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1. Introduction

In [2, 3] study was made of convex functions of Legendre type. Following [2], we will say
a proper convex lower semicontinuous function f is essentially smooth, if ∂f is locally
bounded and is a singleton at each point of dom(∂f). The proper convex lower semi-
continuous function f is essentially strictly convex if (∂f)−1 is locally bounded, and f is
strictly convex on every line segment that lies entirely in dom(∂f). The function f is
Legendre if it is both essentially smooth and essentially strictly convex.

Let us remark that essential strict convexity is both a weakening and strengthening of
classical strict convexity. Indeed, the strict convexity is of f is only required on convex
subsets of dom(∂f), whereas the requirement that (∂f)−1 is locally bounded is a form
of coercivity. In [2, Theorem 5.11], it is shown that on finite dimensional spaces a func-
tion is essentially strictly convex if and only if f is strictly convex on every subset of
dom(∂f). Therefore, the terminology we have adopted from [2] is consistent with the
classical terminology of Rockafellar in finite dimensional spaces [9]. However, even on
`2, a strictly convex function need not be essentially strictly convex [2, Example 5.14].
Nevertheless, [2] shows that this is the appropriate infinite dimensional analog of finite
dimensional essential strict convexity to develop the appropriate duality properties with
essential smoothness, and on which to build the theory of Legendre functions in reflexive
and more general Banach spaces.
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As in [8], a function f is said to be β-differentiable at x ∈ X and f ′(x) ∈ X∗ is called its
β-derivative, if for each S in the bornology β, the limit

lim
t→0+

f(x+ ty)− f(x)

t
= 〈f ′(x), y〉

exists uniformly for y ∈ S. A bornology β on a Banach space X, is a family of bounded
symmetric sets that is closed under scalar multiplication, and directed upwards. We use
the notation τβ to denote the topology onX∗ of uniform convergence on β-sets. The follow-
ing standard bornologies are of particular interest to us: β = G the Gateaux bornology of
finite symmetric sets; β = W the weak Hadamard bornology of weakly compact symmetric
sets, and β = F the Fréchet bornology of bounded symmetric sets. Clearly G is the small-
est bornology, and so Gateaux differentiability is the weakest form of β-differentiability,
whereas Fréchet differentiability is the strongest form of β-differentiability.

We will further say that an essentially smooth convex function f is essentially β-smooth
if f is β-differentiable at points where ∂f is nonempty. Analogously, we say that f is
a β-Legendre function if it is essentially β-smooth and essentially strictly convex. A
function f is said to be a barrier function for a convex set C if f is defined on intC and
f(xn) → ∞ whenever d(xn, C

c) → 0. As in [2], we will say a function f is supercoercive

if lim‖x‖→∞
f(x)
‖x‖ = ∞.

In [2] several examples of Legendre functions on convex sets in finite dimensional, or more
generally reflexive, Banach spaces are given, whereas [3] shows the utility of having such
functions in certain projection algorithms. The monograph [7] explores, among other
things, certain constructions of essentially smooth convex barrier functions and demon-
strates through several applications that their existence on convex sets has extremely
useful consequences in optimization theory.

In this note, we study necessary and/or sufficient conditions under which Legendre or
Legendre barrier functions can be constructed on convex sets with nonempty interior in
general Banach spaces. In particular, the second section presents some elementary facts
from convex analysis which will be useful in the third section where convex functions
of Legendre type are constructed on convex sets with nonempty interior in several broad
classes of Banach spaces. The methods here rely on geometric properties of Banach spaces
and the ability to approximate convex functions with appropriately smooth convex func-
tions. The final section presents a simple direct proof of the (log-)convexity of universal
barriers in finite dimensional spaces considered by Nesterov and Nemirovskii in [7], as well
as a strengthening and refinement thereof. In contrast to the infinite dimensional case,
the finite dimensional examples are explicit and rely on measure theoretic and analytic
arguments.

2. Elementary Facts from Convex Analysis

The first result lists a few useful properties of supercoercive functions, further information
can be found in [2, §3].

Fact 2.1. Suppose f is a supercoercive convex function. Then:

(a) φn ∈ ∂f(xn) and ‖xn‖ → ∞, imply ‖φn‖ → ∞;
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(b) (∂f)−1 is bounded on bounded sets;

(c) if, additionally, f is strictly convex, then f is essentially strictly convex.

