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Continuing the work of Hiriart-Urruty and Phelps, we discuss (in both locally convex spaces and Banach
spaces) the formulas for the conjugates and subdifferentials of the precomposition of a convex function
by a continuous linear mapping and the marginal function of a convex function by a continuous lin-
ear mapping. We exhibit a certain (incomplete) duality between the operations of precomposition and
marginalization. Our results lead easily to Thibault’s proof of the maximal monotonicity of the subdif-
ferential of a proper, convex lower semicontinuous function on a Banach space. We show that some of
the Hiriart-Urruty—Phelps results on ε–subdifferentials have analogs in terms of the “ε–enlargement” of
the subdifferential. We obtain new results on the conjugates and subdifferentials of sums of convex func-
tions without constraint qualifications and also of episums of convex functions. We discuss constrained
minimization on non–closed convex subsets of a Banach space.

1. Introduction

This paper is inspired by the paper [5] by Hiriart-Urruty and Phelps, in which a set of
calculus rules is presented for the subdifferentials of convex functions on locally convex
spaces. Before discussing in detail the results that we are going to present, we will say a
little about the order of presentation, since it is rather unusual for this kind of analysis. We
consider the marginal function of a convex function through a continuous linear map, and
the precomposition of a convex function by a continuous linear map, before considering
the sums and episums of convex functions. Typically, authors consider sums and episums
first and deduce results on the precompositions and marginal functions. The advantage
of our order of presentation is that it leads to simpler proofs of results on the sums or
episums of more than two functions. There are also more technical advantages, that are
discussed in the preambles to Theorems 5.1 and 7.1.

Much of our analysis is for locally convex spaces (we assume that the vector spaces are
over the real numbers, as is usual in convex analysis, and that all locally convex spaces
are Hausdorff). We mention here the paper [4] by Hiriart-Urruty, Moussaoui, Seeger
and Volle, which contains a number of other results on subdifferentials and approximate
subdifferentials in the locally convex situation. The deeper results in this paper are in the
Banach space context, where we use the Brøndsted–Rockafellar theorem for appropriately
chosen renormings to derive characterizations of various subdifferentials. This is also a
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good place to mention the paper [18] by Thibault, in which the Brøndsted–Rockafellar
theorem is used to derive from the results of [5] limiting calculus rules for the exact
subdifferential.

In Section 2 of the paper, we discuss the formulas for the conjugates of the two common
ways of operating on a convex function by a continuous linear mapping A from E to F :
for a convex function h on F we have the precomposition h ◦A defined on E, while for a
convex function f on E we have the marginal function f/A of f through A, defined on F
by

f/A(y) := inf{f(x) : x ∈ A−1y}.
The first of these results, Lemma 2.4, is well known. We have not seen the second of them,
Theorem 2.7, in the literature — the formula here is more indirect, and proceeds through
the epigraphs of the functions concerned. We have organized our presentation in order to
exhibit a certain duality between the operations of precomposition and marginalization.
As Example 2.6 and Conjecture 6.3 show, this duality is not complete.

In Section 3, we discuss the subdifferential of h◦A under various conditions. Theorem 3.3
gives a characterization of this subdifferential in terms of a net from the subdifferential
of h, in the case when F is a Banach space and h is lower semicontinuous on F . We
also sketch in Remark 3.4 a short proof by Thibault that shows how (16), the formally
weakest condition in Theorem 3.3, implies that the subdifferential of a proper, convex
lower semicontinuous function on a Banach space is maximal monotone.

Section 4 is also related to monotonicity. We define the ε–enlargement of a multifunction
and show in Theorem 4.2 that if F is a Banach space and h is proper, convex and lower
semicontinuous then the characterization of the subdifferential of h ◦ A due to Hiriart-
Urruty and Phelps in terms of the ε–subdifferential of h (see Theorem 3.1) has an analog
in terms of the ε–enlargement of the subdifferential of h. The proof of this result is not
easy, relying as it does on the approximation result proved in Theorem 3.3, and also on
the maximal monotonicity of the subdifferential of a proper, convex lower semicontinuous
function on a Banach space that we mentioned above.

In Section 5, the first of two bootstrapping sections, we obtain results on the conjugates
and subdifferentials of sums of convex functions without constraint qualifications. Some of
these extend results from [5], as well as more recent results of Thibault, [18], and Revalski
and Théra, [10].

Section 6 is “dualÔ to Section 3, and contains results on the subdifferentials of marginal
functions. The main result here is Theorem 6.2, in which we characterize the subdifferen-
tial of f/A in terms of a net from the subdifferential of f , in the case when E is a Banach
space and f is lower semicontinuous on E.

Section 7 is the second bootstrapping section. The main result here is Theorem 7.1,
in which we obtain results on the conjugates and subdifferentials of episums of convex
functions.

In the final Section 8, we use Corollary 5.2 to obtain necessary and sufficient conditions for
a proper, convex, lower semicontinuous function on a Banach space to attain a minimum
at a certain point of a non–closed convex subset.

The authors would like to express their gratitude to M. Théra and L. Thibault for sending
them preprints of some of their recent work, including [10] and [18]. Most of the work in
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this paper was done while the second–named author was visiting the University of Western
Australia in Perth, and he would like to thank the University of Western Australia for its
hospitality.

2. Conjugate functions in locally convex spaces

Let E be a nontrivial locally convex space and PC(E) stand for the set of all convex
functions f : E 7→ IR ∪ {∞} such that dom f 6= ∅, where the effective domain of f ,
dom f , is defined by

dom f := {x ∈ E : f(x) ∈ IR}.
(The “PÔ stands for “properÔ, which is the adjective frequently used to denote the fact
that the effective domain of a function is nonempty.) We write E∗ for the dual space of
E. If f ∈ PC(E), the Fenchel conjugate, f ∗, of f is the function from E∗ into IR ∪ {∞}
defined by

f ∗(x∗) := sup
E

(x∗ − f).

We write PCPC(E) for the set of all those f ∈ PC(E) such that dom f ∗ 6= ∅. (The extra
“PCÔ stands for “proper conjugateÔ.) If f ∈ PC(E), we write “epi fÔ and “stepi fÔ for
the epigraph and strict epigraph of f , defined by

epi f := {(x, λ) ∈ E × IR: f(x) ≤ λ} and stepi f := {(x, λ) ∈ E × IR: f(x) < λ}.

The main result in this section is Theorem 2.7, in which we give an (indirect) formula for
the conjugate of the precomposition of a convex function by a linear map.

Lemma 2.1. Let F be a vector space, S : F 7→ IR be sublinear, ϕ ∈ PC(F ) and x0 ∈ F .
Then there exists a linear functional L on F such that L ≤ S on F and

inf
x∈F

[L(x− x0) + ϕ(x)] = inf
x∈F

[S(x− x0) + ϕ(x)].

Proof. This follows from the sandwich theorem (see König, [6, Theorem 1.7, p. 112])
and a translation argument, or from the more general result of [15, Theorem 5.3].

Theorem 2.2 is a basic equivalence.

Theorem 2.2. Let F be a locally convex space, ϕ ∈ PCPC(F ), and (x0, α) ∈ F × IR.
Then (1) ⇐⇒ (2).

For all u∗ ∈ F ∗ and ε > 0, there exists x ∈ F such that
〈x0 − x, u∗〉+ ϕ(x) < α+ ε.

}

(1)

(x0, α) ∈ stepiϕ. (2)

(The overbar in (2) stands for the closure in the product topology of F × IR.)

Proof. (=⇒) Suppose that (2) is false. Then there exist a continuous seminorm p on F
and ε > 0 such that

p(x− x0) < 1 and |λ− α| < ε =⇒ ϕ(x) ≥ λ,
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from which it follows that

p(x− x0) < 1 =⇒ ϕ(x) ≥ α+ ε. (3)

Since ϕ ∈ PCPC(F ), there exists w∗ ∈ F ∗ such that ϕ∗(w∗) ∈ IR. Let

β := (α+ ε+ ϕ∗(w∗)− 〈x0, w
∗〉) ∨ 0 and q := βp+ |w∗|.

q is a continuous seminorm on F . We shall prove that

x ∈ F =⇒ q(x− x0) + ϕ(x) ≥ α+ ε. (4)

Since q ≥ 0 on F , (4) is immediate from (3) if p(x− x0) < 1, so we can and will suppose
that p(x− x0) ≥ 1. Then

q(x− x0) + ϕ(x) ≥ βp(x− x0)− 〈x− x0, w
∗〉+ ϕ(x)

≥ β − 〈x− x0, w
∗〉+ ϕ(x)

≥ α+ ε+ ϕ∗(w∗)− 〈x0, w
∗〉 − 〈x− x0, w

∗〉+ ϕ(x)

= α+ ε+ ϕ∗(w∗)− 〈x,w∗〉+ ϕ(x),

which gives (4). It follows from (4) and Lemma 2.1 that there exists u∗ ∈ F ∗ such that

x ∈ F =⇒ 〈x0 − x, u∗〉+ ϕ(x) ≥ α+ ε.

Thus (1) fails, which completes the proof of (=⇒).

(⇐=) Let u∗ ∈ F ∗ and ε > 0. Since {x ∈ F : |〈x− x0, u
∗〉| < ε/2} is a neighborhood of

x0 in F , it follows from (2) that there exists (x, λ) ∈ stepiϕ such that |〈x−x0, u
∗〉| < ε/2

and |λ− α| < ε/2. Thus 〈x0 − x, u∗〉+ ϕ(x)− α < 〈x0 − x, u∗〉+ λ− α < ε/2 + ε/2 = ε,
and (1) now follows.

