Lipschitzian Characterizations of Finite Dimensional Banach Spaces

Dumitru Popa

Dept. of Math, Univ. of Constanta, Constanta, Romania dpopa@univ-ovidius.ro

Received January 20, 2000 Revised manuscript received May 28, 2001

We give equivalent formulations of finite dimensional Banach spaces in terms of Lipschitzian functions. .

Keywords: Performance function, multipliers, stability, convex like functions, measurable integrands, richness, integral functional, growth conditions

1991 Mathematics Subject Classification: 46E30, 28A20, 49B, 60B12

In the papers [1] and [2] tight connections between the sequential properties of a Banach space and properties of convex functions on that space are established. In [4] it is shown that there is a sequence $(x_n)_{n \in \mathbb{N}}$ of norm one in l_2 and a convex function $f : l_2 \longrightarrow \mathbb{R}$ that is NOT Lipschitz in a neighborhood of that sequence. In this note we complete the circle of ideas pursued in [1], [2] and [4]. Our first lemma presents a way to construct convex and continuous functions, and it shows that if a function is Lipschitz on a open set then it must satisfy a "boundary boundedness" condition, see Lemma 1 c) below.

Lemma 1. Let $\varphi_n : [0, \infty) \to [0, \infty)$, be a sequence of C^1 functions such that φ_n and φ'_n are increasing functions for each $n \in N$ and let $0 < a < \infty$ be such that the series $\sum_{n=1}^{\infty} \varphi_n(a)$ is convergent. Let X be a Banach space, $p_n : X \to \mathbb{R}$ a sequence of seminorms on X with: $p_n(x) \to 0$, for each $x \in X$ and $p_n(x) \leq ||x||$, for each $x \in X$. Let $f : X \to \mathbb{R}$ be defined by $f(x) = \sum_{n=1}^{\infty} \varphi_n(p_n(x))$. Then:

a) f is a continuous and convex function on X.
b) If 0 < M < ∞ is such that ∑[∞]_{n=1} φ_n(M) < ∞, then f is bounded on B(0, M).
c) If f is Lipschitz on a open subset G ⊂ X, then there exist L > 0, such that ∑[∞]_{n=1} p_n(x)φ'_n(p_n(x)) ≤ L || x ||, for each x in the closure G of G.
d) If 0 < M < ∞ is such that ∑[∞]_{n=1} φ'_n(M) < ∞, then f is Lipschitz on B(0, M).

Proof. Let $x \in X$. Then there exists $n_0 \in \mathbb{N}$ such that $p_n(x) \leq a$ for all $n \geq n_0$. Then $\varphi_n(p_n(x)) \leq \varphi_n(a)$ for all $n \geq n_0$ because each φ_n is increasing. Since the series $\sum_{n=1}^{\infty} \varphi_n(a)$ is convergent we obtain the convergence of the series $\sum_{n=1}^{\infty} \varphi_n(p_n(x))$.

ISSN 0944-6532 / \$ 2.50 © Heldermann Verlag

a) The convexity of the function f is clear because φ_n is convex and increasing for each $n \in \mathbb{N}$. The continuity of f is again clear because it is lower semicontinuous (as a sum of positive lsc functions), convex, finite valued everywhere, and a well-known consequence of Baire category theorem is that a lsc convex function is continuous on the interior of its domain in a Banach space.

b)
$$0 \le f(x) = \sum_{n=1}^{\infty} \varphi_n(p_n(x)) \le \sum_{n=1}^{\infty} \varphi_n(\parallel x \parallel) \le \sum_{n=1}^{\infty} \varphi_n(M), \text{ for } \parallel x \parallel \le M.$$

c) Let L > 0 be such that $|f(x) - f(y)| \le L || x - y ||$, for each $x, y \in G$. Let $x \in G$. Since G is open, there exists $\varepsilon > 0$, such that $\overline{B}(x, \varepsilon) \subset G$. Then: $(1 + \varepsilon t)x, x \in \overline{B}(x, \varepsilon)$, where $t = \frac{1}{\|x\|+1}$ and from the above relation we obtain:

$$|f((1+\varepsilon t)x) - f(x)| \le L \parallel (1+\varepsilon t)x - x \parallel = L\varepsilon t \parallel x \parallel.$$
(1)

Since φ'_n is increasing we have $\varphi_n(b) - \varphi_n(a) \ge (b-a)\varphi'_n(a)$, for $a, b \in \mathbb{R}$ with $0 \le a \le b$. Using this inequality we have

$$f((1+\varepsilon t)x) - f(x) = \sum_{n=1}^{\infty} [\varphi_n(p_n(1+\varepsilon t)x)] - \varphi_n p_n(x)]$$

$$= \sum_{n=1}^{\infty} [\varphi_n((1+\varepsilon t)p_n(x)) - \varphi_n(p_n(x))]$$

$$\geq \sum_{n=1}^{\infty} \varepsilon t p_n(x) \varphi'_n(p_n(x))$$
(2)

