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In the papers [1] and [2] tight connections between the sequential properties of a Banach
space and properties of convex functions on that space are established. In [4] it is shown
that there is a sequence (z,)nen of norm one in Iy and a convex function f : [y — R that
is NOT Lipschitz in a neighborhood of that sequence. In this note we complete the circle
of ideas pursued in [1], [2] and [4]. Our first lemma presents a way to construct convex
and continuous functions, and it shows that if a function is Lipschitz on a open set then
it must satisfy a »boundary boundedness” condition, see Lemma 1 ¢) below.

Lemma 1. Let ¢, : [0,00) — [0,00), be a sequence of C functions such that , and
@, are increasing functions for each n € N and let 0 < a < oo be such that the series
oo

> ¢nla) is convergent. Let X be a Banach space, p, : X — R a sequence of seminorms
n=1
on X with: pp(x) — 0, for each x € X and p,(x) <|| = ||, for eachx € X. Let f : X — R
be defined by f(z) = > pn(pn(z)). Then:

n=1

a) [ is a continuous and convex functz’on on X.
b) If 0 < M < oo is such that Z (M) < oo, then f is bounded on B(0, M).
c) ]ff 1s Lipschitz on a open subset G C X, then there exist L > 0, such that
Z (), (pn(2)) < L || ||, for each x in the closure G of G.
n=1
d) If 0 < M < oo is such that Y o, (M) < oo, then f is Lipschitz on B(0, M).

n=1

Proof. Let z € X. Then there exists ng € N such that p,(z) < a for all n > ng. Then
©n(pn(2)) < @nla) for all n > ng because each ¢, is increasing. Since the series Y ¢, (a)

n=1

oo
is convergent we obtain the convergence of the series Y ¢, (pn(2)).
n=1
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a) The convexity of the function f is clear because ¢, is convex and increasing for each
n € N. The continuity of f is again clear because it is lower semicontinuous ( as a sum of
positive Isc functions ), convex, finite valued everywhere, and a well-known consequence
of Baire category theorem is that a lsc convex function is continuous on the interior of its
domain in a Banach space.

b) 0 f@)= 3 eulpa(e) < Zeulll 2 ) € - pu(d). for |z 1< M.

c) Let L > 0 be such that | f(x) — (y) |< L || x—y|, for each z, y € G. Let x € G.
Since G is open, there exists € > 0, such that B(z,¢) C G. Then: (1 +et)x, x € B(x,€),

where ¢t = m and from the above relation we obtain:

| f(L+et)r) = fla) [S L || (A +et)r —a[|= Let || = | . (1)
Since ¢, is increasing we have ¢, (b) — @, (a) > (b—a)p, (a), for a, b € R with 0 < a < b.
Using this inequality we have

o0

F(L+et)z) = fl@) = Y [enlpa(l+et)a)] = @upa()]

n=1
oS

= 3 lpal(1 + et)pu(®)) — @u(pal)) 2)

n= 1

v

Zetpn )@, (pn())

Now (1) and (2) imply 3 pu(2)@, (pa(x)) < L || « ||, for each € G. A continuity
n=1

argument shows that the above inequality is still true for each z in the closure G.

d) Since ¢,, is increasing we have: if a, b € R, @ > 0, b > 0, then | ¢,(a) — ¢.(b) |<|
b—a | max{p, (a), ¢, (b)}. Let z, y € B(0, M), then

| flz) = fly) | < Z | n(Pn(2)) = @n(Pn(y)) |

IN

Z | pu(@) = pa(y) | max{e, (pa(z)), @, (pn(y))}

Z!pn y) | (M <Zson Y=yl

IN

]

In the following theorem the equivalence ii), vii) has been proved in [1] in a different
manner.