We will actually use the following special case of Theorem 2.2. Significant choices for C
are the weak∗ topology, w(E∗, E) and the Mackey topology, m(E∗, E). If E is a reflexive
Banach space then we can take C to be the norm topology of E∗.

Corollary 2.3. Let E be a locally convex space with dual E∗. Let C be any locally
convex topology on E∗ giving E as dual. Let ϕ ∈ PCPC(E∗, C) and (x∗

0, α) ∈ E∗ × IR.
Then (5) ⇐⇒ (6).

For all u ∈ E and ε > 0, there exists x∗ ∈ E∗ such that
〈u, x∗

0 − x∗〉+ ϕ(x∗) < α+ ε.

}

(5)

(x∗
0, α) ∈ stepiϕ. (6)

(The overbar in (6) stands for the closure in the product topology of (E∗, C)× IR.)

If A : E 7→ F and f : E 7→ [−∞,∞] then, for all y ∈ F , we write

f/A(y) := inf f(A−1y),

with the convention that f/A(y) := ∞ if A−1y = ∅. The function f/A is the “marginal
function of f through AÔ – sometimes known as the “image of f under AÔ or “Shur
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complement of f relative to AÔ. We now give the formula for the conjugate of a marginal
function under the appropriate topological and convexity assumptions. Lemma 2.4 below
is a slightly more detailed form of Aubin and Ekeland, [1, Proposition 4.4.10(a), p. 206].
We have chosen to write f/A instead of Af or fA, which are notations used by some
authors, since it fits in quite naturally with the definition, and also with (8).

Lemma 2.4. Let E and F be locally convex spaces, A : E 7→ F be continuous and
linear, f ∈ PC(E) and f ∗ ◦A∗ ∈ PC(F ∗). Then f/A ∈ PCPC(F ) and (f/A)∗ = f ∗ ◦A∗.

Proof. We first observe that if y ∈ F , x ∈ A−1y and y∗ ∈ dom f ∗ ◦ A∗ then

f(x) ≥ 〈x,A∗y∗〉 − f ∗(A∗y∗) = 〈y, y∗〉 − (f ∗ ◦ A∗)(y∗). (7)

Taking the infimum over x, f/A(y) ≥ 〈y, y∗〉 − (f ∗ ◦ A∗)(y∗) > −∞. Thus f/A maps F
into IR ∪ {∞}. It can be verified by direct computation that f/A is convex on F . It is
also clear that

x ∈ E =⇒ f(x) ≥ (f/A)(Ax), (8)

from which it follows that f/A ∈ PC(F ). Finally, if y∗ ∈ F ∗ then

(f/A)∗(y∗) = sup
y∈F

[〈y, y∗〉 − f/A(y)] = sup
y∈F

sup
x∈A−1y

[〈y, y∗〉 − f(x)]

= sup
y∈F

sup
x∈A−1y

[〈x,A∗y∗〉 − f(x)] = sup
x∈E

[〈x,A∗y∗〉 − f(x)] = f ∗(A∗y∗).

So (f/A)∗ = f ∗ ◦ A∗ ∈ PC(F ∗), and consequently f/A ∈ PCPC(F ).

It is tempting to hope, by “dualityÔ, that under certain conditions we could strengthen
Lemma 2.5 below and prove that h∗/A∗ = (h ◦ A)∗; however, Example 2.6 shows that,
even in the simplest of situations, this hope is unjustified.

Lemma 2.5. Let E and F be locally convex spaces, A : E 7→ F be continuous and
linear, h ∈ PCPC(F ) and h ◦ A ∈ PC(E). Then

h∗/A∗ ∈ PCPC(E∗, w(E∗, E)) and h∗/A∗ ≥ (h ◦ A)∗ on E∗.

Proof. We give two proofs of this result. The first uses Lemma 2.4, however it contains a
number of technical computations using biconjugates. The second, slightly longer, proof
is independent of Lemma 2.4, and avoids these computations.

For the first proof, we observe by direct computation that

(h∗)∗ ◦ (A∗)∗ ≤ h ◦ A on (E∗)∗ = E. (9)

Since this implies that (h∗)∗◦(A∗)∗ ∈ PC((E∗)∗), we can apply Lemma 2.4 with E replaced
by (F ∗, w(F ∗, F )), F replaced by (E∗, w(E∗, E)), A by A∗ and f by h∗ ∈ PC(F ∗). Thus
h∗/A∗ ∈ PCPC(E∗) (as required) and (h∗/A∗)∗ = (h∗)∗ ◦ (A∗)∗ on (E∗)∗ = E. We see
from (9) that (h∗/A∗)∗ ≤ h ◦ A on E, thus h∗/A∗ ≥ ((h∗/A∗)∗)∗ ≥ (h ◦ A)∗ on E∗. This
completes the first proof of the Lemma.

For the second proof, we start off by observing that if x∗ ∈ E∗, y∗ ∈ (A∗)−1x∗ and
x ∈ domh ◦ A then

h∗(y∗) ≥ 〈Ax, y∗〉 − h(Ax) = 〈x, x∗〉 − (h ◦ A)(x). (10)
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Taking the infimum over y∗, h∗/A∗(x∗) ≥ 〈x, x∗〉−(h◦A)(x) > −∞. Thus h∗/A∗ maps E∗

into IR ∪ {∞}. It can be verified by direct computation that h∗/A∗ is convex on E∗, and
it is also clear that y∗ ∈ F ∗ =⇒ h∗(y∗) ≥ (h∗/A∗)(A∗y∗), from which it follows that
h∗/A∗ ∈ PC(E∗). Returning to (10) and taking the supremum over x ∈ domh ◦A before
taking the infimum over y∗, we obtain h∗/A∗(x∗) ≥ (h ◦ A)∗(x∗). Thus h∗/A∗ ≥ (h ◦ A)∗
on E∗, as required. Finally, taking x ∈ domh ◦ A and writing x̂ for the canonical image
of x in (E∗)∗,

(h∗/A∗)∗(x̂) = sup
x∗∈E∗

[〈x∗, x̂〉 − (h∗/A∗)(x∗)]

≤ sup
x∗∈E∗

[〈x, x∗〉 − (h ◦ A)∗(x∗)] ≤ (h ◦ A)(x) < ∞,

and consequently h∗/A∗ ∈ PCPC(E∗).

We write PCLSC(F ) for the set of all those elements h of PC(F ) that are lower semicon-
tinuous.

Example 2.6. Let E = IR, F = IR2 and A : E 7→ F be defined by Aλ := (0, λ). Write C
for the epigraph of the exponential function, and h for the support functional of C. Then
h ∈ PCLSC(F ), and h∗ ∈ PCLSC(F ∗) is the indicator function of C. However h∗/A∗ is
the indicator function of (0,∞) and is, therefore, not lower semicontinuous. Consequently,
since (h ◦ A)∗ is lower semicontinuous, we cannot have h∗/A∗ = (h ◦ A)∗.

We now strengthen the assumptions of Lemma 2.5 by assuming that h ∈ PCLSC(F ).
Theorem 2.7 shows that, even though it is not generally true that h∗/A∗ = (h ◦A)∗, they
are “closeÔ (if we measure them by their epigraphs). Before starting on Theorem 2.7,
we will make some general comments about PCLSC(F ). The Fenchel–Moreau formula
asserts that if h ∈ PCLSC(F ) then

y ∈ F =⇒ h(y) = sup
y∗∈F ∗

[〈y, y∗〉 − h∗(y∗)].

It follows from this that PCLSC(F ) ⊂ PCPC(F ).

Theorem 2.7. Let E and F be locally convex spaces, A : E 7→ F be continuous and
linear, h ∈ PCLSC(F ) and h ◦ A ∈ PC(E). Let C be any locally convex topology on E∗

giving E as dual. Then

epi(h ◦ A)∗ = epih∗/A∗ = stepih∗/A∗.

(The overbar above stands for the closure in the product topology of (E∗, C)× IR.)

Proof. It is obvious from Lemma 2.5 that epi(h ◦ A)∗ ⊃ epih∗/A∗. Since epi(h ◦ A)∗

is closed in E∗ × IR, it follows that epi(h ◦ A)∗ ⊃ epih∗/A∗. We also have epih∗/A∗ ⊃
stepih∗/A∗, so it only remains to prove that

epi(h ◦ A)∗ ⊂ stepih∗/A∗. (11)

So suppose that (x∗
0, α) ∈ epi(h ◦ A)∗, that is to say, (h ◦ A)∗(x∗

0) ≤ α. Let u ∈ E and
ε > 0. Then

〈u, x∗
0〉 − h(Au) = 〈u, x∗

0〉 − (h ◦ A)(u) < α+ ε.
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Since h ∈ PCLSC(F ), the Fenchel–Moreau formula gives that

there exists y∗ ∈ F ∗ such that 〈u, x∗
0〉 − [〈Au, y∗〉 − h∗(y∗)] < α+ ε,

that is to say

there exists y∗ ∈ F ∗ such that 〈u, x∗
0 − A∗y∗〉+ h∗(y∗) < α+ ε.

Combining with (8),

there exists y∗ ∈ F ∗ such that 〈u, x∗
0 − A∗y∗〉+ (h∗/A∗)(A∗y∗) < α+ ε.

We note from Lemma 2.5 that h∗/A∗ ∈ PCPC(E∗, w(E∗, E)), which implies that h∗/A∗ ∈
PCPC(E∗, C). We now derive from Corollary 2.3, with ϕ := h∗/A∗ and x∗ := A∗y∗, that

(x∗
0, α) ∈ stepih∗/A∗.

This gives (11), and completes the proof of Theorem 2.7.

