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We give elementary proofs of the the quasiconvex relaxation for the generalized Kohn-Strang functions
[1, 2] originally studied in an optimal design problem [8]. We show that by using the translation method,
we can recover the relaxations without using the homogenization method and the G-closure theory as in
[1, 2]. Our calculations give further geometric insight of the relaxation and connections to other related
areas.

1. Introduction

In this paper we give self contained elementary derivations (at least for the lower bounds)
of various generalizations of Kohn-Strang quasiconvex relaxation formulae [8], [1, Th.2.2],
[2, Th.5.3] and show that the quasiconvex envelopes can be obtained by maximizing a
family of much simpler quasiconvex functions derived by using single translations. The
main new observation is that it is possible to decompose the generalized Kohn-Strang
function f into many simpler functions fα, α ∈ Λ such that supα fα = f and the qua-
siconvex envelope Qfα for each function fα is easily found. A surprise is that supα Qfα
gives Qf . The idea for each step is simple but the calculations might not be straight
forward. However, please keep in mind that the seemingly complicated calculations are
just aimed to find maximum for a family of functions.

Our main tools are linear algebra and convexification of simple functions. All the results
give new representations of the corresponding quasiconvex relaxations. For λ > 0, the
generalized Kohn-Strang function f : MN×n → R+ is given by

f(A) = H(|A|) =

{

λ+ |A|2, A 6= 0,

0, A = 0,
(1)

and its quasiconvex relaxation were studied in a recent paper [1] by Allaire and Francfort.
The original function for n = 2 was introduced by Kohn and Strang [8] as a model in an
optimal design problem in electrostatics. The quasiconvex relaxation of f when n = 2 is

Qf(A) =

{

λ+ |A|2, if |A|2 + 2| adj2A| ≥ λ,

2
√
λ (|A|2 + 2| adj2A|2)

1/2 − 2| adj2A|, otherwise,
(2)

where adj2A is the N(N − 1)/2 vector of the 2× 2 minors of A ∈ MN×2.
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The quasiconvex relaxation (or envelope) of the generalized Kohn-Strang function (1) for
general n, N ≥ 2 obtained in [1] is

Qf(A) =



















λ+ |A|2, if
n

∑

i=1

ai ≥
√
λ,

|A|2 − (
n

∑

i=1

ai)
2 +

√
λ

n
∑

i=1

ai, if
n

∑

i=1

ai ≤
√
λ,

(3)

where a1 ≥ a2 ≥ · · · ≥ an ≥ 0 are the eigenvalues of [A] =
√
ATA.

The results above were generalized to the case of linear strains in [2]. Let e(A) = (A +
AT )/2 be the linear strain in Mn×n. Let

f(e(A)) =

{

|e(A)|2 + λ, if e(A) 6= 0,

0, if e(A) = 0.
(4)

This is a special case of a more general model considered in [2] by taking µA = 1/2, λA = 0
under their notation [2,pp.459]. Let a1 ≥ a2 ≥ · · · ≥ an be the eigenvalues of e(A), then
the quasiconvex relaxation of f given by (4) is

Rf(e(A)) = Qf(e(A)) =

{

|e(A)|2 + λ, if g∗(A) ≥ λ,

|e(A)|2 + 2
√

λg∗(A)− g∗(A), if g∗(A) ≤ λ,
(5)

where

g∗(A) =
1

2





(

n
∑

i=1

|ai|

)2

+

(

n
∑

i=1

ai

)2


 . (6)

Let me explain our approach stated at the beginning of this paper more precisely. We
borrow the idea of optimal translation method described in [5] to recover Qf . However,
we do not apply the approach in [5] direcly. Instead, we introduce a family of functions
fX for each direction X ∈ MN×n, |X| = 1 such that fX ≤ f and fX agrees with f
only on the one dimensional space spanned by X. For each X, we calculate QfX easily
by using a fixed simple translation. Then we show that the quasiconvex relaxation (3)
obtained in [1] is the maximum of these QfX . This links formula (3) to the relaxation of
the two-matrix problem studied in [7]. In the 2× 2 case, we show that the relaxation is
the maximum of quasiconvex relaxation of only two simple functions whose relaxations
are easy to calculate. For the case of linear strains (4) and (5), we can use a similar
method to reach Qf . Our approach does not rely on any knowledge of homogenization,
G-closure or bounds of effective moduli which have been developed by many authors since
the 1960’s.