Now (1) and (2) imply $\sum_{n=1}^{\infty} p_n(x)\varphi'_n(p_n(x)) \leq L \parallel x \parallel$, for each $x \in G$. A continuity argument shows that the above inequality is still true for each x in the closure \overline{G} . d) Since φ'_n is increasing we have: if $a, b \in \mathbb{R}, a \geq 0, b \geq 0$, then $|\varphi_n(a) - \varphi_n(b)| \leq |b - a| \max\{\varphi'_n(a), \varphi'_n(b)\}$. Let $x, y \in B(0, M)$, then

$$|f(x) - f(y)| \leq \sum_{n=1}^{\infty} |\varphi_n(p_n(x)) - \varphi_n(p_n(y))|$$

$$\leq \sum_{n=1}^{\infty} |p_n(x) - p_n(y)| \max\{\varphi'_n(p_n(x)), \varphi'_n(p_n(y))\}$$

$$\leq \sum_{n=1}^{\infty} |p_n(x) - p_n(y)| \varphi'_n(M) \leq \sum_{n=1}^{\infty} \varphi'_n(M) ||x - y||.$$

In the following theorem the equivalence ii), vii) has been proved in [1] in a different manner.

Theorem 2. Let X be a Banach space. Then the following are equivalent:

- *i)* X is finite dimensional;
- ii) weak star and norm convergence agree sequentially in X^* ;

- iii) each convex and continuous function $f : X \longrightarrow \mathbb{R}$ has the property: If $A \subset X$ is a bounded subset on which f is bounded, then f is Lipschitzian on some neighborhood of A;
- iv) each convex and continuous function $f : X \longrightarrow \mathbb{R}$ has the property: If $A \subset X$ is a bounded subset on which f is bounded, then f is Lipschitzian on A;
- v) each convex and continuous function $f : X \longrightarrow \mathbb{R}$ has the property: If $A \subset X$ is a bounded subset, then f is Lipschitzian on some neighborhood of A;
- vi) each convex and continuous function $f : X \longrightarrow \mathbb{R}$ has the property: If $A \subset X$ is a bounded subset, then f is Lipschitzian on A;
- vii) each convex and continuous function $f : X \longrightarrow \mathbb{R}$ has the property: If $A \subset X$ is a bounded subset, then f is bounded on A;
- viii) each convex and continuous function $f : X \longrightarrow \mathbb{R}$ is Lipschitzian on the open unit ball;
- ix) each convex and continuous function $f : X \longrightarrow \mathbb{R}$ is bounded on the open unit ball.

Proof. The equivalence i \Leftrightarrow ii is the Jossefsson-Nissenzweig Theorem, see [3], p. 219. The implications: $i \Rightarrow iii \Rightarrow iv$, $i \Rightarrow v \Rightarrow vi \Rightarrow vii \Rightarrow viii$, $i \Rightarrow vii \Rightarrow ix$ are clear or well known. For the implications $iv \Rightarrow ii$ and $viii \Rightarrow ii$, let us suppose that ii is not true. Then there exist $(x_n^*)_{n \in \mathbb{N}} \subset X^*$ such that: $x_n^* \longrightarrow 0$ weak*, (i.e. $x_n^*(x) \longrightarrow 0$, for each $x \in X$), but $||x_n^*|| = 1$, for each $n \in \mathbb{N}$. Let $p_n(x) = |x_n^*(x)|$. Now define $f: X \longrightarrow \mathbb{R}$, by $f(x) = \sum_{n=1}^{\infty} \frac{1}{n^2} [p_n(x)]^{n^3}$. Let us observe that the function f is bounded on the closed unit ball. If f is Lipschitz on the open unit ball, then lemma 1 c) shows that we must have for some L > 0; $\sum_{n=1}^{\infty} \frac{n^3}{n^2} [p_n(x)]^{n^3} \le L \parallel x \parallel$, for each $\parallel x \parallel \le 1$. Hence: $n[p_n(x)]^{n^3} \le L \parallel x \parallel$ for each $||x|| \leq 1$, and each $n \in \mathbb{N}$. Thus $n ||x_n^*||^{n^3} \leq L$, $n \leq L$ for each $n \in \mathbb{N}$, which is clearly a contradiction. For the implication $ix \rightarrow ii$ let us suppose that ii is not true. Then there exist $(x_n^*)_{n \in \mathbb{N}} \subset X^*$ such that: $x_n^* \longrightarrow 0$ weak^{*}, but $||x_n^*|| = 1$, for each $n \in \mathbb{N}$. Let $p_n(x) = |x_n^*(x)|$. Now define $f: X \longrightarrow \mathbb{R}$, by $f(x) = \sum_{n=1}^{\infty} n[p_n(x)]^n$. Lemma 1 a) ensures that f is a convex and continuous function. If f is bounded on the open unit ball, we must have for some L > 0: $\sum_{n=1}^{\infty} n[p_n(x)]^n \le L$, for each $||x|| \le 1$. Hence: $n[p_n(x)]^n \leq L$, for each $||x|| \leq 1$, and each $n \in \mathbb{N}$. Then $n||x_n^*||^n \leq L$, $n \leq L$ for each $n \in \mathbb{N}$, which is clearly a contradiction. We remark that Lemma 1 d), shows that the above functions are also Lipschitzian on each open ball $B(0,\varepsilon)$, for each $0 < \varepsilon < 1$.