Proof. Fix x0 ∈ domf . Then the subgradient inequality implies that ‖φn‖ ≥ |f(xn) −
f(x0)|/‖xn‖; thus ‖φn‖ → ∞ by supercoercivity which proves (a). Now (b) is a conse-
quence of (a), while (c) is a consequence of (b) and the definitions involved.

The next result is a β-differentiability version of the Implicit Function Theorem for gauges.
This result will be useful in showing that the existence of β-smooth norms is necessary
in (many of) our constructions. A proof relying on elementary convexity arguments has
been included for completeness.

Fact 2.2. (Implicit Function Theorem For Gauges) Suppose f is an lsc convex function
and that C := {x : f(x) ≤ α} where f(0) < α and 0 ∈ intC. If f is β-differentiable at all
x ∈ bnd(C), then µC, the gauge of C is β-differentiable at all x where µC(x) > 0.

Proof. First, fix x0 ∈ bnd(C) and let φ =
f ′(x0)

〈f ′(x0), x0〉
. Then φ(x0) = 1, and so it is the

natural candidate for being the β-derivative µ′
C(x0). This is precisely, what we will prove.

In what follows, we let H = {h : φ(h) = 0}.
We now show that φ ∈ ∂µC(x0). Observe that if φ(u) = 1, then u = x0 + h for some
h ∈ H, and so 〈f ′(x0), h〉 = 0. Now f(u) ≥ f(x0) + 〈f ′(x0), h〉 by the subgradient
inequality. Consequently f(u) ≥ α and so µC(u) ≥ 1 = φ(u). Because µC is positively
homogeneous, this shows µC(x) ≥ φ(x) for all x ∈ X. Therefore,

φ(x)− φ(x0) = φ(x)− 1 ≤ µC(x)− 1 = µC(x)− µC(x0) for all x ∈ X,

which shows that φ ∈ ∂µC(x0). Moreover, φ is the only subgradient of µC at x0. Indeed,
if ψ ∈ ∂µC(x0), then the subdifferential inequality implies ψ(x0) = 1. Also, if h ∈ H,
then ψ(h) = ψ(x0)−ψ(x0 − h) ≤ µC(x0)− µC(x0 − h) ≤ 0 which implies ψ(h) = 0 for all
h ∈ H. Consequently, the kernels of ψ and φ are the same, and ψ(x0) = φ(x0) = 1, and
so φ = ψ. Therefore ∂µC(x0) = φ and so φ is the Gateaux derivative of µC at x0.

Because both φ and µC are positively homogeneous, it follows that φ is the Gateaux
derivative of µC at λx0 for each λ > 0. Finally, the derivative mapping x → f ′(x) is norm

to τβ-continuous on bnd(C) (see Fact 2.3(b)), and because µ′
C(x) =

f ′(x)

〈f ′(x), x〉
for all x

in the boundary of C, it follows that x → µ′
C(x) is norm to τβ continuous at all x where

µC(x) 6= 0. According to Fact 2.3, µC is β-differentiable at all x where µC(x) 6= 0.

The equivalence of (a) and (d) in the next result is a β-differentiability version of Šmulyan’s
criterion for convex functions, while (b) is the well-known continuity characterization of
β-differentiability that was used in the proof of Fact 2.2. We record Fact 2.3 and its proof
here for completeness.

Fact 2.3. Suppose the lsc convex function f is continuous at x0. Then, the following are
equivalent.

(a) f is β-smooth at x0.
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(b) φn →τβ φ whenever φn ∈ ∂f(xn), φ ∈ ∂f(x0) and xn → x0.

(c) φn →τβ φ whenever φn ∈ ∂εnf(xn), φ ∈ ∂f(x0), xn → x0 and εn ↓ 0.

(d) φn →τβ φ whenever φn ∈ ∂εnf(x0), φ ∈ ∂f(x0) and εn ↓ 0.

Proof. (a) ⇒ (d): Suppose that (d) does not hold, then there exist εn ↓ 0, φn ∈ ∂εnf(x0),
φ ∈ ∂f(x0) and η > 0 such that

sup
W

|φn − φ| > η for all n and some β-set W.

Now choose hn ∈ W such that (φn − φ)(hn) ≥ η and let tn = 2εn/η. Then

f(x0 + tnhn)− f(x0)− φ(tnhn) ≥ φn(tnhn)− φ(tnhn)− εn

≥ 2εn
η

η − εn = εn

Therefore f is not β-differentiable at x0.

