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A set A will be said convexly majorized by a set B if the integral mean of any convex function over A
is not exceeding its mean over B. Sufficient conditions and necessary conditions are presented about this
relation. Methods will be introduced which generate such sets A and B.

1. Introduction

Mean-value inequalities appear in a number of contexts in analysis, in particular, in
potential theory, in complex analysis and in the theory of partial differential equations,
principally as a tool to obtain estimates. See, for instance [1, 2, 4], and [6].

The aim of this paper is to find out for which pair of sets the mean of every convex function
over one set is dominated by the mean of the same function over the other set. Although
the context of convex functions is rather elementary, we hope that the detailed analysis of
this situation will shed some light of more complex problems of this kind arising in other
theories.

Let A be a bounded subset of Rn of positive Lebesgue measure and let v : A → R be
continuous. The integral mean of v over A, denoted by vA, is defined as

vA :=
1

m(A)

∫

A

v(x)dx, (1)

where m(A) denotes the Lebesgue measure of A.

If A ⊂ Rn, then co(A) (resp. co(A)) denotes the convex hull (resp. the closed convex
hull) of A. A new relation concerning integral means will be introduced first.

Definition 1.1. Let A and B be bounded subsets of Rn of positive Lebesgue measure.
The set A is said to be convexly majorized by B if the inequality vA ≤ vB holds for every
real continuous convex function v defined on co(A ∪B). This relation will be denoted by
A ≺ B.
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The set of functions, which are real, continuous and convex on the co(A ∪ B) forms a
convex cone, which will be denoted by KA,B.

The main topic of this paper is to initiate the study of the relation A ≺ B and to present
several results about it. A complete description will be given when A and B are compact
sets in R and some sufficient and some necessary conditions will be given when A and B
are bounded sets of positive Lebesgue measure in Rn. Methods will be introduced which
generate sets A and B satisfying the relation A ≺ B. Some new inequalities will also be
established.

Let A be a bounded subset of Rn of positive Lebesgue measure. The barycenter of A,
denoted by xA, is defined by the formula

xA :=
1

m(A)

∫

A

xdx.

It might be worthwhile to notice that the notions reviewed above belong naturally to the
affine geometry of the Euclidean space. Specifically, convex functions and sets are pre-
served by affinities (invertible affine transformations), the Lebesgue measure is preserved
by affinities up to a multiplicative constant, while the mean, our main object, is the exact
invariant of affinities. In this respect, one of the results of this paper (Theorem 6.11) is
particularly striking. It is saying that if A and B are ellipsoids with common barycenter,
then A is convexly majorized by B, if and only if A ⊂ B.

We observe that ellipsoids are naturally characterized in the affine geometry as sets whose
boundaries are compact hypersurfaces such that the group of affine transformations pre-
serving them acts on them transitively.

If A and B are bounded subsets of Rn of positive Lebesgue measure, µA will denote
the measure, which is obtained by the restriction of the Lebesgue measure to A divided
by m(A). (Similarly for B.) Hence µA(Rn) = µB(Rn) = 1. Thus A ≺ B if and only if
µA(v) ≤ µB(v) for all v ∈ KA,B, where µA(v) denotes the integral of v on A with respect
to µA. Therefore µB is a balayage of µA relative to KA,B. The notion of balayage (see [9])
has been considered previously. Here, we consider the problem of balayage for a special
family of measures, and obtain several results about them. Relations between balayage
and the Hardy-Littlewood-Polya order studied in [3], and [7], while a detailed study of
this later concept can be found in [8] and [11].

We are grateful to the Referee for pointing out some interesting relations, See, also our
comments after the proof of Theorem 3.1,

2. Preliminaries and Notation

In this section some known results, which will be needed in the sequel, are discussed. A
new inequality, which originally motivated this study, will also be presented. First, some
of the notation used in this paper will be introduced.

The symmetric difference of two sets A and B which is the set (A \ B) ∪ (B \ A) will be
denoted by A 4 B. The dual space of Rn will be denoted by (Rn)?. If g ∈ (Rn)?, then
Ker(g) denotes the kernel of g. If A is a set in Rn, then A denotes its closure, intA its
interior, and χA its characteristic function. If f : Rn → Rn then supp f (resp. ess supp f)
denotes the support (resp. the essential support) of f.
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The following result can be found in [5].

Theorem 2.1. A continuous function f : (c, d) → R is convex on (c, d) if and only if the
inequality

f(a) ≤ 1

2h

∫ a+h

a−h

f(x)dx (2)

holds for all h > 0 and for all a ∈ (c, d) such that c < a− h < a+ h < d.

The following equivalent reformulation of Theorem 2.1 will be useful in the sequel.

Corollary 2.2. A continuous function f : (c, d) → R is convex on (c, d) if and only if
the inequality

f(
x1 + x2

2
) ≤

∫ 1

0

f(x1 + t(x2 − x1))dt

holds for all c < x1 < x2 < d.

It is easy to show the one-dimensional version of the following statement, which yields
also the n-dimensional result.

Lemma 2.3. If w : U ⊂ Rn → R is a non-negative convex function on a convex neigh-
borhood U of 0 with w(0) = 0, then for all scalars t ≥ 1 the inequality w(x) ≤ w(tx) holds
provided that both x ∈ U and tx ∈ U.

Next, a new criterion of convexity will be given. This result will be generalized consider-
ably in this paper. A proof is provided only because of its simplicity.

Theorem 2.4. A real continuous function v is convex on an interval (c, d) if and only if
the inequality

∫ a+h

a−h

v(x)dx ≤
∫ a−h

a−2h

v(x)dx+

∫ a+2h

a+h

v(x)dx (3)

or equivalently, the inequality

v[a−h,a+h] =
1

2h

∫ a+h

a−h

v(x)dx ≤ 1

4h

∫ a+2h

a−2h

v(x)dx = v[a−2h,a+2h] (4)

holds for all a ∈ (c, d) and for all h > 0 such that c < a− 2h < a+ 2h < d.

Proof. It is clear that inequalities (3) and (4) are equivalent. Let v be convex on (c, d).
Without loss of generality we can assume that v is positive on (c, d). Let g : R → R be
the unique affine function which is determined by the conditions g(a− h) = v(a− h) and
g(a+ h) = v(a+ h). Then

∫ a+h

a−h

v(x)dx ≤
∫ a+h

a−h

g(x)dx =

∫ a−h

a−2h

g(x)dx+

∫ a+2h

a+h

g(x)dx

≤
∫ a−h

a−2h

v(x)dx+

∫ a+2h

a+h

v(x)dx
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with equality if and only if v is affine on (a − 2h, a + 2h). Conversely, if v is continuous
on (c, d) and if v satisfies (4) there, then for each n positive integer the inequality

2n

2h

∫ a+h/2n

a−h/2n
v(x)dx ≤ 1

2h

∫ a+h

a−h

v(x)dx (5)

holds. Now (5) shows that v satisfies (2), therefore v is convex on (c, d).