At this stage, some readers might wonder whether there is such a need to try to recoverQf
by using an alternative method given that in principle, the homogenization method and
the translation method by using a single translation are equivalent shown in G. Milton’s
work for studying problems related to optimal bounds of effective moduli [10]. However,
even for translation by one single function, the resulting formula provides more geometric
and analytic information for the quasiconvex lower bound thus obtained. For a continuous
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function f : MN×n → R bounded below and for a given (quasi)-convex function, g, the
translation lower bound of f by g is given by h := C(f − g) + g ≤ f . If g is a rank-one
convex quadratic form (which applies to our case), the first obvious observation is that h
is the sum of a convex function and a rank-one convex quadratic form, hence not only h
is quasiconvex but also the gradient Dh is quasimonotone [13] in the sense that

∫

U

Dh(A+Dφ(x)) ·Dφ(x)dx ≥ 0

for every A ∈ MN×n, U ⊂ Rn open and φ ∈ C∞
0 (U,RN). This fact is important in the

study of the critical points of the variational integral I(u) =
∫

Ω
h(Du) + f · udx other

than minimizers [14]. Other methods might lead to the same formula in a different form
[7] and these facts could not be seen easily. We explain this point further in Remark 3.11
just before the Appendix.

The advantages of the (optimal) translation method are (i) when the translation functions
are known, the method will give a direct geometric construction of the bounds and (ii) it
applies to some nonlinear functions which are not of quadratic growth. An interesting ap-
plication of the optimal translation method is concerned with the equality among various
semiconvex hulls for compact sets K ⊂ MN×n and semiconvex envelopes [15]. Let

qr(f) = sup{g ≤ f, g rank-one convex quadratic function}.

Note that qr(f) is equivalent to the optimal translation bound by rank-one convex
quadratic forms defined in [5]. For a continuous function f : MN×n → R bounded
below: f(X) ≥ c|X|2 − C1, one has C(f) ≤ qr(f) ≤ Q(f) ≤ R(f) ≤ f. Among other
results, it was established in [15] that R(f) = C(f) if and only if qr(f) = C(f).

This implies that by using the optimal translation method one can tell whether the qua-
siconvex relaxation is trivial. It is however difficult to establish such a result by using
homogenization theory and the G-closure method. Note that in the statement above, we
do not assume any upper bound for f . Now we state our main results. Let

E+ =

{(

a b
−b a

)

, a, b ∈ R
}

, E− =

{(

a b
b −a

)

, a, b ∈ R
}

be the subspaces of conformal and anti-conformal matrices respectively in M2×2 - the
spaces of all 2× 2 matrices with Euclidean norm. Let PE+ : M2×2 → E+, PE− : M2×2 →
E− be the orthogonal projections respectively. It is well known and easy to check that

|PE+(A)|2 − |PE−(A)|2 = 2detA, for A ∈ M2×2.

Theorem 1.1. Suppose f is given by (1) with N = n = 2, then

Qf(A) = max{Qf+(A), Qf−(A)},

with

f+(A) = H(|PE+(A)|) + |PE−(A)|2, f−(A) = H(|PE−(A)|) + |PE+(A)|2, (7)

and
Qf+(A) = g(|PE+(A)|)− 2 detA, Qf−(A) = g(|PE−(A)|) + 2 detA, (8)
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where

g(t) = C(H(t) + t2) =







4
√

λ
2
t, if 0 ≤ t ≤

√

λ
2
,

t2 + λ, if t ≥
√

λ
2
.

(9)

Remark 1.2. In [5], Qf in Theorem 1.1 was obtained by using a single translation

q(A) = 2 tr(ATA)1/2 − 2| detA|.

