
Journal of Convex Analysis

Volume 9 (2002), No. 1, 287–290

Lipschitzian Characterizations
of Finite Dimensional Banach Spaces

Dumitru Popa
Dept. of Math, Univ. of Constanta,

Constanta, Romania
dpopa@univ-ovidius.ro

Received January 20, 2000
Revised manuscript received May 28, 2001

We give equivalent formulations of finite dimensional Banach spaces in terms of Lipschitzian functions. .

Keywords: Performance function, multipliers, stability, convex like functions, measurable integrands,
richness, integral functional, growth conditions

1991 Mathematics Subject Classification: 46E30, 28A20, 49B, 60B12

In the papers [1] and [2] tight connections between the sequential properties of a Banach
space and properties of convex functions on that space are established. In [4] it is shown
that there is a sequence (xn)n∈N of norm one in l2 and a convex function f : l2 −→ R that
is NOT Lipschitz in a neighborhood of that sequence. In this note we complete the circle
of ideas pursued in [1], [2] and [4]. Our first lemma presents a way to construct convex
and continuous functions, and it shows that if a function is Lipschitz on a open set then
it must satisfy a ,,boundary boundednessÔ condition, see Lemma 1 c) below.

Lemma 1. Let ϕn : [0,∞) → [0,∞), be a sequence of C1 functions such that ϕn and
ϕ

′
n are increasing functions for each n ∈ N and let 0 < a < ∞ be such that the series
∞
∑

n=1
ϕn(a) is convergent. Let X be a Banach space, pn : X → R a sequence of seminorms

on X with: pn(x) → 0, for each x ∈ X and pn(x) ≤‖ x ‖, for each x ∈ X. Let f : X → R

be defined by f(x) =
∞
∑

n=1
ϕn(pn(x)). Then:

a) f is a continuous and convex function on X.

b) If 0 < M < ∞ is such that
∞
∑

n=1
ϕn(M) < ∞, then f is bounded on B(0,M).

c) If f is Lipschitz on a open subset G ⊂ X, then there exist L > 0, such that
∞
∑

n=1
pn(x)ϕ

′
n(pn(x)) ≤ L ‖ x ‖, for each x in the closure G of G.

d) If 0 < M < ∞ is such that
∞
∑

n=1
ϕ

′
n(M) < ∞, then f is Lipschitz on B(0,M).

Proof. Let x ∈ X. Then there exists n0 ∈ N such that pn(x) ≤ a for all n ≥ n0. Then

ϕn(pn(x)) ≤ ϕn(a) for all n ≥ n0 because each ϕn is increasing. Since the series
∞
∑

n=1
ϕn(a)

is convergent we obtain the convergence of the series
∞
∑

n=1
ϕn(pn(x)).
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a) The convexity of the function f is clear because ϕn is convex and increasing for each
n ∈ N. The continuity of f is again clear because it is lower semicontinuous ( as a sum of
positive lsc functions ), convex, finite valued everywhere, and a well-known consequence
of Baire category theorem is that a lsc convex function is continuous on the interior of its
domain in a Banach space.

b) 0 ≤ f(x) =
∞
∑

n=1
ϕn(pn(x)) ≤

∞
∑

n=1
ϕn(‖ x ‖) ≤

∞
∑

n=1
ϕn(M), for ‖ x ‖≤ M .

c) Let L > 0 be such that | f(x) − f(y) |≤ L ‖ x − y ‖, for each x, y ∈ G. Let x ∈ G.
Since G is open, there exists ε > 0, such that B(x, ε) ⊂ G. Then: (1 + εt)x, x ∈ B(x, ε),
where t = 1

‖x‖+1
and from the above relation we obtain:

| f((1 + εt)x)− f(x) |≤ L ‖ (1 + εt)x− x ‖= Lεt ‖ x ‖ . (1)

Since ϕ
′
n is increasing we have ϕn(b)−ϕn(a) ≥ (b− a)ϕ

′
n(a), for a, b ∈ R with 0 ≤ a ≤ b.

Using this inequality we have

f((1 + εt)x)− f(x) =
∞
∑

n=1

[ϕn(pn(1 + εt)x)]− ϕnpn(x)]

=
∞
∑

n=1

[ϕn((1 + εt)pn(x))− ϕn(pn(x))] (2)

≥
∞
∑

n=1

εtpn(x)ϕ
′

n(pn(x))

Now (1) and (2) imply
∞
∑

n=1
pn(x)ϕ

′
n(pn(x)) ≤ L ‖ x ‖, for each x ∈ G. A continuity

argument shows that the above inequality is still true for each x in the closure G.

d) Since ϕ
′
n is increasing we have: if a, b ∈ R, a ≥ 0, b ≥ 0, then | ϕn(a) − ϕn(b) |≤|

b− a | max{ϕ′
n(a), ϕ

′
n(b)}. Let x, y ∈ B(0,M), then

| f(x)− f(y) | ≤
∞
∑

n=1

| ϕn(pn(x))− ϕn(pn(y)) |

≤
∞
∑

n=1

| pn(x)− pn(y) | max{ϕ′

n(pn(x)), ϕ
′

n(pn(y))}

≤
∞
∑

n=1

| pn(x)− pn(y) | ϕ
′

n(M) ≤
∞
∑

n=1

ϕ
′

n(M) ‖ x− y ‖ .

In the following theorem the equivalence ii), vii) has been proved in [1] in a different
manner.