Remark 2.8. It follows from Theorem 2.7 that if E is a locally convex space, for all
k = 1, . . . , K, hk ∈ PCLSC(E) and

⋂K
k=1 domhk 6= ∅ then

epi(h1 + · · ·+ hK)
∗ = epih∗

1 + · · ·+ epih∗
K .

We do not give details of this here, since we will be proving a more general result in
Theorem 5.1(a).

Remark 2.9. A couple of issues are raised by Theorem 2.2 and Corollary 2.3. The first
is the method of proof of Theorem 2.2. The Eidelheit separation theorem could also be
used instead of Lemma 2.1. However, one then has to contend with the problem of the
“vertical hyperplaneÔ. The other is the requirement that ϕ ∈ PCPC(E∗) in Corollary
2.3. If we define

ϕ∗∗(x∗) := sup
x∈E

[

〈x, x∗〉 − ϕ∗(x)
]

(x∗ ∈ E∗)

then it follows from Corollary 2.3 that if α ∈ IR and ε > 0 then

x∗
0 ∈ E∗ and ϕ∗∗(x∗

0) ≤ α =⇒ x∗
0 ∈ {x∗ ∈ E∗ : ϕ(x∗) < α+ ε}. (12)

We leave details of this to the reader. However, (12) fails if we assume merely that
ϕ ∈ PC(E∗). Suppose that there is a discontinuous linear functional g on E∗. Let f be the
indicator function of a closed half–space C of E∗, and ϕ := f+g. Now f ∗ : E 7→ IR∪{∞},
and g∗ is identically +∞ on E. Further, f and g satisfy the Moreau–Rockafellar constraint
qualification, so ϕ∗ = f ∗+

e
g∗, and consequently ϕ∗ = +∞ on E. It follows that ϕ∗∗ = −∞

on E∗, from which
{x∗ ∈ E∗ : ϕ∗∗(x∗) ≤ 0} = E∗.

On the other hand,

{x∗ ∈ E∗ : ϕ(x∗) ≤ 1} ⊂ {x∗ ∈ E∗ : f(x∗) = 0} = C.

We mention this because the discussion preceding (2.1) of [5] seems to imply that (12)
holds when we only assume that ϕ ∈ PC(E∗). In reality, this does not cause any problem
in [5] since ϕ ∈ PCPC(E∗) when (2.1) is used there.
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3. Subdifferentials of precompositions

If f ∈ PC(E) and x ∈ E, the subdifferential of f at x is the subset of E∗ defined by

∂f(x) := {z∗ ∈ E∗ : y ∈ E =⇒ f(x) + 〈y − x, z∗〉 ≤ f(y)}.

If, further, ε > 0, the ε–subdifferential of f at x is the larger subset of E∗ defined by

∂εf(x) := {z∗ ∈ E∗ : y ∈ E =⇒ f(x) + 〈y − x, z∗〉 ≤ f(y) + ε}.

It is then easy to see that

x∗ ∈ ∂f(x) ⇐⇒ f(x) + f ∗(x∗) ≤ 〈x, x∗〉

and
x∗ ∈ ∂εf(x) ⇐⇒ f(x) + f ∗(x∗) ≤ 〈x, x∗〉+ ε.

We now show how the results of the previous section on conjugate functions lead to results
on subdifferentials and ε-subdifferentials. Theorem 3.1 was proved by Hiriart–Urruty and
Phelps in [5, Theorem 3.1, p. 161–163], using results on the sums of functions (see also
Hiriart-Urruty, Moussaoui, Seeger and Volle, [4, Corollary 7.1, p. 1742]) . We shall reverse
the procedure and deduce (in Theorem 5.1) more general results on sums from Theorem
3.1. This leads to much easier proofs in the case where more than two functions are being
added. Our approach using precompositions also allows us to give a fairly simple proof
of Theorem 3.3, in which E is not required to be a Banach space.

Theorem 3.1. Let E and F be locally convex spaces, A : E 7→ F be continuous and
linear, h ∈ PCLSC(F ), h ◦A ∈ PC(E) and x ∈ E. Let C be any locally convex topology
on E∗ giving E as dual. Then

∂(h ◦ A)(x) =
⋂

ε>0

A∗∂εh(Ax).

(The overbar above stands for the closure in (E∗, C). Of course, since A∗∂εh(Ax) is convex,
this is identical with the closure in (E∗, w(E∗, E)).)

Proof. The inclusion “⊃Ô is immediate since, for all ε > 0, ∂ε(h ◦ A)(x) is closed in C,
and so A∗∂εh(Ax) ⊂ ∂ε(h ◦ A)(x). We now prove “⊂Ô. Suppose that x∗ ∈ ∂(h ◦ A)(x).
Let U be a C–neighborhood of x∗ in E∗ and ε > 0. Then

(x∗, 〈x, x∗〉 − h(Ax)) = (x∗, 〈x, x∗〉 − (h ◦ A)(x)) = (x∗, (h ◦ A)∗(x∗)) ∈ epi(h ◦ A)∗.

Thus from Theorem 2.7, for all ε > 0, there exists (u∗, λ) ∈ epih∗/A∗ such that

u∗ ∈ U, |〈x, u∗ − x∗〉| < ε/2 and |λ− [〈x, x∗〉 − h(Ax)]| < ε/2,

from which
u∗ ∈ U and h∗/A∗(u∗) < 〈x, u∗〉 − h(Ax) + ε.

It follows from the definition of h∗/A∗ that there exists y∗ ∈ F ∗ such that A∗y∗ = u∗ ∈ U
and h∗(y∗) < 〈x, u∗〉 − h(Ax) + ε = 〈Ax, y∗〉 − h(Ax) + ε, from which y∗ ∈ ∂εh(Ax).
Thus x∗ ∈ A∗∂εh(Ax). Since this holds for all ε > 0, this completes the proof of the
Theorem.
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We now turn our attention to the situation when F is a Banach space. We will need the
Brøndsted–Rockafellar theorem, which we state as Theorem 3.2 below (see [2, p. 608] or
Phelps, [9, Theorem 3.17, p. 48]):

Theorem 3.2. Let F be a Banach space, h ∈ PCLSC(F ), α, β > 0, u ∈ F and u∗ ∈
∂αβh(u). Then there exists (z, z∗) ∈ G(∂h) such that ‖z − u‖ ≤ α and ‖z∗ − u∗‖ ≤ β.

If x ∈ E and ∅ 6= Y ⊂ E, dist(x, Y ) stands for the distance from x to Y , that is to say,
dist(x, Y ) := infy∈Y ‖x − y‖. Further, G(∂h) stands for the graph of the multifunction
∂h, that is to say, G(∂h) := {(z, z∗) ∈ F × F ∗ : z∗ ∈ ∂h(z)}.

Theorem 3.3. Let E be a locally convex space, F be a Banach space, A : E 7→ F be
continuous and linear, h ∈ PCLSC(F ), h ◦ A ∈ PC(E) and (x, x∗) ∈ E × E∗. Let C be
any locally convex topology on E∗ giving E as dual. Then the conditions (13)–(16) are
equivalent:

x∗ ∈ ∂(h ◦ A)(x). (13)

There exists a net (zγ, z
∗
γ) of elements of G(∂h) such that ‖zγ − Ax‖ → 0,

A∗z∗γ → x∗ in C, 〈zγ − Ax, z∗γ〉 → 0 and dist(zγ, A(E))‖z∗γ‖ → 0.

}

(14)

There exists a net (zγ, z
∗
γ) of elements of G(∂h) such that ‖zγ − Ax‖ → 0,

A∗z∗γ → x∗ in C, 〈zγ, z∗γ〉 → 〈x, x∗〉 and dist(zγ, A(E))‖z∗γ‖ → 0.

}

(15)

There exists a net (zγ, z
∗
γ) of elements of G(∂h) such that ‖zγ − Ax‖ → 0,

A∗z∗γ → x∗ in C and 〈zγ, z∗γ〉 → 〈x, x∗〉.

}

(16)

Proof. ((14)=⇒(15)) This follows from the equality

〈zγ, z∗γ〉 = 〈zγ − Ax, z∗γ〉+ 〈x,A∗z∗γ〉.

((15)=⇒(16)) This is immediate.

((16)=⇒(13)) Let (zγ, z
∗
γ) be as in the statement of (16). Let v be an arbitrary element

of E. Then Av ∈ F hence, for all γ, since (zγ, z
∗
γ) ∈ G(∂h),

h(zγ) + 〈v, A∗z∗γ〉 − 〈zγ, z∗γ〉 = h(zγ) + 〈Av − zγ, z
∗
γ〉 ≤ h(Av).

Passing to the limit and using the lower semicontinuity of h,

h(Ax) + 〈v, x∗〉 − 〈x, x∗〉 ≤ h(Av),

that is to say,
(h ◦ A)(x) + 〈v − x, x∗〉 ≤ (h ◦ A)(v),

Thus (x, x∗) ∈ G(∂(h ◦ A)). This completes the proof of (13).

((13)=⇒(14)) Let ε > 0, and q be any C–continuous seminorm on E∗. We will first find
(z, z∗) ∈ G(∂h) such that

‖z − Ax‖ < ε, |〈z − Ax, z∗〉| < ε, (17)
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q(A∗z∗ − x∗) < 1, (18)

and
dist(z, A(E))‖z∗‖ < ε. (19)

Let V := {v ∈ E : v ≤ q on E∗}. If y∗ is a fixed element of F ∗, then

sup
v∈V

|〈Av, y∗〉| = sup
v∈V

|〈v, A∗y∗〉| ≤ q(A∗y∗) < ∞

hence, from the uniform boundedness theorem, A(V ) is bounded in F . Let

M := sup
v∈V

‖Av‖ < ∞.