(d) ⇒ (c): This follows because f is Lipschitz on a certain neighborhood of x0, say Br(x0),
with some Lipschitz constant M . Consequently, if xn ∈ Br(x0) and φn ∈ ∂εnf(xn), then
φn ∈ ∂εn+M‖xn−x0‖f(x0).

(c) ⇒ (b) is obvious. To prove (b) ⇒ (a) we suppose f is not β-differentiable at x0. Then
there exist tn ↓ 0 and hn ∈ W where W is a β-set and ε > 0 such that

f(x0 + tnhn)− f(x0)− φ(tnhn) ≥ εtn where φ ∈ ∂f(x0).

Let φn ∈ ∂f(x0 + tnhn). Now,

φn(tnxn) ≥ f(x0 + tnhn)− f(x0) ≥ φ(tnhn) + εtn

and so φn 6→τβ φ.

3. Essentially Smooth Convex Functions on General Convex Sets

This section explores constructions of essentially smooth functions and of functions of
Legendre type in various classes of Banach spaces. The first result gives us conditions on
a Banach space under which we can quite generally construct Legendre functions.

Theorem 3.1. Suppose X is a Banach space such that distance functions to closed convex
sets are β-differentiable on their complements. Let C be a closed convex subset of X
having nonempty interior. Then there is a convex function f that is continuous on C and
β-differentiable on int(C) such that:

(a) ‖f ′(xn)‖ → ∞ as xn ∈ C and d(xn, C
c) → 0;

(b) ∂f(x) = ∅ if x ∈ bnd(C)

Proof. Without loss of generality, we may assume 0 ∈ int(C). Let Cn = {λx : 0 ≤ λ ≤
1− 2−n, x ∈ C}. Fix ε > 0 such that Bε ⊂ C. First, we observe that

d(Cn, C
c) ≥ ε

2n
for all n. (3.1)
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Indeed, if x ∈ Cn, then x = (1 − 2−n)z for some z ∈ C. Now suppose ‖h‖ ≤ ε, then
h ∈ C. Therefore, x+2−nh = (1− 2−n)z+2−nh ∈ C. Thus, x+Bε2−n ⊂ C which proves
(3.1).

The hypothesis implies that d2(·, D) is β-differentiable whenever D is a convex set, and
in particular, ‖ · ‖2 is β-differentiable. The desired function is then defined by

f(x) = ‖x‖2 +
∞
∑

n=1

n2n+2

ε2
d(x,Cn)

2.

(Note if for some δ > 0, we have d(x,Cn) > δ for all n, e.g. if x ∈ int(Cc) then this sum
diverges.)

To see that f is β-differentiable on int(C), fix x0 ∈ int(C). Now for some N , x0 ∈ int(CN)
and d(x,Cn) = 0 for all x ∈ CN and for all n ≥ N . Consequently, on int(CN), f is a finite
sum of β-differentiable functions. Therefore f is β-differentiable on int(C).

Consider DN = {x ∈ C : ‖x‖ ≤ N}. For x ∈ DN , we have d(x,Cn) ≤ N2−n for all n.
Therefore,

∞
∑

n=1

|n2
n+2

ε2
d(x,Cn)

2| ≤
∞
∑

n=1

4Nn2

2nε2
for all x ∈ DN .

By the Weierstrass M-test, f is continuous on Dn for each n; and, in particular, f is
defined on bnd(C).

To prove (a), suppose xk ∈ C and d(xk, C
c) → 0. Now f is supercoercive, and so if

‖xk‖ → ∞, then ‖f ′(xk)‖ → ∞ (Fact 2.1(a)). Therefore, by standard subsequence
arguments, we may assume that {xk} is bounded, say ‖xk‖ ≤ M for all k. Choose
nk → ∞ such that d(xk, C

c) < ε2−(nk+1) and so (3.1) implies that d(xk, Cnk
) ≥ ε2−(nk+1).

Now choose 1− 2−nk ≤ λk ≤ 1 such that λkxk ∈ bnd(Cnk
). Because 0 ∈ Cn for each n, it

follows that d(xk, Cn) ≥ d(λkxk, Cn) for each n. Therefore

f(xk)− f(λkxk)

‖xk − λkxk‖
≥ nk2

nk+2

ε2
d2(xk, Cnk

)

(1− λk)M
≥ nk

M
.