It is easy to show that the following holds.

Corollary 2.5. If v is a real differentiable convex function on an interval (c, d) and if
c < a− 2h < a+ 2h < d, then

v[a−2h,a+2h] − v[a−h,a+h] ≥
v′(a+ h)− v′(a− h)

8
h. (6)

3. General Results

It is easy to see that the relation ≺ is transitive. Furthermore, if A and B are bounded
sets in Rn of positive Lebesgue measure such thatm(A4B) = 0, then A ≺ B and B ≺ A.
The converse of this result holds also, and it will be shown later. Necessary conditions
for the relation A ≺ B will be presented first.

Theorem 3.1. Let A and B be bounded sets of positive measure in Rn. If the relation
A ≺ B holds then

(i) A and B have the same barycenter, i. e. xA = xB.

(ii) If, in adddition, A and B are compact, then m(A \ co(B)) = 0.

(iii) If, in addition, A and B are convex and compact, then A ⊂ B.

Proof. Assume that the relation A ≺ B holds. Let ` : Rn → R be an affine function.
Since the inequality vA ≤ vB holds for both v = ` and for v = −`, it follows that `A = `B.
The special cases `(x) = xj for j = 1, ..., n yield that the jth coordinate of the barycenter
of A is the same as the jth coordinate of the barycenter of B for j = 1, ..., n. Hence the
proof of (i) is complete.

Assume that (ii) does not hold. Then there is an x? ∈ A, such that x? is a point of
density (one) of A but x? /∈ co(B). Since {x?} and co(B) are disjoint convex and compact
sets the separation theorem (Corollary 11.4.2. of [12]) indicates that there is an affine
function ` and a real number α such that `(x?) > α and `(x) < α for every x ∈ B. Let
v(x) = max(`(x), α). Clearly v is a continuous convex function on Rn with

∫

B

vdx = αm(B).

Since v(x?) > α and v(x) ≥ α for all x ∈ A, one obtains that

∫

A

vdx > αm(A).

Hence it follows that vA > α = vB, which is a contradiction.
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Assume next that (iii) is false. Then there is an x? ∈ A such that x? /∈ B. Notice that
the distance between x? and B is positive. Since the relative interior of A is non-empty
(Theorem 6.2 of [12]) and since m(A) > 0, the relative interior of A is the same as the
intA. Thus there is an x1 ∈ intA. Then the points of the form (1−λ)x1+λx? ∈ intA for
all 0 ≤ λ < 1. (Theorem 6.1 of [12].) Hence there is an x2 ∈ intA but x2 /∈ B. Obviously,
x2 is a point of density of A. It was shown in the proof of (ii), that this situation leads to
a contradiction.

Our Referee remarked that in the proof of Theorem 3.1, we use only the coneK consisting
of functions of the form v(x) = max{`(x), α} where ` is an affine function and α is a
constant. The Referee was also asking whether balayage relative to K and KA,B are
equivalent. We don’t know the answer.

The next result presents sufficient conditions for the relation A ≺ B.

Theorem 3.2. Let A and B be bounded measurable sets in Rn with 0 < m(A) < m(B)
and such that they have the same barycenter. If A and B are similar with respect to their
common barycenter, then for every real function v, which is continuous and convex on
co(B) the inequality vA ≤ vB holds.

Proof. It can be assumed without loss of generality that the common barycenter of A
and B is at 0. Let v be a real function which is continuous and convex on co(B). There
is a not necessarily unique linear function ` : Rn → R such that v(x) − `(x) ≥ 0 for all
x ∈ co(B). Let w(x) := v(x) − `(x). Then w is a non-negative, continuous and convex
function on co(B), with w(0) = 0. The linearity of ` together with xA = xB = 0 indicate
that `A = `B. Therefore

vB − vA = `B + wB − `A − wA = wB − wA.

Thus it will suffice to prove that wB ≥ wA. The similarity of A and B with respect to
0 and 0 < m(A) < m(B) imply that there is a scalar c > 1 so that B = cA. Thus
m(B) = cnm(A). Let F (x) = cx : Rn → Rn. Hence F (A) = B and the Jacobian of F
is cn. Applying the change of variables y = F (x) and the fact that w(cx) ≥ w(x) for all
x ∈ A, which can be deduced from Lemma 2.3 one obtains that

wB =
1

m(B)

∫

B

w(y)dy =
1

cnm(A)

∫

A

w(cx)cndx =
1

m(A)

∫

A

w(cx)dx

≥ 1

m(A)

∫

A

w(x)dx = wA.

The next two results can be derived from Theorem 3.2.

Corollary 3.3. Let A and B be bounded measurable sets in Rn with 0 < m(A) < m(B).
If A and B are symmetric and similar with respect to some x0 ∈ Rn, with a similarity
factor c > 1, then vA ≤ vB for every real continuous convex function v on co(B).

Corollary 3.4. If A and B are two concentric balls in Rn with A ⊂ B, then the relation
A ≺ B holds.
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An n-dimensional extension of Theorem 2.1 will be presented next.

Theorem 3.5. A continuous function v : Rn → R is convex if and only if the inequality

v(x0) ≤
1

m(B)

∫

B

v(x)dx = vB (7)

holds for every x0 ∈ Rn and for all B which are convex and compact sets of positive
measure, and which are symmetric with respect to x0.

Proof. Assume first that v is a convex function on Rn. Let x0 ∈ Rn and let B ⊂ Rn

be a convex and compact set of positive measure which is symmetric with respect to x0.
Notice that x0 is an interior point of B. Consider the set

Aε := {y = x0 + ε(x− x0) : x ∈ B}

where ε > 0 is sufficiently small so that Aε ⊂ B. Now, Theorem 3.2 implies that Aε ≺ B,
or equivalently that vAε ≤ vB for every sufficiently small positive number ε. Since

v(x0) = lim
ε→0+

1

m(Aε)

∫

Aε

v(x)dx = lim
ε→0+

vAε

it follows that v satisfies (7). To prove the converse, consider distinct points x1 and x2 in
Rn and let x0 = (x1 + x2)/2. Fix an inner product in Rn and let Sδ be the ball of radius
δ, centered at 0, lying in the (n − 1)−dimensional hyperplane orthogonal to the vector
x2 − x1. Let Bδ := [x1, x2] + Sδ. The assumptions indicate that (7) holds with B = Bδ.
One can conclude by Fubini theorem using the continuity of v that

lim
δ→0+

vBδ
=

∫ 1

0

v(x1 + t(x2 − x1))dt,

i.e.

v(x0) ≤
∫ 1

0

v(x1 + t(x2 − x1))dt. (8)

Clearly (8) remains valid if x1 is replaced by x3 = x0 − h(x2 − x1) and x2 is replaced
by x4 = x0 + h(x2 − x1) where h is an arbitrary positive number. One can deduce from
Corollary 2.2 that v is convex on the line which is going through the points x1 and x2.
Furthermore, since these points were chosen arbitrarily, the proof is complete.