Choose α, β > 0 so that 2α(β + 1) < ε and (2M + 2q(x∗) + 1)β < 1. From Theorem 3.1,
there exists u∗ ∈ ∂αβh(Ax) such that q(A∗u∗−x∗) < 1/2. Define an equivalent norm ‖| ‖|
on F (which depends on ε and q) by

‖|y‖| := ‖y‖+ |〈y, u∗〉|+ (1 + ‖u∗‖)dist(y, A(E)) (y ∈ F ),

and write ‖| ‖| for the corresponding dual norm on F ∗ also. Since ‖|y‖| ≥ |〈y, u∗〉|, it follows
that ‖|u∗‖| ≤ 1. From the Brøndsted–Rockafellar theorem, there exists (z, z∗) ∈ G(∂h)
such that ‖|z − Ax‖| ≤ α and ‖|z∗ − u∗‖| ≤ β, from which ‖|z∗‖| ≤ ‖|z∗ − u∗‖|+ ‖|u∗‖| ≤
β + 1. We will now show that (z, z∗) has the required properties. (17) follows since
‖z − Ax‖ ≤ ‖|z − Ax‖| ≤ α < ε and

|〈z − Ax, z∗〉| ≤ |〈z − Ax, z∗ − u∗〉|+ |〈z − Ax, u∗〉|
≤ ‖|z − Ax‖|‖|z∗ − u∗‖|+ ‖|z − Ax‖|
≤ αβ + α < ε.

The proof of (18) is a little more complicated. From the one–dimensional Hahn–Banach
theorem, there exists v ∈ V such that 〈v, A∗z∗ − A∗u∗〉 = q(A∗z∗ − A∗u∗). Then, using
the fact that q(A∗u∗ − x∗) < 1/2,

‖|Av‖| = ‖Av‖+ |〈Av, u∗〉|+ 0 = ‖Av‖+ |〈v, A∗u∗〉|
≤ ‖Av‖+ q(A∗u∗) < ‖Av‖+ q(x∗) + 1/2 ≤ M + q(x∗) + 1/2.

Consequently,

q(A∗z∗ − A∗u∗) = |〈v, A∗z∗ − A∗u∗〉| = |〈Av, z∗ − u∗〉|
≤ ‖|Av‖|β < (M + q(x∗) + 1/2)β < 1/2.

(18) now follows since q(A∗z∗ − x∗) ≤ q(A∗z∗ − A∗u∗) + q(A∗u∗ − x∗) < 1/2 + 1/2 = 1.
We now establish (19). For all y ∈ F , ‖|y‖| ≤ 2(1 + ‖u∗‖)‖y‖, hence

‖z∗‖ ≤ 2(1 + ‖u∗‖)‖|z∗‖| ≤ 2(1 + ‖u∗‖)(β + 1).

Thus, since dist(z, A(E)) = dist(z − Ax,A(E)),

dist(z, A(E))‖z∗‖ ≤ dist(z − Ax,A(E))2(1 + ‖u∗‖)(β + 1)

= 2(1 + ‖u∗‖)dist(z − Ax,A(E))(β + 1),

≤ 2‖|z − Ax‖|(β + 1) ≤ 2α(β + 1) < ε

(using the definition of ‖|z−Ax‖|), which gives (19). Using (17)–(19), it is easy to find a
net (zγ, z

∗
γ) of elements of G(∂h) satisfying the conditions of (14).
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Remark 3.4. We now give an argument due to Thibault (see [18, Proposition 4]) which
shows how condition (16) implies that if F is a Banach space, h ∈ PCLSC(F ) and

(z, z∗) ∈ G(∂h) =⇒ 〈z, z∗〉 ≥ 0 (20)

then
y ∈ domh =⇒ h(y) ≥ h(0).

It follows easily by translation arguments that if f ∈ PCLSC(F ) then ∂f is maximal
monotone — see [11] for Rockafellar’s original proof of this, and [12], [13] and [14] for
more general results. (Maximal monotonicity is defined in the introduction to Section 4
below). So let y ∈ domh. Define A : IR 7→ F by Aλ := λy. By semicontinuity, the
function λ 7→ (h ◦ A)(λ) + λ2/2 attains its minimum over IR at some x ∈ IR, from which
it follows easily that −x ∈ ∂(h ◦ A)(x). From (16), there exists a net (zγ, z

∗
γ) of elements

of G(∂h) such that
‖zγ − Ax‖ → 0, A∗z∗γ → −x in IR (21)

and
〈zγ, z∗γ〉 → 〈x,−x〉 = −x2. (22)

(20) and (22) give x = 0, hence (21) gives ‖zγ‖ → 0 and A∗z∗γ → 0. Now, for all γ,

h(y) ≥ h(zγ) + 〈y − zγ, z
∗
γ〉 = h(zγ) + 〈1, A∗z∗γ〉 − 〈zγ, z∗γ〉.

Passing to the limit and using the semicontinuity of h gives h(y) ≥ h(0), as required.

4. ε–enlargements of multifunctions and subdifferentials

Let E be a locally convex space and S : E 7→ 2E
∗
be a multifunction (i.e, a set–valued

map). We say that S is monotone if

(x, x∗) and (y, y∗) ∈ G(S) =⇒ 〈x− y, x∗ − y∗〉 ≥ 0,

where G(S) is the graph of S, that is to say, G(S) := {(x, x∗) : x ∈ E, x∗ ∈ Sx}. We say
that S is maximal monotone if S is monotone, and S has no proper monotone extension.
Now let S be monotone and ε > 0. The ε–enlargement Sε : E 7→ 2E

∗
is defined by the

following rule: if (v, v∗) ∈ E × E∗ then v∗ ∈ Sεv when

(x, x∗) ∈ G(S) =⇒ 〈x− v, x∗ − v∗〉 ≥ −ε.

It is clear from the definitions of monotonicity and maximal monotonicity that Sv ⊂ Sεv,
and that S is maximal monotone if, and only if, for all v ∈ E,

⋂

ε>0 S
εv ⊂ Sv. Several

authors have studied ε-enlargements: we refer the reader to Revalski and Théra [10],
Burachik and Svaiter [3] and Svaiter [16].

So if f ∈ PCLSC(E), we now have two extensions of ∂f , namely ∂εf and (∂f)ε. If
(v, v∗) ∈ G(∂εf) and (x, x∗) ∈ G(∂f) then v, x ∈ dom f and

〈x− v, x∗ − v∗〉 = [f(x)− f(v) + 〈v − x, v∗〉] + [f(v)− f(x) + 〈x− v, x∗〉] ≥ −ε+ 0.

Consequently, for all v ∈ E, ∂εf(v) ⊂ (∂f)ε(v). It was also shown in Martines–Legaz and
Théra, [7] that this inclusion can easily be strict: we can take E := IR, and f(x) := x2.
Then, for all (v, v∗) ∈ IR2,

inf
(x,x∗)∈G(∂f)

〈x− v, x∗ − v∗〉 = −(2v − v∗)2/8
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but
sup
x∈IR

[f(v)− f(x)− 〈v − x, v∗〉] = (2v − v∗)2/4.

Of course the difference between ∂εf and (∂f)ε is that the former is defined with refer-
ence to the values of f , while the latter is a much more general concept, defined with
reference only to the values of the multifunction ∂f . We will show in Theorem 4.2 that
the analog of Theorem 3.1 with ∂εf replaced by (∂f)ε is in fact true, and we will give
another example, in Remark 4.3, where ∂εf can almost be replaced by (∂f)ε, namely the
Brøndsted–Rockafellar theorem.

Lemma 4.1. Let E be a locally convex space, F be a Banach space, A : E 7→ F be
continuous and linear, h ∈ PCLSC(F ) and h ◦ A ∈ PC(E). Let ε > 0 and v ∈ E. Then

A∗(∂h)ε(Av) ⊂ ∂(h ◦ A)ε(v).

Proof. Let v∗ ∈ A∗(∂h)ε(Av). Then there exists w∗ ∈ (∂h)ε(Av) such that v∗ = A∗w∗.
Let (x, x∗) be an arbitrary element of G(∂(h◦A)). From (16), there exists a net (zγ, z

∗
γ) of

elements of G(∂h) such that ‖zγ−Ax‖ → 0, A∗z∗γ → x∗ in w(E∗, E) and 〈zγ, z∗γ〉 → 〈x, x∗〉.
Then, for all γ,

〈zγ, z∗γ〉 − 〈v, A∗z∗γ〉 − 〈zγ, w∗〉+ 〈Av,w∗〉 = 〈zγ − Av, z∗γ − w∗〉 ≥ −ε.

Passing to the limit,

〈x, x∗〉 − 〈v, x∗〉 − 〈Ax,w∗〉+ 〈Av,w∗〉 ≥ −ε,

hence
〈x− v, x∗ − A∗w∗〉 ≥ −ε,

that is to say,
〈x− v, x∗ − v∗〉 ≥ −ε.

Since this holds for all (x, x∗) ∈ G(∂(h ◦ A)), v∗ ∈ ∂(h ◦ A)ε(v), as required.

Theorem 4.2. Let E be a locally convex space, F be a Banach space, A : E 7→ F be
continuous and linear, h ∈ PCLSC(F ), h ◦ A ∈ PC(E) and x ∈ E. Let C be any locally
convex topology on E∗ giving E as dual. Then

∂(h ◦ A)(x) =
⋂

ε>0

A∗(∂h)ε(Ax).

(The overbar above stands for the closure in (E∗, C).)