Therefore ‖f ′(xk)‖ ≥ nk

M
. Notice that (b) follows from the same argument since d(x̄, Cc) =

0 for x̄ ∈ bnd(C).

Remark 3.2. If the dual norm on X∗ is LUR [resp. SC], then the above theorem applies
with Fréchet [resp. Gateaux] differentiability. On L1(Ω) where Ω is a σ-finite measure
space, the above theorem applies with weak Hadamard differentiability.

Proof. If the dual norm on X∗ is LUR [resp. SC], then distance functions to closed
convex sets are Fréchet differentiable [resp. Gateaux differentiable] on their complements
[1] (see also [5, Corollary VIII.3.16]). For the case of L1(Ω) where Ω is a σ-finite measure
space, [4, Theorem 2.4] shows that there is an equivalent norm ||| · ||| on L1(Ω) such that
its dual norm ||| · |||∗ on L∞(Ω) satisfies xn →τW x in the Mackey topology of uniform
convergence on weakly compact subset of L1(Ω) whenever |||x∗|||∗ = 1, |||x∗

n|||∗ ≤ 1 and
|||x∗+x∗

n|||∗ → 2 (this dual norm is Mackey-LUR). Because the dual norm is Mackey-LUR,
it can be shown as in [5, Corollary VIII.3.16] that distance functions to convex sets on
(L1(Ω), ||| · |||) will be weak-Hadamard differentiable on their complements.
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A characterization of open sets admitting certain essentially β-smooth convex barrier
functions is presented in the next result. Let us recall that a function f : X → IR is said
to be coercive if lim‖x‖→∞ f(x) = ∞.

Theorem 3.3. Let X be a Banach space, and C be an open convex set containing 0.
Then the following are equivalent.

(a) There is a β-differentiable convex function f whose domain is C such that f(xn) → ∞
and ‖f ′(xn)‖ → ∞ if d(xn, C

c) → 0, or if ‖xn‖ → ∞.

(b) There is a coercive convex barrier function f that is β-differentiable on C.

(c) There are continuous gauges {µn} such that µn is β-differentiable when µn(x) 6= 0 and
µn ↓ µC pointwise where µC is the gauge of C, and X admits a β-differentiable norm.

(d) X admits a β-differentiable norm and there is a sequence of β-differentiable convex
functions {fn} that are bounded on bounded sets and fn ↓ µC pointwise where µC is the
gauge of C.

(a) ⇒ (b): This portion is obvious.

(b) ⇒ (c): Let Cn = {x : f(x) ≤ n} for all n such that f(0) < n. Then Cn ⊂ int(C) and
Fact 2.2 implies that µCn is β-differentiable at all x where µCn(x) 6= 0. It is not difficult
to check that µCn ↓ µC pointwise. Because Cn is bounded with 0 in its interior, it follows
that ||| · ||| defined by |||x||| = µCn(x) + µCn(−x) is an equivalent β-differentiable norm on
X.

(c) ⇒ (d): Let hn : IR → IR be nondecreasing C∞-smooth convex functions such that
hn(t) = 2/n if t ≤ 1/n and hn(t) ↓ t for all t ≥ 0. Because hn is constant on a neighbor-
hood of 0 and µC is differentiable at x where µC(x) > 0, it follows that fn = hn ◦ µC is
β-differentiable everywhere, and that {fn} ↓ µC pointwise.

(d)⇒ (a): Given fn ↓ µC pointwise, it follows that gn ↓ µC pointwise where gn = (1+ 1
n
)fn.

Now let hn be a C∞-smooth nondecreasing convex function on IR such that hn(t) = 0 if
t ≤ 1, and hn(t) ≥ n if t ≥ 1 + 1

2n
. Let ‖ · ‖ be an equivalent β-differentiable norm on X

and define f by

f(x) = ‖x‖2 +
∞
∑

n=1

hn(gn(x)).

Then f is convex, because hn is convex and nondecreasing and gn is convex. Also, if
x0 ∈ C, then µC(x0) < 1. Therefore, gn(x0) ≤ gN(x0) < α < 1 for all n ≥ N and some α.
Let O = {x : gN(x) < α} then O is an open neighborhood of x0 and

f(x) = ‖x‖2 +
N−1
∑

n=1

hn(gn(x)) for all x ∈ O.