Theorem 2. Let X be a Banach space. Then the following are equivalent:

i) X is finite dimensional;

ii) weak star and norm convergence agree sequentially in X∗;
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iii) each convex and continuous function f : X −→ R has the property: If A ⊂ X is a
bounded subset on which f is bounded, then f is Lipschitzian on some neighborhood
of A;

iv) each convex and continuous function f : X −→ R has the property: If A ⊂ X is a
bounded subset on which f is bounded, then f is Lipschitzian on A;

v) each convex and continuous function f : X −→ R has the property: If A ⊂ X is a
bounded subset, then f is Lipschitzian on some neighborhood of A;

vi) each convex and continuous function f : X −→ R has the property: If A ⊂ X is a
bounded subset, then f is Lipschitzian on A;

vii) each convex and continuous function f : X −→ R has the property: If A ⊂ X is a
bounded subset, then f is bounded on A;

viii) each convex and continuous function f : X −→ R is Lipschitzian on the open
unit ball;

ix) each convex and continuous function f : X −→ R is bounded on the open unit
ball.

Proof. The equivalence i) ⇔ ii) is the Jossefsson-Nissenzweig Theorem, see [3], p. 219.
The implications: i) ⇒ iii) ⇒ iv), i) ⇒ v) ⇒ vi) ⇒ viii), i) ⇒ vii) ⇒ ix) are clear or
well known. For the implications iv) ⇒ ii) and viii) ⇒ ii), let us suppose that ii) is not
true. Then there exist (x∗

n)n∈N ⊂ X∗ such that: x∗
n −→ 0 weak∗, ( i.e. x∗

n(x) −→ 0, for
each x ∈ X), but ‖x∗

n‖ = 1, for each n ∈ N. Let pn(x) =| x∗
n(x) |. Now define f : X −→ R,

by f(x) =
∞
∑

n=1

1
n2 [pn(x)]

n3
. Let us observe that the function f is bounded on the closed

unit ball. If f is Lipschitz on the open unit ball, then lemma 1 c) shows that we must have

for some L > 0;
∞
∑

n=1

n3

n2 [pn(x)]
n3 ≤ L ‖ x ‖, for each ‖ x ‖≤ 1. Hence: n[pn(x)]

n3 ≤ L ‖ x ‖

for each ‖ x ‖≤ 1, and each n ∈ N. Thus n‖x∗
n‖n

3 ≤ L, n ≤ L for each n ∈ N, which
is clearly a contradiction. For the implication ix) ⇒ ii) let us suppose that ii) is not
true. Then there exist (x∗

n)n∈N ⊂ X∗ such that: x∗
n −→ 0 weak∗, but ‖x∗

n‖ = 1, for each

n ∈ N. Let pn(x) =| x∗
n(x) |. Now define f : X −→ R, by f(x) =

∞
∑

n=1
n[pn(x)]

n. Lemma

1 a) ensures that f is a convex and continuous function. If f is bounded on the open

unit ball, we must have for some L > 0:
∞
∑

n=1
n[pn(x)]

n ≤ L, for each ‖ x ‖≤ 1. Hence:

n[pn(x)]
n ≤ L, for each ‖ x ‖≤ 1, and each n ∈ N. Then n‖x∗

n‖n ≤ L, n ≤ L for each
n ∈ N, which is clearly a contradiction. We remark that Lemma 1 d), shows that the
above functions are also Lipschitzian on each open ball B(0, ε), for each 0 < ε < 1.

Let us remark that in the book [5] chapter 34, boundedness issues of biconjugates are
studied.

In the end we indicate also an another way to construct examples of continuous and
convex functions as is given in [1] Lemma 2.1. In [1] Lemma 2.1. is used as a technical
tool in order to obtain further results and characterizations of Banach spaces.

Lemma 3. With the same notation as in Lemma 1, we have:

a) If W is a bounded subset of X such that pn → 0, uniformly on W , and if 0 < M < ∞
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is such that
∞
∑

n=1
ϕ

′
n(M) < ∞, then f is Lipschitz on the set W + B(0, ε), for each

0 < ε < M .

b) If W is a bounded subset of X such that sequence (pn)n∈N, does not converge uniformly
on W and c > 0 is such that lim

n→∞
ϕn(c) = ∞, then there exist λ > 0, such that f is

unbounded on the set λW .

Proof.
a) Let n0 ∈ N be such that pn(w) ≤ M − ε, ∀n ≥ n0, ∀w ∈ W . Hence for n ≥ n0,
x ∈ W +B(0, ε), pn(x) ≤ M . Now if x, y ∈ W +B(0, ε), then:

| f(x)− f(y) | ≤
∞
∑

n=1

| ϕn(pn(x))− ϕn(pn(y)) |

≤
∞
∑

n=1

| pn(x)− pn(y) | max{ϕ′

n(pn(x)), ϕ
′

n(pn(y))}

≤
n0
∑

n=1

| pn(x)− pn(y) | ϕ
′

n(L) +
∞
∑

n=n0+1

| pn(x)− pn(y) | ϕ
′

n(M)

≤ [
n0
∑

n=1

ϕ
′

n(L) +
∞
∑

n=n0+1

ϕ
′

n(M)] ‖ x− y ‖

Where above we denote L > 0, such that W +B(0, ε) ⊂ B(0, L).

b) Since the sequence (pn)n∈N, does not converge uniformly onW , passing to a subsequence
we have for some δ > 0, there exist wk ∈ W such that pnk

(wk) > δ, for each k ∈ N. Let
be λ = c

δ
> 0, xk = cwk

δ
∈ λW and f(xk) ≥ ϕnk

(pnk
(xk)) ≥ ϕnk

(c), for each k ∈ N. Since
ϕnk

(c) → ∞, we obtain f(xk) → ∞.
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