Proof. The inclusion “⊂Ô is immediate from Theorem 3.1 since ∂εh(Ax) ⊂ (∂h)ε(Ax).
On the other hand, for all ε > 0, we have from Lemma 4.1 that A∗(∂h)ε(Ax) ⊂
∂(h ◦ A)ε(x). Since ∂(h ◦ A)ε(x) is C–closed, it follows that

A∗(∂h)ε(Ax) ⊂ ∂(h ◦ A)ε(x).
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Consequently,
⋂

ε>0

A∗(∂h)ε(Ax) ⊂
⋂

ε>0

∂(h ◦ A)ε(x).

Since ∂(h ◦ A) is maximal monotone (see Remark 3.4),

⋂

ε>0

∂(h ◦ A)ε(x) = ∂(h ◦ A)(x),

which completes the proof of the theorem.

Remark 4.3. If E is a Banach space, the following analog of the Brøndsted–Rockafellar
theorem holds for many (but not all) maximal monotone operators S: Let α, β > 0,
0 < ε < αβ and (v, v∗) ∈ G(Sε) \ G(S). Then there exists (x, x∗) ∈ G(S) such that
0 < ‖x−v‖ < α and 0 < ‖x∗−v∗‖ < β (in fact, we can also make ‖x−v‖/‖x∗−v∗‖ as near
as we please to α/β and 〈x− v, x∗ − v∗〉/(‖x−v‖‖x∗−v∗‖) as near as we please to -1). (See
[14, Theorem 8.6, p. 277-278].) The precise description of the class of maximal monotone
multifunctions S for which this is valid is too complicated to enter into here, but it is
certainly true if S = ∂f for some f ∈ PCLSC(E) (see [14, Theorem 12.6, p. 287]). Thus
∂εf can almost be replaced by (∂f)ε in the Brøndsted–Rockafellar theorem. Another class
of maximal monotone multifunction for which a similar “inequality–splittingÔ property is
true is the class of (possibly discontinuous) maximal monotone linear operators of dense
type (see [14, Theorem 11.2, p. 282]). It is not true for every continuous maximal
monotone linear operator (see [14, Example 11.5, p. 283-284]).

5. Bootstrapping to sums

We show in this section how the results of the previous sections can be bootstrapped to
incorporate the sums of functions. Since these results depend on the same substitution, we
will combine them together into one composite theorem, Theorem 5.1. Theorem 5.1 being
somewhat overburdened with symbols, we present in Corollary 5.2 a simplified version in
which all the spaces are identical, and all the maps Ak are taken to be the identity map.
Here are some comments on the individual results.

We have not seen Theorem 5.1(a) or Corollary 5.2(a) in the literature.

Theorem 5.1(b) or its consequence Corollary 5.2(b) imply the result proved by Hiriart–
Urruty and Phelps in [5, Theorem 2.1, p. 160–161], namely that if E is a locally convex
space, f, g ∈ PCLSC(E), dom f ∩ dom g 6= ∅ and x ∈ E, then

∂(f + g)(x) =
⋂

ε>0

∂εf(x) + ∂εg(x).

Two different proofs of this were given in Hiriart-Urruty, Moussaoui, Seeger and Volle, [4,
Theorem 3.1, p. 1732–1734].

Theorem 5.1(c) generalizes certain aspects of [18, Theorem 1]. (See Remark 5.3 for further
comments on this.) The strongest of the conditions that is implied by (23) is (24), in
which the final convergence relation has been “decoupledÔ. This is the only one of the
equivalent conditions that is specific to sums, and does not follow directly from the results
on precompositions.
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A new definition is necessary to understand the background for Theorem 5.1(d) and
Corollary 5.2(d). If S : E 7→ 2E

∗
and T : E 7→ 2E

∗
are monotone then the extended sum

S +
ext

T of S and T is defined by Revalski and Théra in [10] by

(S +
ext

T )(x) :=
⋂

ε>0

Sεx+ T εx.

The motivation for this definition is that if S and T are maximal monotone then so is
S +

ext
T under fairly weak assumptions. Theorem 5.1(d) or its consequence Corollary 5.2(d)

imply the result proved by Revalski and Théra in [10], namely that if E is a Banach space,
f, g ∈ PCLSC(E) and dom f ∩ dom g 6= ∅, then ∂(f + g) = ∂f +

ext
∂g.

As observed by Hiriart–Urruty and Phelps in [5], summing two lower semicontinuous con-
vex functions and precomposing a lower semicontinuous convex function by a continuous
affine (or linear) mapping are equivalent operations from the convex analysis viewpoint.
Theorem 5.1 shows that proving results on compositions first provides an easy way of
establishing results for sums of K(> 2) functions. It is also much easier to handle ana-
lytically the renorming of the single space F that we performed in Theorem 3.3 than the
renorming of the product space F1 × · · · × FK that we would have to perform in a direct
proof of Theorem 5.1(c).

Theorem 5.1. Let E,F1, . . . , FK be locally convex spaces, for all k = 1, . . . , K,
Ak : E 7→ Fk be continuous and linear, hk ∈ PCLSC(Fk) and

⋂K
k=1 domhk ◦ Ak 6= ∅.

Let C be any locally convex topology on E∗ giving E as dual. (The overbar in (a) stands
for the closure in (E∗, C)× IR. After that, it stands for the closure in (E∗, C).) Then:

(a) epi(h1 ◦ A1 + · · ·+ hK ◦ AK)
∗ = epih∗

1/A
∗
1 + · · ·+ epih∗

K/A
∗
K

= stepih∗
1/A

∗
1 + · · ·+ stepih∗

K/A
∗
K .

(b) For all x ∈ E,

∂(h1 ◦ A1 + · · ·+ hK ◦ AK)(x) =
⋂

ε>0

A∗
1∂εh1(A1x) + · · ·+ A∗

K∂εhK(AKx).

(c) Suppose, in addition, that F1, . . . , FK are Banach spaces and (x, x∗) ∈ E × E∗. Then
the conditions (23)–(25) are equivalent:

x∗ ∈ ∂(h1 ◦ A1 + · · ·+ hK ◦ AK)(x). (23)

For all k, there exists a net (zk,γ, z
∗
k,γ) of elements of G(∂hk) such that

‖zk,γ − Akx‖ → 0, A∗
1z

∗
1,γ + · · ·+ A∗

Kz
∗
K,γ → x∗ in C

and, for all k, 〈zk,γ − Akx, z
∗
k,γ〉 → 0.







(24)

For all k, there exists a net (zk,γ, z
∗
k,γ) of elements of G(∂hk) such that

‖zk,γ − Akx‖ → 0, A∗
1z

∗
1,γ + · · ·+ A∗

Kz
∗
K,γ → x∗ in C

and 〈z1,γ, z∗1,γ〉+ · · ·+ 〈zK,γ, z
∗
K,γ〉 → 〈x, x∗〉.







(25)

(d) Suppose still that F1, . . . , FK are Banach spaces, and x ∈ E. Then

∂(h1 ◦ A1 + · · ·+ hK ◦ AK)(x) =
⋂

ε>0

A∗
1(∂h1)ε(A1x) + · · ·+ A∗

K(∂hK)ε(AKx).
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Proof. Let F := F1 × · · · × FK , for all x ∈ E, A(x) := (A1x, . . . , AKx) ∈ F and,

for all (y1, . . . , yK) ∈ F, h(y1, . . . , yK) := h1(y1) + · · ·+ hK(yK) ∈ IR ∪ {∞}.

Then,

(y∗1, . . . , y
∗
K) ∈ F ∗

1 × · · · × F ∗
K =⇒ A∗(y∗1, . . . , y

∗
K) = A∗

1y
∗
1 + · · ·+ A∗

Ky
∗
K .

(a) We have

(x∗, λ) ∈ stepih∗/A∗

⇐⇒ there exists y∗ ∈ F ∗ such that A∗(y∗) = x∗ and h∗(y∗) < λ

⇐⇒ there exists (y∗1, . . . , y
∗
K) ∈ F ∗

1 × · · · × F ∗
K such that

A∗
1y

∗
1 + · · ·+ AKy

∗
K = x∗ and h∗

1(y
∗
1) + · · ·+ h∗

K(y
∗
K) < λ

⇐⇒ there exist (y∗1, . . . , y
∗
K) ∈ F ∗

1 × · · · × F ∗
K , (x∗

1, . . . , x
∗
K) ∈ (E∗)K and

(λ1, . . . , λK) ∈ IRK such that, for all k, A∗
ky

∗
k = x∗

k and h∗
k(y

∗
k) < λk,

x∗
1 + · · ·+ x∗

K = x∗ and λ1 + · · ·+ λK = λ

⇐⇒ (x∗, λ) ∈ stepih∗
1/A

∗
1 + · · ·+ stepih∗

K/A
∗
K .

Assertion (a) now follows easily from Theorem 2.7.

(b) This follows from Theorem 3.1 since, as the reader can easily verify,

∂εh(Ax) ⊂ ∂εh1(A1x)× · · · × ∂εhK(AKx) ⊂ ∂Kεh(Ax).

(c) It is immediate from Theorem 3.3 that (23) and (25) are equivalent to each other and
to:

For all k, there exists a net (zk,γ, z
∗
k,γ) of elements of G(∂hk) such that

‖zk,γ − Akx‖ → 0, A∗
1z

∗
1,γ + · · ·+ A∗

Kz
∗
K,γ → x∗ in C

and 〈z1,γ − A1x, z
∗
1,γ〉+ · · ·+ 〈zK,γ − AKx, z

∗
K,γ〉 → 0.