Theorem 3.2 admits the following converse.

Theorem 3.6. If v is a real continuous function on Rn with the property that the in-
equality vA ≤ vB holds for every pairs of compact sets A and B which are similar and
symmetric with respect to some x0 ∈ Rn with a similarity factor c > 1, then v is convex.

Proof. It was shown in the proof of the previous theorem that if the function v has the
indicated properties then v satisfies (7) for each x0 ∈ Rn and for every compact convex
set B of positive Lebesgue measure, which is symmetric with respect to x0. Then the
previous result indicates that v is convex on Rn.
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The next few results describe some additional properties of the relation ≺ .

Lemma 3.7. Let A and B be bounded subsets of Rn with A ⊂B and m(A)> 0,m(B \A)
> 0. Then
(a) the relation A ≺ B holds if and only if A ≺ B \ A;
(b) the relation A ≺ B holds if and only if B ≺ B \ A.

Proof. It can be deduced from (1) and the additivity of the Lebesgue measure that

m(B)vB =

∫

B

vdx =

∫

A

vdx+

∫

B\A
vdx = m(A)vA +m(B \ A)vB\A.

Dividing the previous identity by m(B), one obtains that

vB =
m(A)

m(B)
vA +

m(B \ A)
m(B)

vB\A.

Because m(B \ A) = m(B)−m(A), it follows that

vB − vA =
m(B \ A)
m(B)

(vB\A − vA). (9)

Therefore A ≺ B, if and only if A ≺ B \ A, which proves part (a).

Observe that

vB\A − vB = vB\A − m(A)

m(B)
vA − m(B \ A)

m(B)
vB\A =

m(A)

m(B)
(vB\A − vA).

Now, it can be concluded with the aid of (9), that

vB\A − vB =
m(A)

m(B \ A)
(vB − vA),

which proves part (b) of the assertion.

Let 0 < a < b. Theorem 3.2 indicates that [−a, a] ≺ [−b, b]. Then part (b) of Lemma 3.7
yields the following.

Corollary 3.8. If 0 < a < b then [−b, b] ≺ [−b,−a] ∪ [a, b].

The following result can be obtained with the aid of Theorem 3.2 and the fundamental
theorem of calculus.

Corollary 3.9. If f : (c, d) → R and if f ′ is convex on (c, d) then for all fixed x ∈ (c, d)

f(x+ h)− f(x− h)

2h

is nondecreasing as a function of h for 0 < h < min(d− x, x− c).
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Corollary 3.8 indicates that Theorem 3.2 is not valid for a general pair of sets A ⊂ B
which are only symmetric but not similar with respect to their common barycenter. If,
in addition, A and B are both convex then the conclusions of Theorem 3.2 are true in R,
but as the next example will show they are not remain true already in R2.

Example 3.10. Let A = [−1, 1]× [−1, 1] and let B be the parallelogram bounded by the
lines x = −1, x = 1, y = 2 + x and y = −2 + x. Then there is a convex function v(x, y)
with vA > vB even though A ⊂ B and A and B are convex and compact sets which are
symmetric with respect to their common barycenter xA = xB = 0.

Proof. The square A is a proper subset of B. The area of A is 4, while the area of B is
8. Let P1 = (−1, 1) and P2 = (1, 3) be two of the vertices of the parallelogram B. Select
the point Q1 = (−1/2, 3/2), and notice that Q1 is lying on the line segment P1P2. Let
Q2 = (−1, 0) and P = (−2/3, 1) and notice that P is the point of intersection of the line
segment Q1Q2 and the line y = 1. The area of the triangle 4(Q2P1P ) is 1/6, while the
area of 4(Q2P1Q1) is 1/4.

Let v be a convex function such that: v(P1) = v(−1, 1) = 1, v(Q1) = v(Q2) = 0, v is
affine on the triangle 4(Q2P1Q1) and v is 0 on the remainder of the parallelogram B.
The volume of the tetrahedron Q2P1PS, where S = (−1, 1, 1) ∈ R3, is

∫∫

A
vdxdy and it

is one third of the area of 4(Q2P1P ). Thus, it is 1/18. Similarly,
∫∫

B
vdx is the volume

of the tetrahedron Q2P1Q1S, which is 1/12. Therefore

vA =

∫∫

A
vdxdy

4
=

1

72
, while vB =

∫∫

B
vdxdx

8
=

1

96
.

Lemma 3.11. Let A and B be bounded subsets of Rn of positive Lebesgue measure. If
both of the relations A ≺ B and B ≺ A hold then m(A4B) = 0.

Proof. Choose s > 0 so that the open ball Bs(0) = {x ∈ Rn : |x| < s} contains A∪B. It
is well-known that any C2 smooth function φ which is defined on a neighborhood of Bs(0)
can be written on Bs(0) as φ = u− v, where u and v are convex on Bs(0). Thus, if A ≺ B
and B ≺ A, then uA = uB for every function u which is convex on Bs(0). Therefore,
φA = φB for every C2 smooth function on Rn. Now, if m(A \ B) were positive, (the case
m(B \ A) > 0 can be treated similarly) there would exist an x0 ∈ A \ B so that x0 is
a point of density for A. It is easy to see that for each r > 0 there exists a C2 smooth
φr : Rn → R with the following properties:

(i) suppφr ⊂ Br(x0),

(ii) φr(x0) = 1 and 0 ≤ φr(x) ≤ 1 for all x ∈ Rn,

(iii) φr(x) ≥ 1/2 for all x ∈ Rn such that |x− x0| ≤ r/2.

Then, it follows that

(φr)B ≤ m(Br(x0) ∩B)

m(Br(x0))

m(Br(x0))

m(B)
while (φr)A ≥

tr/2m(Br/2(x0))

2m(A)
,

where for r > 0

tr =
m(A ∩Br(x0))

m(Br(x0))
.
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Since tr → 1 and m(Br(x0) ∩B)/m(Br(x0)) → 0 as r → 0 one obtains that

(φr)B
(φr)A

→ 0 as r → 0,

which is a contradiction.

The affine invariance of the integral mean and the preservation of the relation A ≺ B
under a non-singular affine mapping will be shown next.

Theorem 3.12. Let T : Rn → Rn be a nonsingular affine map. Let A and B be bounded
sets in Rn of positive Lebesgue measure. Then

(i) If v is a continuous function on T (A) then vT (A) = (v ◦ T )A,

(ii) If A ≺ B then T (A) ≺ T (B).

Proof. Since T is a nonsingular affine map its Jacobian, denoted by Jac(T ), satisfies the
relation

|Jac(T )|
m(T (A))

=
1

m(A)
. (10)

With the aid of (10) and the definition of the barycenter one can conclude that

vT (A) =
1

m(T (A))

∫

T (A)

v(y)dy =
1

m(T (A))

∫

A

v(T (x))dT (x)

=
1

m(T (A)

∫

A

(v ◦ T )(x)|Jac(T )|dx =
1

m(A)

∫

A

(v ◦ T )(x)dx = (v ◦ T )A.