Let us remark that in the book [5] chapter 34, boundedness issues of biconjugates are studied.

In the end we indicate also an another way to construct examples of continuous and convex functions as is given in [1] Lemma 2.1. In [1] Lemma 2.1. is used as a technical tool in order to obtain further results and characterizations of Banach spaces.

Lemma 3. With the same notation as in Lemma 1, we have:

a) If W is a bounded subset of X such that $p_n \to 0$, uniformly on W, and if $0 < M < \infty$

is such that $\sum_{n=1}^{\infty} \varphi'_n(M) < \infty$, then f is Lipschitz on the set $W + B(0,\varepsilon)$, for each $0 < \varepsilon < M$.

b) If W is a bounded subset of X such that sequence $(p_n)_{n \in \mathbb{N}}$, does not converge uniformly on W and c > 0 is such that $\lim_{n \to \infty} \varphi_n(c) = \infty$, then there exist $\lambda > 0$, such that f is unbounded on the set λW .

Proof.

a) Let $n_0 \in \mathbb{N}$ be such that $p_n(w) \leq M - \varepsilon$, $\forall n \geq n_0$, $\forall w \in W$. Hence for $n \geq n_0$, $x \in W + B(0, \varepsilon)$, $p_n(x) \leq M$. Now if $x, y \in W + B(0, \varepsilon)$, then:

$$|f(x) - f(y)| \leq \sum_{n=1}^{\infty} |\varphi_n(p_n(x)) - \varphi_n(p_n(y))|$$

$$\leq \sum_{n=1}^{\infty} |p_n(x) - p_n(y)| \max\{\varphi'_n(p_n(x)), \varphi'_n(p_n(y))\}$$

$$\leq \sum_{n=1}^{n_0} |p_n(x) - p_n(y)| \varphi'_n(L) + \sum_{n=n_0+1}^{\infty} |p_n(x) - p_n(y)| \varphi'_n(M)$$

$$\leq [\sum_{n=1}^{n_0} \varphi'_n(L) + \sum_{n=n_0+1}^{\infty} \varphi'_n(M)] ||x - y||$$

Where above we denote L > 0, such that $W + B(0, \varepsilon) \subset B(0, L)$.

b) Since the sequence $(p_n)_{n \in \mathbb{N}}$, does not converge uniformly on W, passing to a subsequence we have for some $\delta > 0$, there exist $w_k \in W$ such that $p_{n_k}(w_k) > \delta$, for each $k \in \mathbb{N}$. Let be $\lambda = \frac{c}{\delta} > 0$, $x_k = \frac{cw_k}{\delta} \in \lambda W$ and $f(x_k) \ge \varphi_{n_k}(p_{n_k}(x_k)) \ge \varphi_{n_k}(c)$, for each $k \in \mathbb{N}$. Since $\varphi_{n_k}(c) \to \infty$, we obtain $f(x_k) \to \infty$.

Acknowledgements. This paper has written when the author has been a TEMPUS grant in the period 2.05 - 26.07, 1996, a I.A.E Aix en Provence, France. We thank also the referees for carefully reading of the manuscript, their comments and useful remarks and also for showing us the reference [5].

References

- J. M. Borwein, S. Fitzpatrick, J. Vanderwerff: Examples of convex functions and classifications of normed spaces, Journal of Convex Analysis 1 (1994) 61–73.
- [2] J. M. Borwein: A survey of examples of convex functions and the classification of Banach spaces, in: Recent Developments in Optimization: VII Colloque Franco-Allemand d'Optimisation, Lecture Notes Economic and Mathematical Systems, R. Durier and C. Michelot (eds.), Springer-Verlag (1995) 260–271.
- [3] J. Diestel: Sequences and Series in Banach Spaces, Graduate Texts in Mathematics (1984).
- [4] G. Pritchard, G. Gurkan, A. Y. Ozge: A note on locally Lipschitzian functions, Math. Programming 71, series A (1995) 369–370.
- [5] S. Simons: Minimax and Monotonicity, Lecture Notes Math. Vol. 1963, Springer-Verlag (1998).