(26)

Since (24)=⇒(26), it only remains to prove that (26)=⇒(24). Now if (26) is true then,
from (23), x ∈

⋂K
k=1 domhk ◦ Ak. For all k, since (zk,γ, z

∗
k,γ) ∈ G(∂hk),

〈zk,γ − Akx, z
∗
k,γ〉 ≥ hk(zk,γ)− hk(Akx).

Using the lower semicontinuity of hk and the fact that ‖zk,γ − Akx‖ → 0, we derive
that lim infγ〈zk,γ − Akx, z

∗
k,γ〉 ≥ 0. If we now combine this with the assumption in (26)

that 〈z1,γ − A1x, z
∗
1,γ〉 + · · · + 〈zK,γ − AKx, z

∗
K,γ〉 → 0, we obtain easily that, for all k,

〈zk,γ − Akx, z
∗
k,γ〉 → 0. Thus we have established (24).

(d) This follows from Theorem 4.2 and the fact that

(∂h)ε(Ax) ⊂ (∂h1)
ε(A1x)× · · · × (∂hK)

ε(AKx) ⊂ (∂h)Kε(Ax).

The second inclusion is immediate. We outline the proof of the first, which is a bit subtler.
If (v∗1, . . . , v

∗
K) ∈ (∂h)ε(Ax) then, for all (z1, z

∗
1) ∈ G(∂h1), . . . , (zK , z

∗
K) ∈ G(∂hK),

〈z1 − A1x, z
∗
1 − v∗1〉+ · · ·+ 〈zK − AKx, z

∗
K − v∗K〉 ≥ −ε.
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Consequently,

inf
(z1,z∗1 )∈G(∂h1)

〈z1 − A1x, z
∗
1 − v∗1〉+ · · ·+ inf

(zK ,z∗K)∈G(∂hK)
〈zK − AKx, z

∗
K − v∗K〉 ≥ −ε. (27)

If (Akx, v
∗
k) ∈ G(∂hk) then we can take (zk, z

∗
k) = (Akx, v

∗
k), while if (Akx, v

∗
k) 6∈ G(∂hk)

then, by the maximal monotonicity of ∂hk, there exists (zk, z
∗
k) ∈ G(∂hk) such that

〈zk − Akx, z
∗
k − v∗k〉 < 0 — so, in either case, inf(zk,z∗k)∈G(∂hk)〈zk − Akx, z

∗
k − v∗k〉 ≤ 0.

Combining this with (27), we obtain that,

for all k, inf
(zk,z

∗
k)∈G(∂hk)

〈zk − Akx, z
∗
k − v∗k〉 ≥ −ε,

that is to say v∗k ∈ (∂hk)
ε(Akx). Thus (v

∗
1, . . . , v

∗
K) ∈ (∂h1)

ε(A1x)×· · ·× (∂hK)
ε(AKx), as

required. (The argument used above is an application of the “negative infimumÔ property
of maximal monotone multifunctions. See [13, Lemma 8.1(c), p. 30].)

Corollary 5.2. Let E be a locally convex space, for all k = 1, . . . , K, hk ∈ PCLSC(E)
and

⋂K
k=1 domhk 6= ∅. Let C be any locally convex topology on E∗ giving E as dual. (The

overbar in (a) stands for the closure in (E∗, C)× IR. After that, it stands for the closure
in (E∗, C).) Then:

(a) epi(h1 + · · ·+ hK)
∗ = epih∗

1 + · · ·+ epih∗
K

= stepih∗
1 + · · ·+ stepih∗

K .

(b) For all x ∈ E,

∂(h1 + · · ·+ hK)(x) =
⋂

ε>0

∂εh1(x) + · · ·+ ∂εhK(x).

(c) Suppose, in addition, that E is a Banach space and (x, x∗) ∈ E × E∗. Then the
conditions (28)–(30) are equivalent:

x∗ ∈ ∂(h1 + · · ·+ hK)(x). (28)

For all k, there exists a net (zk,γ, z
∗
k,γ) of elements of G(∂hk) such that

‖zk,γ − x‖ → 0, z∗1,γ + · · ·+ z∗K,γ → x∗ in C
and, for all k, 〈zk,γ − x, z∗k,γ〉 → 0.







(29)

For all k, there exists a net (zk,γ, z
∗
k,γ) of elements of G(∂hk) such that

‖zk,γ − x‖ → 0, z∗1,γ + · · ·+ z∗K,γ → x∗ in C
and 〈z1,γ, z∗1,γ〉+ · · ·+ 〈zK,γ, z

∗
K,γ〉 → 〈x, x∗〉.







(30)

(d) Suppose still that E is a Banach space, and x ∈ E. Then

∂(h1 + · · ·+ hK)(x) =
⋂

ε>0

(∂h1)ε(x) + · · ·+ (∂hK)ε(x).
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Remark 5.3. The reader might have noticed that we have not translated the (optional)
condition “dist(zγ, A(E))‖z∗γ‖ → 0Ô of Theorem 3.3 into the situation of Theorem 5.1(c).
The reason for this is that it turns out to be extremely cumbersome in general. Consider
now the special case where E = F1 and that A1 is the identity map. If z = (z1, . . . , zn) ∈ F
then, for all x ∈ E and k = 2, . . . , K,

‖zk − Akz1‖ ≤ ‖zk − Akx‖+ ‖Ak‖‖z1 − x‖ ≤ (1 + ‖Ak‖)(‖zk − Akx‖ ∨ ‖z1 − x‖)
≤ (1 + ‖Ak‖)‖z − Ax‖∞.

Consequently, if the distance in F is measured in ‖ ‖∞,

‖zk − Akz1‖ ≤ (1 + ‖Ak‖)dist(z, A(E)).

Thus we can then add the following optional condition into (24) or (25):

for all k = 2, . . . , K, ‖zk,γ − Akz1,γ‖‖(z∗1,γ, . . . , z∗K,γ)‖1 → 0.

This corresponds to the condition that appears in [18, Theorem 1(i)]. Turning now to
the special situation of Corollary 5.2(c), it follows that we can always add the following
optional condition into (29) or (30):

for all j, k ∈ {1, . . . , K}, ‖zk,γ − zj,γ‖‖(z∗1,γ, . . . , z∗K,γ)‖1 → 0.

Remark 5.4. As we observed in the comments preceding Corollary 2.3, if E is a reflexive
Banach space then we can take C to be the norm topology of E∗ in Corollary 2.3, Theorem
2.7, Theorem 3.1, Theorem 3.3, Theorem 4.2, Theorem 5.1 and Corollary 5.2. Since this
topology is metrizable, it follows easily that the nets in Theorem 3.3, Theorem 5.1(c) and
Corollary 5.2(c) can be taken to be sequences.

6. Subdifferentials of marginal functions

We now return to the discussion of marginal functions that we considered briefly in Lem-
mas 2.4 and 2.5. The following result was proved by Hiriart–Urruty and Phelps in [5,
Theorem 4.1, p. 164–165]. It can be thought of as an analog of Theorem 3.1 for marginal
functions. It is worth pointing out that the argument of Example 2.6 shows that the func-
tion f/A that appears in Theorems 6.1 and 6.2 is not necessarily lower semicontinuous.

Theorem 6.1. Let E and F be locally convex spaces, A : E 7→ F be continuous and
linear, f ∈ PC(E), f ∗ ◦ A∗ ∈ PC(F ) and y ∈ F . Then

∂(f/A)(y) =
⋂

ε>0

(A∗)−1∂εf(A
−1y).

Proof. It follows from Lemma 2.4 and the definition of f/A that

y∗ ∈ ∂(f/A)(y) ⇐⇒ f/A(y) + (f/A)∗(y∗) ≤ 〈y, y∗〉
⇐⇒ for all ε > 0, f/A(y) + f ∗(A∗y∗) < 〈y, y∗〉+ ε

⇐⇒ for all ε > 0, there exists x ∈ A−1y such that

f(x) + f ∗(A∗y∗) < 〈y, y∗〉+ ε

⇐⇒ for all ε > 0, there exists x ∈ A−1y such that

f(x) + f ∗(A∗y∗) ≤ 〈x,A∗y∗〉+ ε

⇐⇒ for all ε > 0, there exists x ∈ A−1y such that A∗y∗ ∈ ∂εf(x).
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This is the required result.

We now turn our attention to the situation when E is a Banach space. Our next result
is an analog of Theorem 3.3 for marginal functions.

Theorem 6.2. Let E be a Banach space, F be a locally convex space, A : E 7→ F be
continuous and linear, f ∈ PCLSC(E), f ∗ ◦ A∗ ∈ PC(F ∗) and (y, y∗) ∈ F × F ∗. Then
the conditions (31)–(34) are equivalent:

y∗ ∈ ∂(f/A)(y). (31)

There exist nets (zγ, z
∗
γ) of elements of G(∂f) and xγ of elements of

dom f ∩ A−1y such that ‖z∗γ − A∗y∗‖ → 0, 〈zγ, z∗γ − A∗y∗〉 → 0,
f(xγ)− f(zγ) → 0 and Azγ → y in F.







(32)

There exist nets (zγ, z
∗
γ) of elements of G(∂f) and xγ of elements of

dom f ∩ A−1y such that ‖z∗γ − A∗y∗‖ → 0, 〈zγ, z∗γ〉 → 〈y, y∗〉,
f(xγ)− f(zγ) → 0 and Azγ → y in F.







(33)

There exists a net (zγ, z
∗
γ) of elements of G(∂f)

such that z∗γ → A∗y∗ in w(E∗, E),
〈zγ, z∗γ〉 → 〈y, y∗〉 and f/A(y) ≤ lim infγ f(zγ).