To prove (ii) consider a convex function v on Rn and assume that A ≺ B. One can deduce
by (i) that vT (A) = (v ◦ T )A ≤ (v ◦ T )B = vT (B).

4. The one-dimensional case

In this section a complete characterization of the relation A ≺ B will be given in R for
compact sets.

Let A be a compact subset of R of positive Lebesgue measure, and let x0 = xA and let
[a, b] be the smallest closed interval containing A, i.e. [a, b] = co(A). Hence, a < x0 < b.
With the aid of the functions

φ(x) =

∫ x

x0

χA(s)ds, a ≤ x ≤ b and Φ(x) =

∫ x

x0

φ(s)ds, a ≤ x ≤ b.

the designator function of A,ΨA(x) is defined as follows:

ΨA(x) =

{

1
m(A)

[Φ(x)− Φ(b)− (x− b)φ(b)], for x0 ≤ x ≤ b,
1

m(A)
[Φ(x)− Φ(a)− (x− a)φ(a)], for a ≤ x < x0.

Notice that φ is a non-decreasing and absolutely continuous function on [a, b], in addition,
Φ is non-negative and convex on [a, b]. Furthermore, Φ(x0) = 0,Φ′(x0) = 0, and Φ′′(x)
exists a. e. and equals to χA(x) a. e. in [a, b]. It is easy to see that Φ is the only convex
function with these properties on [a, b]. Next a characterization of ΨA is given.
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Theorem 4.1. Let A be a compact subset of R of positive Lebesgue measure with barycen-
ter at xA = x0 and with co(A) = [a, b]. Then the designator function ΨA : [a, b] → R has
the following properties.
(i) ΨA is continuous on [a, b];
(ii) ΨA is non-negative on [a, b] with ΨA(a) = ΨA(b) = 0;
(iii) (ΨA)

′
+(a) = (ΨA)

′
−(b) = 0;

(iv) ΨA is convex on [a, x0] and on [x0, b];
(v) Ψ′

A exists and continuous for all x ∈ [a, b], x 6= x0 and Ψ′
A has one-sided derivatives

at x0 with a jump discontinuity at x0.

Proof. To justify (i) one needs to show only the continuity of ΨA at x0. Furthermore,
since Φ(x0) = 0, only the equality

limx→x0+ ΨA(x) =
1

m(A)
[−Φ(b)− (x0 − b)φ(b)] = (11)

ΨA(x0) = limx→x0−0ΨA(x) =
1

m(A)
[−Φ(a)− (x0 − a)φ(a)].

has to be verified. It will be assumed that x0 = 0, since this situation can be always
achieved by translatingA to the left by x0. The definition of φ indicates that φ(b) = m(A+)
and φ(a) = −m(A−) where A+ = A ∩ [0, b] and A− = A ∩ [a, 0]. It can be derived by
Fubini theorem that

Φ(b) =

∫ b

0

∫ x

0

χA(s)dsdx =

∫ b

0

(b− s)χA(s)ds.

Thus

−Φ(b) + bφ(b) =

∫ b

0

sχA(s)ds. (12)

By means of a similar argument it can be shown that

Φ(a) =

∫ a

0

∫ x

0

χA(s)dsdx =

∫ 0

a

sχA(s)ds+ aφ(a).

Therefore,

−Φ(a) + aφ(a) = −
∫ 0

a

sχA(s)ds. (13)

Since the barycenter of A is at 0, we have that
∫ b

a
sχA(s)ds = 0, or equivalently that

∫ b

0
sχA(s)ds = −

∫ 0

a
sχA(s)ds. Now (11) follows from (12) and (13).

Notice that (11) and (12) show that ΨA(x0) = ΨA(0) > 0. Clearly ΨA(a) = ΨA(b) = 0
and (ΨA)

′ is non-negative on [a, x0] and non-positive on [x0, b]. Thus the proof of (ii) is
complete. The verification of each of (iii), (iv) and (v) is straightforward.

The following result will be useful in the sequel.

Lemma 4.2. Let A be a compact subset of R of positive Lebesgue measure with barycenter
at x0 = xA. Let co(A) = [a, b] and let ΨA(x) be the designator function of A. Let w be a
real C2 function on [a, b] such that w(x0) = 0. Then

∫ b

a

w′′(x)ΨA(x)dx =
1

m(A)

∫

A

w(x)dx = wA.
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Proof. Since Ψ′
A has a jump discontinuity at x0, we apply the method of integration

by parts, separately twice on [a, x0] and twice on [x0, b]. Note that the method and the
formula of integration by parts are valid also when both of the factors are absolutely
continuous (Theorem 6.3.a. of [1]). Thus, we obtain

∫ x0

a
w′′ΨA(x)dx = ΨA(x0)w

′(x0)−ΨA(a)w
′(a)− (14)

(ΨA)
′
−(x0)w(x0) + (ΨA)

′
+(a)w(a) +

∫ x0

a
wΨ′′

Adx,

and

∫ b

x0
w′′ΨA(x)dx = ΨA(b)w

′(b)−ΨA(x0)w
′(x0)− (15)

(ΨA)
′
−(b)w(b) + (ΨA)

′
+(x0)w(x0) +

∫ b

x0
wΨ′′

Adx.

It can be derived by adding (14) and (15) and by (ii) and (iii) of Theorem 4.1 that

∫ b

a

w′′ΨAdx = w(x0)((ΨA)
′
+(x0)− (ΨA)

′
−(x0)) +

∫ b

a

wΨ′′
Adx.

Since

Ψ′′
A =

1

m(A)
χA(x) for a. e. x ∈ [a, b],

one can conclude that

∫ b

a

w′′ΨAdx = w(x0)((ΨA)
′
+(x0)− (ΨA)

′
−(x0)) + wA. (16)

Because w(x0) = 0, the proof is complete.

Corollary 4.3. Let A be a compact subset ofR of positive Lebesgue measure with barycen-
ter at x0 = xA and with co(A) = [a, b]. Let ΨA be the designator function of A, then

(ΨA)
′(x0 + 0)− (ΨA)

′(x0 − 0) = −1,

or in the distributional sense Ψ′′
A = −δx0 + χA/m(A).

Proof. The substitution of w(x) ≡ 1 into (16) yields

0 = (ΨA)
′(x0 + 0)− (ΨA)

′(x0 − 0) +
1

m(A)

∫

A

1dx,

from which the conclusion follows.

Remark 4.4. Let A be a compact subset of R such that for any open interval I we have
that m(I ∩ A) > 0, whenever I ∩ A 6= ∅. The designator function ΨA determines the set
A uniquely since

A = ess suppΨ′′
A \ {xA},

and xA is the unique maximum point of ΨA.