However, it was not explained in [5] as how this translation is constructed, nor the trans-
lation q above sheds any light on how to find such a q for the higher dimensional cases.

To state our result for the general N × n case, let us introduce some notation and a
simple result in linear algebra. Let X ∈ MN×n with |X| = 1, we denote by PX and PX⊥

the orthogonal projections onto the one-dimensional space span(X) and its orthogonal
complement. If X is a rank-one matrix with |X| = 1, we let λX = 0, otherwise, we define

1

λX

= max
|a|=|b|=1

|PX(a⊗ b)|2

|PX⊥(a⊗ b)|2
< +∞,

where a ∈ RN , b ∈ Rn. It is easy to see that 1/λX is finite because

|PX⊥(a⊗ b)|2 ≥ c(X)|a|2|b|2

for some constant c(X) > 0 when rank(X) > 1. We have the following characterization
of λX . For the proof, see the Appendix.

Proposition 1.3. Suppose rank(X) > 1 with |X| = 1. Then λX = 1/x2
1 − 1 > 0, where

0 < x1 < 1 is the largest eigenvalue of [X] =
√
XTX.

For an N × n real matrix A, we define R(A) and R([A]) to be the range of A and [A]
respectively. The following result should be well-known. However, for the convenience of
the reader, I give a proof in the Appendix.

Proposition 1.4. Let A ∈ MN×n. Then there is a partial isometry RA ∈ MN×n from
R([A]) to R(A) such that |RAy| = |y| for y ∈ R([A]) and RAy = 0 if y ∈ (R([A]))⊥.
Furthermore, rank(RA) = rank([A]) = rank(A) and RT

ARA = PR([A]) - the orthogonal
projection from Rn to R([A]).

Theorem 1.5. Let f : MN×n → R+ be defined by (1) with n ≥ 2, then

Qf(A) = max
|X|=1

QfX(A), (10)

and the maximum is achieved at X = RA/|RA|, where fX(A) = f(PX(A)) + |PX⊥(A)|2
and

QfX(A) = gX

(

|PX(A)|
x1

)

+ |A|2 − |PX(A)|2

x2
1

=







|A|2 + 2
√
λ
(

|X·A|
x1

)

−
(

|X·A|
x1

)2

, if 0 ≤ |X·A|
x1

≤
√
λ,

|A|2 + λ, if |X·A|
x1

≥
√
λ.

(11)
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with

gX(t) =

{

2(
√
λ)t if 0 ≤ t ≤

√
λ,

t2 + λ if t ≥
√
λ

(12)

Let E ⊂ Mn×n be the subspace of all skew-symmetric real matrices. The orthogo-
nal complement E⊥ of E is the subspace of all symmetric matrices. We also see that
E does not have rank-one matrices and e(A) = PE⊥(A) is the orthogonal projection
onto E⊥. Let A ∈ E⊥ and A 6= 0, we may write A = RT diag(a1, . . . , an)R, and let
SA = RT diag(sgn(a1), . . . sgn(an))R, where diag(a1, . . . , an) denotes a diagonal matrix
with diagonal entries a1, . . . , an. For a lower semicontinuous function f : E⊥ → R, we
still denote by Qf(e(A)) the quasiconvex relaxation of f as a function of A, that is, if we
let F (A) = f(e(A)), then we let Qf(e(A)) := QF (A). We have

Theorem 1.6. Let f be given by (4). Then

Qf(e(A)) = max
|X|=1, X∈E⊥

QfX(e(A)),

where fX(e(A)) = f(e(PX(A)) + |e(PX⊥(A)|2 and

RfX(e(A)) = QfX(e(A)) = |e(A)|2 +H

(

|X · A|
ξX

)

=







|e(A)|2 + 2
√
λ
(

|X·A|
ξX

)

−
(

|X·A|
ξX

)2

, if 0 ≤ |X·A|
x1

≤
√
λ,

|e(A)|2 + λ, if |X·A|
ξX

≥
√
λ,

(13)

with

ξ2X = max
|a|=|b|=1

2(Xb · a)2

1 + (a · b)2
,

where H(t) = 2t
√
λ − t2 if 0 ≤ t ≤

√
λ and H(t) = λ if t ≥

√
λ. Further more the

maximum is reached at some X.