Therefore f is β-differentiable on O.

Now suppose d(xk, C
c) → 0. Because f is supercoercive, as in the proof of Theorem

3.1, we may assume that {xk} is bounded. Let Fn = {x : gn(x) ≥ 1 + 1
2n
}. Since gn

is Lipschitz on bounded sets, and gn ≥ 1 + 1
n
on Cc, it follows that xk ∈ Fn for all

k ≥ N . Therefore, f(xk) ≥ hn(gn(xk)) ≥ n for all k ≥ N . Thus f(xk) → ∞ and, by the
subgradient inequality, ‖f ′(xk)‖ → ∞ since {xk} is bounded.
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Corollary 3.4. Suppose X is a Banach space that admits an equivalent norm whose dual
is LUR [resp. strictly convex]. Let C be an open convex set in X. Then there is a convex
function f that is C1-smooth on C [resp. continuous and Gateaux differentiable on C]
such that:

(a) f(xn) → ∞ and ‖f ′(xn)‖ → ∞ as xn ∈ C and d(xn, C
c) → 0;

(b) if xn ∈ C and ‖xn‖ → ∞, then f(xn) → ∞ and ‖f ′(xn)‖ → ∞.

Proof. If X∗ admits a dual LUR norm, then every Lipschitz convex function can be
approximated uniformly by C1-smooth convex functions. This follows because the infimal
convolution f ‖ · ‖2 of a convex function f and ‖ · ‖ whose dual is LUR, will be Fréchet
differentiable (this follows from seminal work of Asplund and Rockafellar [1]), and a
standard computation shows that the convergence of f n‖ · ‖2 will be uniform to f when
f is Lipschitz. It follows that we can apply Theorem 3.3(d). An analogous result holds
for dual strictly convex norms.

Let us note that our constructions can be made log-convex by considering ef(x). The fol-
lowing theorem relates the existence of various essentially smooth or functions of Legendre
type to the existence of certain norms on the Banach space.

Theorem 3.5.
(a) Suppose X admits an essentially β-smooth lsc convex function on a bounded open
convex set C with 0 ∈ C. Then X admits a β-differentiable norm.

(b) Suppose X admits a strictly convex lower semicontinuous function that is continuous
at one point. Then X admits a strictly convex norm.

(c) Suppose X admits an essentially β-smooth lsc convex function f on a bounded convex
set C with 0 ∈ int(C) that additionally satisfies ‖f ′(xn)‖ → ∞ if d(xn, bnd(C)) → 0.
Then X admits a β-differentiable norm.

(d) If X admits a Legendre function on a bounded open convex set, then X admits an
equivalent Gateaux differentiable norm that is strictly convex.

(e) If X admits an equivalent strictly convex norm, and if every open convex set is the
domain of an essentially β-smooth function, then every open convex set is the domain of
some β-Legendre function.

(f ) Suppose X admits an equivalent strictly convex norm whose dual is strictly convex
(resp. LUR), then every open convex set is the domain of some Legendre function (resp.
Fréchet-Legendre function).

Proof. (a) Let h(x) = f(x)+f(−x) onB := C∩(−C). Notice that h is β-differentiable on
int(B). It follows that h is β-differentiable on the open convex set B, and also h(x) = +∞
for x 6∈ B. Choose f(0) < α < ∞. Because f is continuous at 0 the set D = {x : f(x) ≤
α} has nonempty interior and D ⊂ B. The bounded convex set D is also symmetric,
and so Fact 2.2, implies that the norm, defined as the gauge of D, is an equivalent β-
differentiable norm on X.

(b) Suppose f is strictly convex, and continuous at x0. By replacing f with f − φ and
translating as necessary, we may assume x0 = 0 and f(0) = 0 is the minimum of f . Also,
replacing f with f + ‖ · ‖2 gives us a function that is both strictly convex and coercive



576 J. M. Borwein, J. D. Vanderwerff / Convex Functions of Legendre Type ...

(the sum of a convex function and a strictly convex function is strictly convex). Now
since f is continuous at 0, so is h where h is as in (a). Because h is continuous at 0 and
coercive, B = {x : h(x) ≤ 1} is a bounded convex set, with nonempty interior. Because
h is strictly convex and symmetric, the gauge of B is a strictly convex equivalent norm
on X.