We are now able to show the main result of this section.
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Theorem 4.5. Let A and B be compact subsets of R of positive Lebesgue measure with
the same barycenter. In addition, A is such that m(I ∩ A) > 0, for any open interval I
for which I ∩ A 6= ∅. Then A ≺ B, if and only if ΨA(x) ≤ ΨB(x) for all x ∈ co(A).

Proof. Let x0 be the common barycenter of A and B and let [c, d] = co(B). Assume first
that ΨA(x) ≤ ΨB(x) for all x ∈ co(A) := [a, b]. This condition implies that [a, b] ⊂ [c, d].
It needs to be shown that if v is a continuous convex function on [c, d] then vA ≤ vB. By
means of a standard argument one can see that it is enough to show this inequality for C2

smooth convex functions. Assume, therefore that v is a real C2 convex function on [c, d].
Observe that v can be written as v(x) = w(x)+ `(x), where `(x) = v(x0)+ v′(x0)(x−x0).
Since x0 is the common barycenter of A and B we have that `A = `B. Clearly, w is a
C2 smooth convex function on [c, d] with w(x0) = 0 and w′(x0) = 0. Therefore w′′ is
non-negative on [c, d]. Lemma 4.2 and the non-negativity of w′′ on [c, d] imply that

vA = `A + wA = `B +

∫ b

a

w′′(x)ΨA(x)dx ≤ `B +

∫ d

c

w′′(x)ΨB(x)dx = vB.

To prove the converse, consider an arbitrary nonnegative continuous function f : [c, d] →
R. It is well-known that there is a C2 smooth convex function w : [c, d] → R, which is a
solution of the initial value problem w′′(x) = f(x) for x ∈ [c, d] with w(x0) = 0 = w′(x0).
Then Lemma 4.2 indicates wA =

∫

A
f(x)ΨA(x)dx and wB =

∫

B
f(x)ΨB(x)dx. Hence for

every such an f the inequality

∫ b

a

f(x)ΨA(x)dx ≤
∫ d

c

f(x)ΨB(x)dx. (17)

holds. It can be deduced from Theorem 3.1 that [a, b] ⊂ [c, d]. Recall that ΨA is continuous
on [a, b]. Since for every ε > 0 and for every x1 ∈ [a, b] there exists a non-negative and
continuous function fε : R → R with fε(x1) > 0 and supp fε ⊂ (x1 − ε, x1 + ε), the
assumption ΨA(x1) > ΨB(x1) for some x1 ∈ [a, b] contradicts (17).

5. Designator function in Rn

Let A be a compact subset of Rn of positive Lebesgue measure whose barycenter is at
xA = 0. Consider g ∈ (Rn)? with g 6= 0. In this section we are assuming that an (n− 1)-
dimensional Lebesgue measure has been selected on Ker(g) (there will not be relation
of those chosen for different g′s) and the (n − 1)-dimensional Lebesgue measure on the
affine hyperplane {x ∈ Rn : g(x) = t}, denoted by {g = t} will be obtained by a parallel
translation of the Lebesgue measure from Ker(g). We shall denote by αg(t) the (n − 1)-
dimensional volume of the section A ∩ {g = t}. (Of course, this depends on the choice
of the (n− 1)-dimensional Lebesgue measure on Ker(g).) Clearly, αg(t) is a non-negative
L∞ function. Let [a, b] = [ag, bg] be the smallest closed interval containing the essential
support of αg. Let

|αg| =
∫ ∞

−∞
αg(t)dt,

and let Φα : R → R be the unique non-negative C1 convex function such that Φ′
α(t) is

absolutely continuous on R and such that Φ′′
α(t) = αg(t) a.e. and Φα(0) = Φ′

α(0) = 0.
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Consider

Ψα(t) =







1
|αg | [Φα(t)− Φα(b

g)− (t− bg)(Φα)
′(bg)] for 0 ≤ t ≤ bg,

1
|αg | [Φα(t)− Φα(a

g)− (t− ag)(Φα)
′(ag)] for ag ≤ t < 0

0, for t /∈ [ag, bg].

(18)

The notation ΨA(g, t) = Ψα(t) will be also used, to display the dependence from A and
g. A formula for ΨA(g, t) will be derived which is independent from the choice of the
Lebesgue measure on Ker(g). Some characterizations of Ψα will be given first.

Theorem 5.1. Let A be a compact and essential subset of Rn (i. e. any proper compact
subset of A has smaller Lebesgue measure) with barycenter at xA = 0. Fix g 6= 0, g ∈
(Rn)?. Then the map Ψα : R → R has the following properties:
(i) Ψα is continuous and non-negative with Ψα(a

g) = Ψα(b
g) = 0 and

Ψα(0) =
1

|αg|

∫ bg

0

tαg(t)dt = − 1

|αg|

∫ 0

ag
tαg(t)dt.

(ii) suppΨα = [ag, bg];
(iii) Ψ′

α(a
g) = Ψ′

α(b
g) = 0;

(iv) Ψα(t) is convex on [ag, 0] and on [0, bg];
(v) Ψ′

α(t) exists and continuous for all t 6= 0 and it has one-sided derivatives at t = 0,
satisfying

Ψ′
α(0+)−Ψ′

α(0−) = −1;

(vi) For every real C2 smooth function w on [ag, bg] the identity

∫ bg

ag
w′′(t)Ψα(t)dt = w(0)[Ψ′

α(0+)−Ψ′
α(0−)] +

1

|αg|

∫ bg

ag
w(t)αg(t)dt

holds.

Proof. All of the statements with the exception of (ii) can be derived basically the same
way as they were done in the proofs of Theorem 4.1 and Lemma 4.2, and the definition
of Ψα implies that suppΨα ⊂ [ag, bg]. We will show that Ψα(t) is positive on the interval
(ag, bg), which yields the proof of (ii). Since the convex hull of the essential support of
αg(t) equals to [ag, bg], there are sequences {tn} and {sn} with tn ↗ bg, sn ↘ ag and such
that sn and tn are density points of suppαg. Therefore in the neighborhood of any of
these points Φα(t) cannot be equal to an affine function. Since Ψα(0) > 0,Ψα(b

g) = 0,
and Ψα is nonincreasing on [0, bg) it follows that Ψα(t) is positive on [0, bg). One can show
the statement with a similar argument when t ∈ (ag, 0].

Next, a new formula will be derived for ΨA(g, t).