(34)

Proof. ((32)=⇒(33)) This follows from the equality

〈zγ, z∗γ〉 = 〈zγ, z∗γ − A∗y∗〉+ 〈Azγ, y∗〉.

((33)=⇒(34)) This follows from (8) since, for all γ, f/A(y) = f/A(Axγ) ≤ f(xγ), and so

f/A(y) ≤ lim inf
γ

f(xγ) = lim inf
γ

[

(f(xγ)− f(zγ)) + f(zγ)
]

= lim inf
γ

f(zγ).

((34)=⇒(31)) Let (zγ, z
∗
γ) be as in the statement of (34). It follows from Lemma 2.4 and

the w(E∗, E)–lower semicontinuity of f ∗ that

f/A(y) + (f/A)∗(y∗) ≤ lim inf
γ

f(zγ) + f ∗(A∗y∗) ≤ lim inf
γ

f(zγ) + lim inf
γ

f ∗(z∗γ)

≤ lim inf
γ

[f(zγ) + f ∗(z∗γ)] ≤ lim inf
γ

〈zγ, z∗γ〉 = 〈y, y∗〉.

Thus y∗ ∈ ∂(f/A)(y), and (31) is satisfied.

((31)=⇒(32)) Let ε > 0 and q be a continuous seminorm on F . We will first find (z, z∗) ∈
G(∂f) and x ∈ dom f ∩ A−1y such that

‖z∗ − A∗y∗‖ < ε, |〈z, z∗ − A∗y∗〉| < ε, (35)

q(Az − y) < 1, (36)

and
|f(x)− f(z)| < ε. (37)
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Since q ◦A is a continuous seminorm on E, supw∈E, ‖w‖≤1 q ◦A(w) < ∞. Write M for this
number, and choose α, β > 0 so that

αβ + β < ε, α(M ∨ q(y)) < 1 and αβ + α(‖A∗y∗‖ ∨ |〈y, y∗〉|) < ε.

From Theorem 6.1, there exists x ∈ A−1y such that A∗y∗ ∈ ∂αβf(x). Let B be the unit
ball of E, and define an equivalent norm ‖| ‖| on E (which depends on ε and q) by taking
the set co{B ∪ {x} ∪ {−x}} as unit ball, and write ‖| ‖| for the corresponding dual norm
on E∗ also. Then, for all w∗ ∈ E∗, ‖|w∗‖| = ‖w∗‖ ∨ |〈x,w∗〉|. Since Ax = y, it follows
that,

for all v∗ ∈ F ∗, ‖|A∗v∗‖| = ‖A∗v∗‖ ∨ |〈y, v∗〉|. (38)

From the Brøndsted–Rockafellar theorem, Theorem 3.2, there exists (z, z∗) ∈ G(∂f) such
that

‖|z − x‖| ≤ α and ‖|z∗ − A∗y∗‖| ≤ β.

(35) follows since ‖z∗ − A∗y∗‖ ≤ ‖|z∗ − A∗y∗‖| ≤ β < ε and

|〈z, z∗ − A∗y∗〉| ≤ |〈z − x, z∗ − A∗y∗〉|+ |〈x, z∗ − A∗y∗〉|
≤ ‖|z − x‖|‖|z∗ − A∗y∗‖|+ ‖|z∗ − A∗y∗‖|
≤ αβ + β < ε.

The proof of (36) is a little more complicated. From the one–dimensional Hahn–Banach
theorem, there exists v∗ ∈ F ∗ such that v∗ ≤ q on F and 〈Az − y, v∗〉 = q(Az − y). Then

‖A∗v∗‖ = sup
w∈E, ‖w‖≤1

〈w,A∗v∗〉 = sup
w∈E, ‖w‖≤1

〈Aw, v∗〉 ≤ sup
w∈E, ‖w‖≤1

q(Aw) = M.

Thus, from (38),
‖|A∗v∗‖| ≤ M ∨ |〈y, v∗〉| ≤ M ∨ q(y).

Consequently, since y = Ax,

q(Az − y) = 〈Az − y, v∗〉 = 〈z − x,A∗v∗〉 ≤ ‖|z − x‖|‖|A∗v∗‖| ≤ α(M ∨ q(y)) < 1,

which gives (36). Finally, we prove (37). Since A∗y∗ ∈ ∂αβf(x) and z∗ ∈ ∂f(z),

−〈z − x, z∗ − A∗y∗〉 − 〈z − x,A∗y∗〉 = 〈x− z, z∗〉 ≤ f(x)− f(z) ≤ 〈x− z, A∗y∗〉+ αβ,

from which

−‖|z − x‖|‖|z∗ − A∗y∗‖| − ‖|z − x‖|‖|A∗y∗‖| ≤ f(x)− f(z) ≤ αβ + ‖|z − x‖|‖|A∗y∗‖|,

and so, using (38),

|f(x)− f(z)| ≤ αβ + α‖|A∗y∗‖| = αβ + α(‖A∗y∗‖ ∨ |〈y, y∗〉|) < ε,

which gives (37). Using (35)–(37), we can easily find nets (zγ, z
∗
γ) of elements of G(∂f)

and xγ of dom f ∩ A−1y satisfying the conditions of (32).

Conjecture 6.3. By analogy with Theorem 4.2, it is reasonable to conjecture that if
E is a Banach space, F is a locally convex space, A : E 7→ F is continuous and linear,
f ∈ PCLSC(E), f ∗ ◦ A∗ ∈ PC(F ) and y ∈ F then

∂(f/A)(y) =
⋂

ε>0

(A∗)−1(∂f)ε(A−1y).
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7. Bootstrapping to episums

Let E be a locally convex space and, for all k = 1, . . . , K, fk ∈ PCLSC(E). If y ∈ E,
write

(f1+
e
· · · +

e
fK)(y) := inf{f1(x1) + · · ·+ fK(xK) : x1 + · · ·+ xK = y}.

The function f1+
e
· · · +

e
fK is the episum or inf–convolution of f1, . . . , fK . We show in

this section how the results of the previous sections can be bootstrapped to incorporate the
episums of convex functions, and more general situations where the episum is combined
with marginalization.

Since these results depend on the same substitution, we will combine them together into
one composite theorem, Theorem 7.1. Theorem 7.1 being somewhat overburdened with
symbols, we present in Corollary 7.2 a simplified version in which all the spaces are
identical, and all the maps Ak are taken to be the identity map. Here are some comments
on the individual results.

Corollary 7.2(a) is certainly well known.

Theorem 7.1(b) or its consequence Corollary 7.2(b) imply the result proved by Hiriart–
Urruty and Phelps in [5, Theorem 1.1, p. 156–157], namely that if E is a locally convex
space, f, g ∈ PC(E), f and g are bounded below by the same continuous affine function
and x ∈ E, then

∂(f +
e
g)(x) =

⋂

ε>0

∂εf(x) ∩ ∂εg(x).

We have not seen Theorem 7.1(c) or Corollary 7.2(c) in the literature. The strongest of
the conditions that is implied by (39) is (40), in which one of the convergence relations
has been “decoupledÔ. This is the only one of the equivalent conditions that is specific to
episums, and does not follow from the results on marginal functions.

As Theorem 7.1 shows, proving results on marginal functions first provides an easy way
of establishing results for episums of K(> 2) functions. It is also much easier to handle
analytically the renorming of the single space E that we performed in Theorem 6.2 than
the renorming of the product space E1 × · · · × EK that we would have to perform in a
direct proof of Theorem 7.1(c).

Theorem 7.1. Let E1, . . . , EK and F be locally convex spaces, for all k = 1, . . . , K,
Ak : Ek 7→ F be continuous and linear, fk ∈ PC(Ek) and

f ∗
1 ◦ A∗

1 + · · ·+ f ∗
K ◦ A∗

K ∈ PC(F ∗).

If y ∈ F , write

g(y) := inf{f1(x1) + · · ·+ fK(xK) : A1x1 + · · ·+ AKxK = y}.

Then:

(a) g ∈ PCPC(F ) and g∗ = f ∗
1 ◦ A∗

1 + · · ·+ f ∗
K ◦ A∗

K .

(b) For all y ∈ F ,

∂g(y) =
⋂

ε>0

⋃

A1x1+···+AKxK=y

(A∗
1)

−1∂εf1(x1) ∩ · · · ∩ (A∗
K)

−1∂εfK(xK).
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(c) Suppose, in addition, that E1, . . . , EK are Banach spaces, for all k = 1, . . . , K we have
fk ∈ PCLSC(Ek), and (y, y∗) ∈ F ×F ∗. Then the conditions (39)—(42) are equivalent:

y∗ ∈ ∂g(y). (39)

For all k, there exist nets (zk,γ, z
∗
k,γ) of elements of G(∂fk) and

xk,γ of elements of dom fk such that ‖z∗k,γ − A∗
ky

∗‖ → 0,
〈zk,γ, z∗k,γ − A∗

1y
∗〉 → 0,

f1(x1,γ)− f1(z1,γ) + · · ·+ fK(xK,γ)− fK(zK,γ) → 0,
A1x1,γ + · · ·+ AKxK,γ = y and
A1z1,γ + · · ·+ AKzK,γ → y in F.































(40)

For all k, there exist nets (zk,γ, z
∗
k,γ) of elements of G(∂fk) and

xk,γ of elements of dom fk such that ‖z∗k,γ − A∗
ky

∗‖ → 0,
〈z1,γ, z∗1,γ〉+ · · ·+ 〈zK,γ, z

∗
K,γ〉 → 〈y, y∗〉,

f1(x1,γ)− f1(z1,γ) + · · ·+ fK(xK,γ)− fK(zK,γ) → 0,
A1x1,γ + · · ·+ AKxK,γ = y and
A1z1,γ + · · ·+ AKzK,γ → y in F.