(c) As in (b), we may assume f(0) = 0 is the minimum of f . Now let h and B be as
above; we next observe that inf{h(x) : x ∈ bnd(B)} > 0. Indeed, suppose xn ∈ bnd(B)
and h(xn) → 0. Notice that xn or −xn is in the boundary of C. Without loss, assume
that xn ∈ bnd(C). We know that f(xn) → 0 (since 0 is the minimum of f and h). Thus,
the Bronsted-Rockafellar theorem implies there is a sequence yn ∈ C with ‖xn − yn‖ →
0 and φn ∈ ∂f(yn) while ‖φn‖ → 0. This violates the condition ‖f ′(yn)‖ → ∞ as
d(yn, bnd(B)) → 0. Hence there is an α such that 0 < α < inf{h(x) : x ∈ bnd(B)}, and
we may apply Fact 2.2 as in (a).

(d) Construct h and B as in (a). Because h is strictly convex on B ⊃ D, the norm
constructed in (a) is strictly convex.

(e) Let B be the unit ball with respect to an equivalent strictly convex norm ‖ · ‖, and
let C be the interior of B. Because C is bounded and open, there is an essentially β-
smooth convex function whose domain is C that satisfies Theorem 3.3(a). According to
Theorem 3.3(c), there are β-differentiable gauges µn decreasing pointwise to ‖ · ‖. By
letting ‖ · ‖n = 1

2
[µn(x) + µn(−x)] we get β-differentiable norms ‖ · ‖n ↓ ‖ · ‖. Now

‖ · ‖1 ≤ K‖ · ‖ and so the norms ‖ · ‖n are equi-Lipschitz. Following [6], we define ||| · ||| by

|||x||| =

√

√

√

√

∞
∑

n=1

1

2n
‖x‖2.

This norm is β-differentiable because of the uniform convergence of the sum of derivatives.
Moreover, it is strictly convex, because if |||x||| = |||y||| = 1 and 2|||x|||2+2|||y|||2−|||x+y|||2 =
0 we must have 2‖x‖2n+2‖y‖2n−‖x+y‖2n = 0 for all n. Because ‖·‖n → ‖·‖ pointwise, we
have 2‖x‖2+2‖y‖2−‖x+y‖2 = 0 and so x = y by the strict convexity of ‖·‖. Then adding
||| · |||2 to any essentially β-smooth convex function, produces a supercoercive essentially
β-smooth strictly convex function whose domain is C. Hence Fact 2.1(c) implies this
function is β-Legendre.

(f) This follows from (e) and Corollary 3.4.

The previous result shows that many spaces do not have functions of Legendre type,
while many others have an abundance of such functions. We make a brief list of some
such spaces in the following:

Example 3.6.
(a) The spaces `∞/c0 and `∞(Γ) where Γ is uncountable, admit no essentially strictly

convex, and hence no Legendre functions.

(b) If X is a WCG space, then every open convex subset of X is the domain of a Legendre

function.

(c) If X∗ is WCG, or if X is a WCG Asplund space, then every open convex subset of X

is the domain of a Fréchet-Legendre function.
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Proof. If the spaces in (a) were to have such functions, then they would have strictly

convex norms by Theorem 3.5(b). It is well-known (see [5, Chapter II]) that these spaces

do not have equivalent strictly convex norms. In [5, Chapter VII] it is shown that WCG

spaces have strictly convex norms whose duals are strictly convex, and so (b) follows from

Theorem 3.5(f). Similarly, [5, Chapter VII] shows that spaces as in (c) have LUR norms

whose duals are also LUR, and so (c) follows from Theorem 3.5(f).

If f is essentially smooth with domain C, then ‖f ′(xn)‖ → ∞ if xn → x̄ where x̄ ∈
bnd(C) [2, Theorem 5.6(v)]. However, this does not ensure that ‖f ′(xn)‖ → ∞ when

d(xn, bnd(C)) → 0 (as was required in Theorem 3.5(c)), even for bounded sets as is

shown in the following example.

Example 3.7. There is an essentially smooth convex function f whose domain is a closed

convex set C such that ‖f ′(xn)‖ 6→ ∞ as d(xn, bnd(C)) → 0.