Lemma 5.2. Let A be a compact subset of Rn of positive Lebesgue measure with barycen-
ter at zero. If g ∈ (Rn)? \ {0} then

ΨA(g, t) =

{

1
m(A)

∫

A∩{g≥t}(g − t)dx, if t ≥ 0,
1

m(A)

∫

A∩{g≤t}(t− g)dx, if t < 0.
(19)
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Proof. Fix g ∈ (Rn)?, g 6= 0. Choose Lebesgue measures `n on E = Rn, `n−1 on Ker(g)
and the standard one on R. Then one can see by Fubini theorem that there is a positive
constant c so that for every integrable and compactly supported function f on E the
relation

∫

E

f(x)d`n(x) = c

∫ ∞

−∞
ds(

∫

{g=s}
fd`n−1) (20)

holds. Subtituting f(x) = χA(x) into (20) yields

`n(A) = c

∫ ∞

−∞
ds`n−1(A ∩ {g = s}) = c

∫ ∞

−∞
αg(s)ds = c|αg| = m(A).

Next, substituting f(x) = (g(x)− t)χA∩{g≥t}, where t is a fixed non-negative number, into
(20) gives

∫

A∩{g≥t}(g(x)− t)dx =
∫

E
f(x)d`n(x) =

c
∫∞
−∞ ds

∫

A∩{g=s}(g − t)χ{g≥t}d`n−1 = c
∫ bg

t
(s− t)αg(s)ds.

Let w(t) := c
∫ bg

t
(s − t)αg(s)ds. Clearly w(t) = 0 for t ≥ bg. Furthermore, w′(t) =

c
∫ t

bg
αg(s)ds and w′′(t) = cαg(t) for a. e. t. Thus w′(t) is an absolutely continuous

function and

d2

dt2
[

1

m(A)
w(t)] =

1

|αg|
αg(t) = (ΨA)

′′(t), for a. e. t ∈ [0, bg]

and
1

m(A)
w(bg) = 0 = ΨA(b

g) and
w′(bg)

m(A)
= 0 = (ΨA)

′(bg).

Hence
1

m(A)

∫

A∩{g≥t}
(g − t)dx =

1

m(A)
w(t) = ΨA(g, t), t ≥ 0.

Notice that the identity for t ≤ 0 can be obtained similarly. Hence the proof is complete.

Remark 5.3. Observe that the two parts of the formula (19) are consistent for t= 0, i. e.

1

m(A)

∫

A∩{g≥0}
gdx =

1

m(A)

∫

A∩{g≤0}
(−g)dx.

Indeed,
∫

A
gdx = 0, because g is a linear functional and the barycenter of A is at 0.

The following alternative formula can be derived for ΨA(g, t) when t < 0.

ΨA(g, t) =
1

m(A)

∫

A

(t− g(x))dx− 1

m(A)

∫

A∩{g>t}
(t− g(x))dx

= t+
1

m(A)

∫

A∩{g≥t}
(g(x)− t)dx.
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Thus, (19) can be written as:

ΨA(g, t) =

{

1
m(A)

∫

A
max(g(x)− t, 0)dx, for t ≥ 0,

t+ 1
m(A)

∫

A
max(g(x)− t, 0)dx, for t < 0.

Define ΨA(0, t) = 0. The proofs of parts (i) and (iii) of the following result are obvious.

Theorem 5.4. Let A be a compact subset of Rn of positive Lebesgue measure with bary-
center at zero.Then the mapping ΨA(g, t) : (Rn)? ×R → R is continuous. Furthermore,
(i) ΨA(g, t) = min(t, 0) + 1

m(A)

∫

A
max(g(x)− t, 0)dx;

(ii) for c ∈ R,ΨA(cg, ct) = |c|ΨA(g, t);
(iii) ΨA is a convex function on the set {(g, t) : t ≥ 0} and on the set {(g, t) : t < 0}.

Proof. The proof of (ii) can be derived easily from (19) when c ≥ 0. Clearly, it suffices
to show only the case c = −1. Let t ≥ 0. Then with the aid of (19) we have that

ΨA(−g,−t) = 1
m(A)

∫

{−g≤−t}∩A(−t+ g(x))dx =

1
m(A)

∫

{g≥t}∩A(g(x)− t)dx = ΨA(g, t).

Since the case t < 0 can be treated essentially in the same way, it follows that the proof
is complete.

The function Ψ̃A(g) := ΨA(g, 1) will be called the reduced designator function. It follows
that Ψ̃A : (Rn)? → R is a nonnegative convex function on (Rn)?, with linear growth at
∞. Furthermore

{g : Ψ̃A(g) = 0} = {g : g(A) ⊂ (−∞, 1]} = (co(A))◦

is the polar set of the convex hull of A. Thus Ψ̃A determines uniquely the compact set A,
if A is essential and convex.

Theorem 5.5. If A and B are compact subsets of Rn with common barycenter at zero
and if A ≺ B, then Ψ̃A ≤ Ψ̃B on (Rn)?.

Proof. If g ∈ (Rn)?, then max(g(x)− 1, 0) is a convex function on Rn, Therefore,

Ψ̃A(g) =
1

m(A)

∫

A
max(g(x)− 1, 0)dx =

[max(g(x)− 1, 0)]A ≤ [max(g(x)− 1, 0)]B = Ψ̃B(g).

Assume that A and B are bounded measurable sets in Rn with the same barycenter. It is
an open question whether the inequality Ψ̃A ≤ Ψ̃B on (Rn)? is sufficient for the relation
A ≺ B to be hold when n ≥ 2.

The next result shows the linear invariance of Ψ̃A.

Theorem 5.6. Let A be a compact subset of Rn with barycenter at zero. If T : Rn → Rn

is linear and invertible then
Ψ̃T (A)(g) = Ψ̃A(T

?(g)),

where T ? denotes the adjoint of T.
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Proof. The barycenter of T (A) is also at zero. One obtains from (i) of Theorem 5.4 when
t = 1 that

Ψ̃T (A)(g) = [max(g(x)− 1, 0)]T (A). (21)

One can deduce from Theorem 3.12 that the right side of (21) can be written as

[max(g(x)− 1, 0) ◦ T ]A = [max(T ?(g)− 1, 0]A = Ψ̃A(T
?(g)).

6. Two Constructions and Related Results

Two methods will be described in this section, which generate sets A and B satisfying the
relation A ≺ B in Rn when n ≥ 2. The first method will be prepared by an inequality,
which can be derived from the classical Chebysev’s inequality as it is given in [10]. Here,
a direct proof will be given.

Lemma 6.1. Let b be a fixed positive number and let f be a nonnegative even function
defined on [−b, b] which is nondecreasing on [0, b]. Then for any real function w which is
convex on [−b, b] the inequality

1

2b

∫ b

−b

w(x)dx

∫ b

−b

f(x)dx ≤
∫ b

−b

w(x)f(x)dx (22)

holds.

Proof. If (22) holds for a function f with every function w which is convex on [−b, b],
then we will say that (22) holds for f. It is easy to see that if (22) holds for a finite set
of functions f1, f2, ..., fm and if c1, ..., cm is a sequence of non-negative numbers, then it
holds also for any f of the form

f(x) =
m
∑

j=1

cjfj(x).