Theorem 2. Let X be a Banach space. Then the following are equivalent:
i) X is finite dimensional;

it)  weak star and norm convergence agree sequentially in X*;
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i11) each convex and continuous function f : X — R has the property: If A C X is a
bounded subset on which f is bounded, then f is Lipschitzian on some neighborhood
of A;

iv) each convex and continuous function f : X — R has the property: If A C X is a

bounded subset on which f is bounded, then f is Lipschitzian on A;

v)  each convex and continuous function f : X — R has the property: If A C X is a
bounded subset, then f is Lipschitzian on some neighborhood of A;

vi) each conver and continuous function f : X — R has the property: If A C X is a
bounded subset, then f is Lipschitzian on A;

vii) each conver and continuous function f : X — R has the property: If A C X is a
bounded subset, then f is bounded on A;

viti) each convex and continuous function f : X —— R is Lipschitzian on the open
unit ball;

iz) each conver and continuous function f : X — R is bounded on the open unit

ball.

Proof. The equivalence i) < ii) is the Jossefsson-Nissenzweig Theorem, see [3], p. 219.
The implications: i) = iii) = iv), i) = v) = vi) = viil), 1) = vii) = ix) are clear or
well known. For the implications iv) = ii) and mzz) = i), let us suppose that i7) is not
true. Then there exist (z})n,en C X* such that: z}, — 0 weak®, (i.e. x}(xr) — 0, for
each z € X), but ||z} || = 1, for each n € N. Let p,(z ) =| zf(x) |. Now define f : X — R,
by f(z) = 3 5] .(2)]"°. Let us observe that the function f is bounded on the closed
n=1
unit ball. If f is Lipschitz on the open unit ball, then lemma 1 ¢) shows that we must have
for some L > 0; Z nQ[ W(2)]” < L || 2 ||, for each ||  ||< 1. Hence: n[p,(z)]” < L | z |
for each || z ||< 1 and each n € N. Thus n||z*||"" < L, n < L for each n € N, which

is clearly a contradlctlon For the implication m) = m) let us suppose that m) is not
true. Then there exist (z})n,eny C X* such that: xf — 0 weak®, but |zk|| = 1, for each

n € N. Let p,(z) =| zf(z) |. Now define f : X — R, by f(z) = Z n[p,(z)]". Lemma
n=1

1 a) ensures that f is a convex and continuous function. If f is bounded on the open

unit ball, we must have for some L > 0: > n[p,(z)]" < L, for each || = [|[< 1. Hence:

n=1
n[pn(z)]" < L, for each || z [|< 1, and each n € N. Then n||z}||* < L, n < L for each
n € N, which is clearly a contradiction. We remark that Lemma 1 d), shows that the
above functions are also Lipschitzian on each open ball B(0,¢), foreach 0 <e < 1. [

Let us remark that in the book [5] chapter 34, boundedness issues of biconjugates are
studied.

In the end we indicate also an another way to construct examples of continuous and
convex functions as is given in [1] Lemma 2.1. In [1] Lemma 2.1. is used as a technical
tool in order to obtain further results and characterizations of Banach spaces.

Lemma 3. With the same notation as in Lemma 1, we have:

a) If W is a bounded subset of X such that p, — 0, uniformly on W, and if 0 < M < oo
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is such thatz @, (M) < oo, then f is Lipschitz on the set W + B(0,¢), for each
n=1
0<e< M.

b) If W is a bounded subset of X such that sequence (py)nen, does not converge uniformly
on W and ¢ > 0 is such that lim ¢,(c) = oo, then there exist X\ > 0, such that f is

unbounded on the set A\W.

Proof.
a) Let ng € N be such that p,(w) < M — e, ¥n > ng, Yw € W. Hence for n > ny,
x €W + B(0,¢), pp(x) < M. Now if z, y € W + B(0, ¢), then:

| fl@) = fly)| < Z | o0 (Pa(2)) = 2n(Pa(y)) |

< len = pa(y) | max{e, (pa(2)), 0, (Pa(9))}
< len W) [en(L)+ D | pal@) = paly) | 0, (M)
< [Z%(L)Jr Y. ez -y

Where above we denote L > 0, such that W + B(0,e) C B(0, L).

b) Since the sequence (p,, )nen, does not converge uniformly on W, passing to a subsequence
we have for some § > 0, there exist w, € W such that p,, (wg) > 6, for each k € N. Let
be A= $>0, 2, = %= € AW and f(2x) > @n,, (Pn, (7k)) > @, (c), for each k € N. Since
©n,. (€) — 00, we obtain f(x) — oo. O
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