Proof. Let X = c0 with its usual norm and let C be the closed unit ball of c0. Let

hn : [−1, 1] → IR be continuous, even and convex such that h is C1-smooth on (−1, 1), and

(hn)
′
−(1) = +∞, hn(1) = 1 and hn(t) = 0 for |t| ≤ 1− 1

2n
. Now extend hn to an lsc convex

function on IR by defining h(t) = +∞ if |t| > 1. Define f on c0 by f(x) =
∑∞

n=1 hn(xn)

where x = (xn)
∞
n=1. Then f is C1-smooth and convex on intC because it is a locally

finite sum of such functions there. Since (hn)
′
+(1) = ∞, it follows that ∂f(x) = ∅ if

‖x‖ = 1, and clearly f(x) = ∞ if ‖x‖ > 1. Therefore, f is essentially Fréchet smooth.

However, if we consider vn = (1 − 1
n
)en, we have f(vn) = 0 and f ′(vn) = 0 for each n

while d(vn, bnd(C)) → 0.

Contrasting Theorem 3.5 (c) with the previous example leads naturally to the following
question.

Question 3.8. IfX admits an essentially β-smooth convex function on a bounded convex
set with 0 in its interior, does X admit a β-differentiable norm? Relatedly, if X admits
an essentially β-smooth convex function on a bounded convex set with 0 in its interior,
does X admit a β-differentiable convex function on a bounded convex set with 0 in its

interior such that ‖f ′(xn)‖ → ∞ whenever d(xn, bnd(C)) → 0?

4. The finite dimensional case

This section begins with a direct proof of the log-convexity of the universal barrier for an
arbitrary open convex set in a finite dimensional Banach space considered by Nesterov

and Nermirovskii in [7]. Then we explore some refinements of this result.

Theorem 4.1. Let A be a nonempty open convex set in IRN . Define, for x ∈ A,

F (x) = λN((A− x)o),

where λN is N-dimensional Lebesque measure and (A − x)0 is the polar set. Then F is

an essentially Fréchet smooth, log-convex, barrier function for A.
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Proof. Without loss of generality, we assume A is line free (else we can add the square

of the norm on the lineality subspace). In this case the universal self-concordant barrier

bA is a multiple of logF . (As described in [7], self-concordance is central to the behavior

of interior point methods. Because barrier properties (without considering concordance)

are applicable more generally, it seems useful to exhibit the strengthened convexity and

barrier properties directly as we do below.)

Now observe that F is finite on A, because Bε ⊂ A − x for some ε > 0. Moreover,

F (x) = +∞ for x ∈ bndA. Indeed, this follows by translation invariance of the measure

since (A − x)o contains a ray and has non-empty interior because A is line free. (So

we really need Haar measure which effectively limits this proof to finite dimensions.)

Therefore, F is a barrier function for A.

Now, by the spherical change of variable theorem

F (x) =
1

N

∫

SX

1

(δ∗A(u)− 〈u, x〉)N
du (4.1)

where du is surface measure on the sphere. Because the integrand is CN on A and the
gradient is locally bounded in A it follows that that F is essentially smooth. It remains

to verify the log-convexity of F . For this we will use (4.1), indeed:

F
(x+ y

2

)

=
1

N

∫

SX

1

(δ∗A(u)− 〈u, x+y
2
〉)N

du

=
1

N

∫

SX

1
(

δ∗A(u)−〈u,x〉
2

+
δ∗A(u)−〈u,y〉

2

)N
du

≤
∫

SX

1

(δ∗A(u)− 〈u, x〉)N/2(δ∗A − 〈u, y〉)N/2
du (4.2)

≤

√

∫

SX

1

(δ∗A − 〈u, x〉)N
du

∫

SX

1

(δ∗A(u)− 〈u, x〉)N
du (4.3)

=
√

F (x)F (y)

where we have used the Arithmetic-Geometric Mean inequality in (4.2) and Cauchy-

Schwartz in (4.3). Taking logs of both sides of the preceding inequality completes the

proof.

We now refine the above example to produce an essentially smooth convex function whose
domain is a closed convex cone with nonempty interior. We restrict ourselves to the
case of cones here because the most important applications have been in abstract linear
programming over cones which are built up from products of cones of positive definite
matrices, orthants and other simple cones. Moreover, the technical details for the case of
general closed convex sets appeared to be more involved (and we already have this more
generally by the less explicit methods of the previous section). Before proceeding, we will
need the following lemma.
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Lemma 4.2. Let g(x, u) ≥ 0 be concave in x, let φ be convex and decreasing on IR+ and
consider

G(x) = φ−1

(∫

φ(g(x, u))µ(du)

)

for a probability measure µ. Assume additionally the mean Hφ defined by H(a, b) =

φ
(

φ−1(a)+φ−1(b)
2

)

is concave. Then G is concave.