Let 0 < a < b. Corollary 3.8 states that the relation [−b, b] ≺ [−b,−a] ∪ [a, b] holds.
Equivalently, it states that for any real function w which is convex on [−b, b], the inequality

1

2b

∫ b

−b

w(x)dx ≤ 1

2(b− a)

∫

[−b,−a]∪[a,b]
w(x)dx (23)

holds. Let fa(x) := χ[−b,−a]∪[a,b] with 0 < a < b. Since (23) can be rewritten as

1

2b

∫ b

−b

w(x)dx

∫ b

−b

fa(x)dx ≤
∫ b

−b

w(x)fa(x)dx,

it follows that (22) holds for fa when 0 < a < b. Thus (22) holds for any f of the form

f(x) =
∑m

j=1 cjfaj , where 0 < a1 < ... < am < b and (24)

cj > 0 for j = 1, ...,m with
∑m

j=1 cj = 1.

Since any function f which satisfies the assumptions of this lemma is the uniform limit
of functions of the form (24), the proof of (22) is complete.
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Theorem 6.2. Let K ⊂ Rn be a compact set of positive Lebesgue measure with barycenter
at 0. Let b be a fixed positive number. Let f : [−b, b] → R be a continuous and even
function on [−b, b] with f(0) ≥ 1 and such that f is nondecreasing on [0, b]. Let

A = [−b, b]×K ⊂ R×Rn and B =
⋃

|x|≤b

{x} × (f(x)K),

where for a scalar t the set tK = {ty : y ∈ K}. Then for every real function v which is
convex on a convex neighborhood of B, the inequality vA ≤ vB hold.

Proof. Let v(x, y) = v(x, y1, y2, ..., yn) be a convex function on a convex neighborhood of
B. Let

w(x) :=

∫

K

v(x, y)dy, x ∈ [−b, b].

The convexity of v indicates that w is a convex function on [−b, b]. Note that the sets K
and f(x)K are similar with respect to their common barycenter xK = 0 in Rn. Therefore,
one can deduce from Theorem 3.2 that for every fixed x ∈ [−b, b] the inequality

1

m(f(x)K)

∫

f(x)K

v(x, y)dy ≥ 1

m(K)

∫

K

v(x, y)dy =
w(x)

m(K)
(25)

holds. Since m(f(x)K) = (f(x))nm(K), inequality (25) can be rewritten as

∫

f(x)K

v(x, y)dy ≥ (f(x))nw(x).

Now with the aid of the previous inequality and Lemma 6.1 one obtains that

∫

B

v(x, y)dxdy =

∫ b

−b

dx

∫

f(x)K

v(x, y)dy ≥
∫ b

−b

(f(x))nw(x)dx (26)

≥ 1

2b

∫ b

−b

(f(x))ndx

∫ b

−b

w(x)dx.

An application of Fubini Theorem yields that

m(B) = m(K)

∫ b

−b

(f(x))ndx

It can be derived from (26) and from m(A) = 2bm(K) that

vB =
1

m(K)
∫ b

−b
(f(x))ndx

∫

B

v(x, y)dxdy

≥ 1

m(K)
∫ b

−b
(f(x))ndx

1

2b

∫ b

−b

(f(x))ndx

∫ b

−b

w(x)dx

=
1

2bm(K)

∫ b

−b

dx

∫

K

v(x, y)dy =
1

m(A)

∫

A

vdxdy = vA.

Hence the proof is complete.
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Applying repeatedly Theorem 6.2 with a constant function f ≥ 1, where f can be different
at each step and using the transitivity of the relation A ≺ B we obtain the proof of the
following result.

Corollary 6.3. If 0 < aj < bj for j = 1, ..., n and A = [−a1, a1] × ... × [−an, an] and
B = [−b1, b1]× ...× [−bn, bn], then A ≺ B.

More generally one can show the following.

Theorem 6.4. Let n and m be positive integers and let A1 and B1 be bounded subsets
of Rn of positive n-demensional Lebesgue measure and let A2 and B2 be bounded subsets
of Rm of positive m-dimensional Lebesgue measure. If A1 ≺ B1 and A2 ≺ B2 then
A1 × A2 ≺ B1 ×B2.

A different construction will be discussed next.

Let n be a positive integer with n ≥ 2. Denote Rn by E, and consider a proper subspace
X of E of dimension k, where k ≥ 1, and a real number r ∈ (0, 1). The natural projection
of E onto E/X will be denoted by π. Let B be a bounded set of positive Lebesgue measure
in Rn. Consider any Y ∈ E/X such that the intersection Y ∩B has positive k-dimensional
Lebesgue measure. Denote by π?(B) ⊂ E/X the set of all such cosets of X. Then the
barycenter b(Y ) := xY ∩B of Y ∩ B, relative to Y is well defined on such sets, moreover
b(Y ) ∈ Y. Clearly π?(B) is a measurable subset of E/X. Note that π? is the restriction
of π to π−1(π?(B)). Now, define

A = CX,r(B) =
⋃

Y ∈π?(B)

{b(Y ) + r((Y ∩B)− b(Y ))}

=
⋃

Y ∈π?(B)

{b(Y ) + r(y − b(Y )) : y ∈ Y ∩B}.

Observe that A ∩ Y and B ∩ Y are similar with respect to b(Y ) considered as subsets of
Y with a similarity factor r. Therefore m(Y ∩B) = rkm(Y ∩ A) when Y ∈ π?(B).

Define
hY (y) := b(Y ) + r(y − b(Y )), Y ∈ π?(B).

Then for fixed Y ∈ π?(B) the function hY : Y → Y is continuous with a continuous
inverse, moreover,

hY (Y ∩B) = Y ∩ A. (27)

Furthermore, the function x → b(π(x)) + r(x− b(π(x))) is invertible for x ∈ π−1(π?(B)).

Theorem 6.5. If B is a bounded set of positive Lebesgue measure in Rn = E, then
A = Cx,r(B) is a bounded measurable set. Furthermore
(a) m(A) = `n(A) = m(CX,r(B)) = rdimX`n(B) = rdimXm(B);
(b) A ≺ B.

Proof. It is clear that A is a bounded set in Rn. Next, the measurability of A will
be shown. One can conclude by Fubini theorem that b : π?(B) → E is measurable.
By Lusin theorem there is a sequence of compact subsets Fj ⊂ π?(B) such that the
restriction of b to Fj is continuous and `n−k(π

?(B)\F∞) = 0, where n = dimE, k = dimX
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and F∞ = ∪∞
j=1Fj. As a simple consequence of (27) one obtains that A ∩ π−1(Fj) =

hY (B ∩ π−1(Fj)) since Fj ⊂ π?(B) for j = 1, 2, ... . The continuity of b on Fj implies
that x → b(π(x)) + r(x − b(π(x)) continuous with a continuous inverse for x ∈ π−1(Fj).
Therefore A ∩ π−1(Fj) is measurable because B ∩ π−1(Fj) is also measurable. It can be
seen readily that A can be written as

A = ∪∞
j=1A ∩ π−1(Fj) ∪ A∞

where A∞ ⊂ π−1(π?(B) \ F∞). The set π−1(π?(B) \ F∞) is a measurable set of measure
0 by Fubini theorem. Thus A is measurable.

