)}\right)^{\frac{\bar{q}^*}{N}}$$
(23)

where C_1 is a positive constant depending only on N and $q_i (i = 1, 2, \dots, N)$, but independent of k. Putting (23) into (21), we get for any i, with $1 \le i \le N$

$$\int_{\Omega} |D_i u_k|^{q_i} dx \le C_4 + C_5 C_1^{\overline{q}^* (1 - \frac{q_i}{p_i} + \frac{q_i}{m' p_i})} (\prod_{j=1}^N \|D_j u_k\|_{L^{q_j}(\Omega)})^{\frac{\overline{q}^*}{N} (1 - \frac{q_i}{m p_i})}.$$
 (24)

Therefore, there exist two positive constants C_6 and C_7 independent of k, such that

$$\|D_{i}u_{k}\|_{L^{q_{i}}(\Omega)} \leq C_{6} + C_{7} (\prod_{j=1}^{N} \|D_{j}u_{k}\|_{L^{q_{j}}(\Omega)})^{\frac{q^{*}}{N}(\frac{1}{q_{i}} - \frac{1}{mp_{i}})}, \ i = 1, 2, \cdots, N.$$
(25)

Let

$$d = \prod_{j=1}^{N} \|D_j u_k\|_{L^{q_j}(\Omega)}.$$
(26)

By (25), we get

$$d \le C_8 + C_9 d^{\frac{\bar{q}^*}{N} \sum_{i=1}^N (\frac{1}{q_i} - \frac{1}{mp_i})} = C_8 + C_9 d^{\bar{q}^*(\frac{1}{\bar{q}} - \frac{1}{m\bar{p}})}$$
(27)

where C_8 and C_9 are two positive constants independent of k. By (22) and the conditions satisfied by m and \overline{p} , we have

$$\overline{q}^*(\frac{1}{\overline{q}} - \frac{1}{m\overline{p}}) < 1.$$
(28)

By (28) and (27), there exists a positive constant C_{10} independent of k, such that

$$d \le C_{10}.\tag{29}$$

Thus (11) follows from (29) and (25). Lemma 2.1 (taking $r_i = q_i$) and (11) yield (12), and by (5), we have $q_i > 1$ and $\frac{q_i}{p_i - 1} > 1$. This finishes the proof of Lemma 2.2.

Proof of Theorem 1.1. Using Lemma 2.1 and Lemma 2.2, Theorem 1.1 can follow as in [3]. In fact, by (11) and (12), there exists a subsequence of $\{u_k\}$ (still denoted by $\{u_k\}$) such that

$$D_i u_k \longrightarrow D_i u$$
 weakly in $L^{q_i}(\Omega), i = 1, 2, \cdots, N,$ (30)

$$u_k \longrightarrow u$$
 strongly in $L^{\overline{q}}(\Omega)$, (31)

$$u_k \longrightarrow u$$
 a. e. in Ω . (32)

Using the same method as [3], we can prove

$$D_i u_k \longrightarrow D_i u$$
 a. e. in $\Omega, i = 1, 2, \cdots, N.$ (33)

Since a is a Carathéodory function in $\Omega \times R \times R^N$, by (32) and (33), we get

$$a_i(x, u_k(x), Du_k(x)) \longrightarrow a_i(x, u(x), Du(x)), \quad \text{a. e. in } \Omega.$$
 (34)

By (2), (11) and (12), there exists a positive constant C_{11} independent of k, such that

$$\|a_{i}(\cdot, u_{k}, Du_{k})\|_{L^{\frac{p_{i}(\bar{p}-1)m^{*}}{(p_{i}-1)\bar{p}}}(\Omega)} \leq C_{11}.$$
(35)

By (34) and (35), we obtain

$$a_i(\cdot, u_k, Du_k) \longrightarrow a_i(\cdot, u, Du)$$
 weakly in $L^{\frac{p_i(\overline{p}-1)m^*}{(p_i-1)\overline{p}}}(\Omega).$ (36)

By (36) and (9), let $k \to \infty$ in (13), we get

$$\int_{\Omega} a(x, u, Du) Dv dx = \int_{\Omega} fv dx, \quad \forall v \in C_0^{\infty}(\Omega).$$
(37)

Therefore u is a weak solution to problem (P) and $u \in \bigcap_{i=1}^{N} W_0^{1,(q_i)}(\Omega)$ with $q_i = \frac{p_i(\overline{p}-1)}{\overline{p}}m^*$. Thus Theorem 1.1 is proved. Acknowledgements. The author would like to thank the referee for his comments and suggestions.

References

- [1] L. Boccardo, T. Gallouët, P. Marcellini: Anisotropic equations in L^1 , Differential and Integral Equations 9(1) (1996) 209–212.
- [2] L. Boccardo, T. Gallouët: Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989) 149–169.
- [3] L. Boccardo, T. Gallouët: Nonlinear elliptic equations with right hand side measures, Comm. Partial Differential Equations 17(3-4) (1992) 641–655.
- [4] J. L. Lions: Quelques Méthodes de Résolution des Problémes aux Limites Nonlinéaires, Dunod, Paris, 1968.
- [5] M. Troisi: Theoremi di inclusione per spazi di Sobolev nonisotropi, Ricerche Mat. 18 (1969) 3–24.
- [6] L. Boccardo, T. Gallouét, J. L. Vazquez: Nonlinear elliptic equations in \mathbb{R}^N without growth restrictions on the data, J. Differential Equations 105 (1993) 334–363.