(41)

For all k, there exists a net (zk,γ, z
∗
k,γ) of elements of G(∂fk)

such that z∗k,γ → A∗
ky

∗ in w(E∗
k , Ek),

〈z1,γ, z∗1,γ〉+ · · ·+ 〈zK,γ, z
∗
K,γ〉 → 〈y, y∗〉 and

g(y) ≤ lim infγ(f1(z1,γ) + · · ·+ fK(zK,γ)).















(42)

Proof. Let E := E1 × · · · × EK , for all (x1, . . . , xK) ∈ E,

A(x1, . . . , xK) := A1x1 + · · ·+ AKxK ∈ F

and
f(x1, . . . , xK) := f1(x1) + · · ·+ fK(xK) ∈ IR ∪ {∞}.

Then
y∗ ∈ F ∗ =⇒ A∗y∗ = (A∗

1y
∗, . . . , A∗

Ky
∗) ∈ E∗

1 × · · · × E∗
K

and

(x∗
1, . . . , x

∗
K) ∈ E∗

1 × · · · × E∗
K =⇒ f ∗(x∗

1, . . . , x
∗
K) = f ∗

1 (x
∗
1) + · · ·+ f ∗

K(x
∗
K).

(a) This is immediate from Lemma 2.4, since g = f/A.

(b) This follows from Theorem 6.1 since, for all (x1, . . . , xK) ∈ E,

∂εf(x1, . . . , xK) ⊂ ∂εf1(x1)× · · · × ∂εfK(xK) ⊂ ∂Kεf(x1, . . . , xK).

(c) It is immediate from Theorem 6.2 that (39), (41) and (42) are equivalent to:

For all k, there exist nets (zk,γ, z
∗
k,γ) of elements of G(∂fk) and

xk,γ of elements of dom fk such that ‖z∗k,γ − A∗
ky

∗‖ → 0,
〈z1,γ, z∗1,γ − A∗

1y
∗〉+ · · ·+ 〈zK,γ, z

∗
K,γ − A∗

Ky
∗〉 → 0,

f1(x1,γ)− f1(z1,γ) + · · ·+ fK(xK,γ)− fK(zK,γ) → 0,
A1x1,γ + · · ·+ AKxK,γ = y and
A1z1,γ + · · ·+ AKzK,γ → y in F.































(43)
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Since (40)=⇒(43), it only remains to prove that (43)=⇒(40). Now if (43) is true then,

from (39), y∗ ∈ dom g∗ =
⋂K

k=1 dom f ∗
k ◦ A∗

k. For all k and γ, since (zk,γ, z
∗
k,γ) ∈ G(∂fk),

〈zk,γ, z∗k,γ − A∗
ky

∗〉 ≥ f ∗
k (z

∗
k,γ)− f ∗

k (A
∗
ky

∗).

Using the lower semicontinuity of f ∗
k and the fact that ‖z∗k,γ − A∗

ky
∗‖ → 0, we derive

that lim infγ〈zk,γ, z∗k,γ − A∗
ky

∗〉 ≥ 0. If we now combine this with the assumption in (43)

that 〈z1,γ, z∗1,γ − A∗
1y

∗〉 + · · · + 〈zK,γ, z
∗
K,γ − A∗

Ky
∗〉 → 0, we obtain easily that, for all k,

〈zk,γ, z∗k,γ − A∗
ky

∗〉 → 0. Thus we have established (40).

Corollary 7.2. Let E be a locally convex space, for all k = 1, . . . , K, fk ∈ PC(E) and

f ∗
1 + · · ·+ f ∗

K ∈ PC(E∗).

Then:

(a) f1+
e
· · · +

e
fK ∈ PCPC(E) and (f1+

e
· · · +

e
fK)

∗ = f ∗
1 + · · ·+ f ∗

K .

(b) For all y ∈ E,

∂(f1+
e
· · · +

e
fK)(y) =

⋂

ε>0

⋃

x1+···+xK=y

∂εf1(x1) ∩ · · · ∩ ∂εfK(xK).

(c) Suppose, in addition, that E is a Banach space, for all k = 1, . . . , K, fk ∈ PCLSC(E)
and (y, y∗) ∈ E × E∗. Then the conditions (44)—(47) are equivalent:

y∗ ∈ ∂(f1+
e
· · · +

e
fK)(y). (44)

For all k, there exist nets (zk,γ, z
∗
k,γ) of elements of G(∂fk) and

xk,γ of elements of dom fk such that ‖z∗k,γ − y∗‖ → 0,
〈zk,γ, z∗k,γ − y∗〉 → 0,

f1(x1,γ)− f1(z1,γ) + · · ·+ fK(xK,γ)− fK(zK,γ) → 0,
x1,γ + · · ·+ xK,γ = y and
z1,γ + · · ·+ zK,γ → y in F.































(45)

For all k, there exist nets (zk,γ, z
∗
k,γ) of elements of G(∂fk) and

xk,γ of elements of dom fk such that ‖z∗k,γ − y∗‖ → 0,
〈z1,γ, z∗1,γ〉+ · · ·+ 〈zK,γ, z

∗
K,γ〉 → 〈y, y∗〉,

f1(x1,γ)− f1(z1,γ) + · · ·+ fK(xK,γ)− fK(zK,γ) → 0,
x1,γ + · · ·+ xK,γ = y and
z1,γ + · · ·+ zK,γ → y in E.































(46)

For all k, there exist a net (zk,γ, z
∗
k,γ) of elements of G(∂fk)

such that z∗k,γ → y∗ in w(E∗, E),
〈z1,γ, z∗1,γ〉+ · · ·+ 〈zK,γ, z

∗
K,γ〉 → 〈y, y∗〉 and

(f1+
e
· · · +

e
fK)(y) ≤ lim infγ(f1(z1,γ) + · · ·+ fK(zK,γ)).



















(47)
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8. Minimization over non–closed convex sets

In the following result, we show how Corollary 5.2 can be used to discuss constrained
optimization on a non–closed convex set.

Theorem 8.1. Let E be a Banach space, X be a (not necessarily closed) convex subset
of E, f ∈ PCLSC(E) and x ∈ dom f ∩X. Then the conditions (48)–(51) are equivalent:

f(x) = min
X

f. (48)

There exists a net (yγ, y
∗
γ) of elements of G(∂f) such that ‖yγ − x‖ → 0,

dist(yγ, X)‖y∗γ‖ → 0, 〈yγ − x, y∗γ〉 → 0
and, for all v ∈ X, lim infγ〈v − x, y∗γ〉 ≥ 0.







(49)

There exists a net (yγ, y
∗
γ) of elements of G(∂f) such that ‖yγ − x‖ → 0,

dist(yγ, X)‖y∗γ‖ → 0 and, for all v ∈ X, lim infγ〈v − yγ, y
∗
γ〉 ≥ 0.

}

(50)

For all ε > 0 and v ∈ X, there exists (y, y∗) ∈ G(∂f)
such that ‖y − x‖ < ε and 〈v − y, y∗〉 > −ε.

}

(51)

Proof. It is immediate that (49)=⇒(50)=⇒(51).

(51)=⇒(48) Let v be an arbitrary element of X and ε > 0. Since f is lower semicontin-
uous, there exists δ > 0 such that

‖y − x‖ < δ =⇒ f(y) > f(x)− ε/2.

From (51), there exists (y, y∗) ∈ G(∂f) such that ‖y − x‖ < δ and 〈v − y, y∗〉 > −ε/2.
Consequently,

f(v) ≥ f(y) + 〈v − y, y∗〉 ≥ f(x)− ε/2− ε/2 = f(x)− ε.

Since ε is arbitrary, it follows that f(v) ≥ f(x), which gives (48).

(48)=⇒(49) Let f(x) = minX f . We shall prove that if ε > 0 and v1, . . . , vn ∈ X then
there exists (y, y∗) ∈ G(∂f) such that

‖y − x‖ < ε, |〈y − x, y∗〉| < ε, dist(y,X)‖y∗‖ < ε and,
for all i = 1, . . . , n, 〈vi − x, y∗〉 > −ε.

}

(52)

Once this has been done, it is easy to construct the net required in (49). So let ε > 0
and v1, . . . , vn ∈ X. Write Y := co{x, v1, . . . , vn} ⊂ X. Then f(x) = minY f , thus
0 ∈ ∂(f+g)(x), where g is the indicator function of Y . However, g is lower semicontinuous
so, from (29), enhanced as in Remark 5.3, there exist (y, y∗) ∈ G(∂f) and (z, z∗) ∈ G(∂g)
such that

‖y − x‖ < ε, |〈y − x, y∗〉| < ε, ‖y − z‖‖(y∗, z∗)‖1 < ε, |〈z − x, z∗〉| < ε/2
and, for all i = 1, . . . , n, |〈vi − x, y∗ + z∗〉| < ε/2.

}

(53)

Now ∂g(z) is the normal cone to Y at z and, for all i = 1, . . . , n, vi ∈ Y and consequently
〈vi, z∗〉 ≤ 〈z, z∗〉, from which,

〈vi − x, y∗〉 ≥ −〈vi − x, z∗〉 − ε/2 = 〈x− vi, z
∗〉 − ε/2 ≥ 〈x− z, z∗〉 − ε/2 > −ε.

(52) follows by combining this with (53) and observing that dist(y,X) ≤ ‖y − z‖ and
‖y∗‖ ≤ ‖(y∗, z∗)‖1.
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