To establish part (a) notice that one can deduce from Fubini theorem that

m(A) = `n(A) = c

∫

π?(A)

d`n−k(Y )(

∫

Y ∩A
1d`k), (28)

where c is the constant correlating the independent choices of Lebesgue measures `n, `n−k,
`k on E, E/X and X. Notice that π?(A) = π?(B). Now, (28) can be written as

c

∫

π?(B)

d`n−k(Y )(

∫

B∩Y
1d(bk(Y ) + r(y − bk(Y ))

= c

∫

π?(B)

d`n−k(Y )

∫

B∩Y
rkd`k = rk`n(B)

To prove part (b) consider an arbitrary convex function v : E → R. It can be deduced
from Theorem 3.2 that for every Y ∈ π?(B) the relation A ∩ Y ≺ B ∩ Y holds, i. e. for
every Y ∈ π?(B) the inequality

1

`k(A ∩ Y )

∫

A∩Y
vd`k ≤

1

`k(B ∩ Y )

∫

B∩Y
vd`k (29)

holds. Then one can conclude by Fubini theorem that

1

`n(A)

∫

A

vd`n =
1

`n(A)
c

∫

π?(A)

d`n−k(Y )

∫

A∩Y
vd`k (30)

=
c

`n(A)

∫

π?(A)

d`n−k(Y )`k(A ∩ Y )vA∩Y .

Using the facts π?(A) = π?(B) and `k(A∩Y )/`k(B∩Y ) = rk together with (29) and (30)
we obtain that

1

`n(A)

∫

A

vd`n ≤ 1

`n(A)
c

∫

π?(B)

d`n−k(Y )rk`k(B ∩ Y )vB∩Y (31)

=
rk

`n(A)
c

∫

π?(B)

d`n−k(Y )

∫

B∩Y
vd`k =

rk

`n(A)

∫

B

vd`n.

Now by part (a) of this theorem, we have m(A) = `n(A) = rk`n(B). Therefore one can
deduce from (31) that

vA =
1

`n(A)

∫

A

vd`n ≤ 1

`n(B)

∫

B

vd`n = vB.
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It is possible to use the previous method repeatedly.

Corollary 6.6. Suppose that A and B are bounded sets of positive measure in E = Rn

and that there is a chain of sets B0, B1, ..., Bm such that B0 = B and Bm = A and
Bj+1 = CXj ,rj(Bj) where Xj is a proper subspace of E of dimension at least one and
0 < rj < 1 for j = 0, ...,m− 1. Then A ≺ B.

It will be shown, with the aid of an example, that the operation CX,r does not preserve
the convexity.

Example 6.7. Let E = R2 and let B be the isosceles triangle B = 4(P1P2P3), where
P1 = (0,−1), P2 = (0, 1) and P3 = (1, 0). It is easy to see that A = CX,1/2(B) is not
convex, where the subspace X is determined by the equation y = 0 in E.

Conjecture 6.8. Let n ≥ 2 and let E = Rn. Let B be a bounded set in E of positive
Lebesgue measure. If for all proper subspaces X of E of dimension at least one and for
all 0 < r < 1 the set CX,r(B) is convex, then B is an ellipsoid.

An application of Corollary 6.6 will be given next.

Theorem 6.9. Let e1, e2, ..., en be any basis of E = Rn. Define for any positive number
p and for any n-tuple of positive numbers (t1, t2, ..., tn) the set

At1,t2,...,tn
p := {x =

n
∑

i=1

xiei :
n

∑

i=1

|xi|ptpi ≤ 1}. (32)

Then
At1,t2,...,tn

p ≺ As1,s2,...,sn
p if t1 ≥ s1, t2 ≥ s2, ..., tn ≥ sn.

Proof. The method of the chain of operations described by Corollary 6.6 will be used.
Let B0 = As1,s2,...,sn

p and let Bj = A
t1,..,tj ,sj+1,..sn
p for 1 ≤ j ≤ n− 1 and Bn = At1,...,tn

p . The
operations CXj ,rj for j = 0, ..., n − 1 are determined by the one-dimensional subspaces
Xj = {xej+1 : x ∈ R} and the factors rj = sj+1/tj+1 for j = 0, 1, ..., n− 1. When rj = 1,
it is assumed that CXj ,rj(Bj) = Bj = Bj+1. Let Y be a coset of Xj for some 0 ≤ j ≤ n−1
such that the one-dimensional Lebesgue measure of Y ∩Bj is positive. This coset Y is a
translation of Xj by an at most (n-1)-dimensional vector qj spanned by the members of
the basis but ej+1. It follows from the definition of Bj that the barycenter of Y ∩Bj with
respect to Y is the vector qj. It can be seen by a substitution that Cxj ,rj(Bj) = Bj+1 for
j = 0, . . . , n− 1.

Remark 6.10. Consider the special case E = R2 and assume that E is equipped with
the standard inner product and that a basis has been chosen for E consisting of a pair
of orthogonal vectors e1 and e2. Let p = 1 and let t1 > 0 and t2 > 0. It follows from
(32) that the set At1,t2

1 is a rhombus. Now, Theorem 6.9 implies that if A = At1,t2
1 and

B = As1,s2
1 are two rhombi such that A ⊂ B, then A ≺ B. Equivalently, if A and B are

rhombi with the same barycenter and if the directions of the diagonals of A are the same
as the directions of the diagonal of B, then A ≺ B if and only if A ⊂ B. Hence, the
relation A ≺ B can hold for two rhombi without their sides being parallel.

Now, we shall show the main result of this section.
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Theorem 6.11. Let A and B be compact ellipsoids in Rn with common barycenter xA =
xB. Then A ≺ B, if and only if A ⊂ B.

Proof. One can deduce from (iii) of Theorem 3.1 that the condition is necessary. To
show that the condition is sufficient, assume that A ⊂ B. Let e1, e2, ..., en be the standard
basis of Rn. There is an affine isomorphism T : Rn → Rn such that T (xA) = T (xB) = 0,
and T (A) is the unit ball. It follows that T (A) ⊂ T (B). Furthermore, there is an isometry
U of Rn which brings U ◦ T (B) into its canonical form, i.e.

U ◦ T (B) = {(x1, . . . , xn) :
n

∑

j=1

x2
js

2
j ≤ 1}.

Since U ◦ T (A) ⊂ U ◦ T (B), one obtains by Theorem 6.9 that U ◦ T (A) ≺ U ◦ T (B).
Theorem 3.12 indicates that T−1 and U−1 are preserving the relation ≺ . Therefore, one
can conclude that A ≺ B.
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