Proof. Using the fact that g(x, u) is concave in x and φ is decreasing in (4.4) below, and
then Jensen’s inequality with the concavity of Hφ in (4.5) below, we obtain:

φ
(

G
(x+ y

2

))

=

∫

φ
(

g
(x+ y

2

)

, u
)

µ(du)

≤
∫

φ

(

g(x, u) + g(y, u)

2

)

µ(du) (4.4)

= Hφ(φ(g(x, u)), φ(g(y, u)))µ(du)

≤ Hφ

(∫

(φ(g(x, u)µ(du),

∫

φ(g(y, u)µ(du)

)

(4.5)

= Hφ(φ(G(x), φ(G(y))

= φ

(

φ−1(φ(G(x)) + φ−1(φ(G(y))

2

)

= φ

(

G(x) +G(y)

2

)

Because φ is decreasing, the previous inequality implies

G
(x+ y

2

)

≥ G(x) +G(y)

2
,

and so G is concave.

The next fact follows from properties of the Hessian, whose tedious computations are
omitted, but are easily checked in a computer algebra system.

Fact 4.3. Let φ(t) = tα with α < 0. Then Hφ(a, b) = φ

(

φ−1(a) + φ−1(b)

2

)

is concave.

We now have the tools in hand to prove

Theorem 4.4. Given F (x) = λN((A− x)o) as above, and let A be an open convex cone,
we define G(x) = −(F (x)−p) where 0 < p < 1/N is fixed. Then G is convex, essentially
smooth, vanishes on bnd(A) and has domain equal to the closure of A.

Proof. Let φ(t) = t−N ; then φ is convex and decreasing on IR+. Moreover, Fact 4.3
ensures that Hφ is concave. Consequently,

˜G(x) = F (x)−
1
N = φ−1

(∫

φ(δ∗A(u)− 〈u, x〉)du
)
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is concave by Lemma 4.2 because g(x, u) = δ∗A(u) − 〈u, x〉 is concave in x. Because tα is

concave and increasing for 0 < α < 1, it follows that ˜Gα is concave. Because G = − ˜Gα,
we know that G is convex. Also, G is smooth on A because F is smooth and does not
vanish there. Moreover, G vanishes on bnd(A) because F is infinite there.

Therefore, it remains to show that G is essentially smooth, where we, of course, have

defined G(x) = +∞ for x 6∈ A. To do this, we will check that ‖∇G(xn)‖ → ∞ as xn → x̄
where x̄ ∈ bnd(A) (see [2]).

Now, we have (normalized):

‖∇F (x)‖ ≥
∫

h∈A∩SX

〈h, u〉
∫

u∈A+∩SX

〈u, x〉−N−1 µ(du)µ(dh).

where SX is the unit sphere and A+ is the positive polar cone. Interchanging the order
of integration, we write

‖∇F (x)‖ ≥
∫

u∈A+∩SX

η(u)〈u, x〉−N−1 µ(du),

where

η(u) :=

∫

h∈A∩SX

〈h, u〉, µ(dh) .

It suffices to observe, by continuity, that inf{η(u) : u ∈ A+∩SX} > 0 (since A+ is pointed)
and so for some constant K > 0

K‖∇F (x)‖ ≥
∫

u∈A+∩SX

〈u, x〉−N−1 µ(du) ≥
[∫

u∈A+∩SX

〈u, x〉−N µ(du)

]1+ 1
N

,

on applying Hölder’s inequality. Thus,

KN‖∇F (x)‖N ≥ F (x)N+1.

A direct computation of ∇G(x) shows that ‖∇G(xn)‖ → ∞ as xn → x̄ ∈ bnd(A).

Of course, the constructions in Section 3 guarantee the existence of essentially smooth

convex functions on A and A, but they are not as explicit as those in this section. More-
over, the essentially smooth convex functions constructed in Theorem 3.1 defined on closed
convex sets do not vanish (nor are they constant) on the boundaries of those sets. While it
is easy to construct essentially smooth functions that vanish on their boundaries when the
domain is the ball of a smooth norm, we are not aware of such constructions on general
convex sets with nonempty interior in smooth Banach spaces.
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