In Section 2, some basic preliminaries are given. We then establish our main result through
several lemmas in Section 3. In the Appendix, we give proofs of some simple results in
linear algebra which are used in this note including Propositions 1.3 and 1.4 and our key
lemma (Lemma 3.9) for the case of linear strains.

2. Preliminaries

We denote by MN×n the space of all real N × n matrices with Euclidean inner product
A · B = tr(ATB), where tr is the trace operator and AT the transpose of A. We also let
|A| to be the norm of A and define [A] =

√
ATA, which is a non-negative defined n × n

matrix.

Let f : MN×n → R be a continuous function. f is quasiconvex (c.f. [3, 11, 4]) in MN×n if
for every open and bounded subset Ω of Rn, every P ∈ MN×n and every φ ∈ C∞

0 (Ω,RN),

∫

Ω

f(P +Dφ(x))dx ≥
∫

Ω

f(P )dx.
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The class of quasiconvex functions is independent of the choice of Ω.

A function f : MN×n → R is called rank-one convex if for any A, B ∈ MN×n with
rank(A−B) = 1 and any 0 ≤ α ≤ 0,

f(αA+ (1− α)B) ≤ αf(A) + (1− α)f(B).

It is known that Quasiconvexity implies rank-one convexity [11, 3, 4] but the converse
is not true [12]. For a given function f : MN×n → R, we can consider its quasiconvex
relaxation Qf , its rank-one convex relaxation Rf and its convex relaxation Cf [4] as:

Qf = sup{g ≤ f ; g quasiconvex }, Rf = sup{g ≤ f ; g rank-one convex },
Cf = sup{g ≤ f ; g convex }.

We need the following result which was essentially due to von Neumann (see [9]). We will
deduce the result by using [9].

Proposition 2.1. Suppose A, B ∈ MN×n and a1 ≥ · · · ≥ an ≥ 0 and b1 ≥ · · · ≥ bn ≥ 0,
are the eigenvalues of [A] and [B] respectively. Then

| tr(ATB)| ≤
n

∑

i=1

aibi.

We conclude this section by introducing the iteration method [8] in calculating Rf for a
lower semicontinuous function f : MN×n → R bounded below, namely,











R0f = f,

Rk+1f(A) = inf{λRkf(A1) + (1− λ)Rkf(A2),

λA1 + (1− λ)A2 = A, rank(A1 − A2) ≤ 1}.

Then it was proved in [8] that Rf = limk→∞Rkf .

Notice that the Kohn-Strang construction above applies to convex relaxation Cf . In
the iteration scheme above we only need to drop the restriction rank(A1 − A2) ≤ 1
to obtain a characterization of convexification of f by using the limit of Ckf , that is,
Cf = limk→∞Ckf . We also notice that Ckf ≤ Rkf by definition.

3. Proofs of The Results

We prove Theorem 1.1 through Lemma 3.1 and Lemma 3.2.

Lemma 3.1. Let Λ = {a⊗ b, a, b ∈ R2}. Then both PE+ : Λ → E+ and PE− : Λ → E−
are onto mappings.

Proof. This is easy. Let

E1 =

√
2

2
I, E2 =

√
2

2

(

0 1
−1 0

)

,

where I is the identity matrix. Then E1, E2 form an orthonormal basis of E+. Let
a = (1, 0) and b =

√
2(t, s), we have P+(a ⊗ b) = tE1 + sE2. The first claim is proved.

The proof for PE− is similar.
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Lemma 3.2. Let f+(·) be defined by (7). Then

Qf+(A) = g(|PE+(A)|)− 2 detA, Qf−(A) = g(|PE−(A)|) + 2 detA,

where g(t) is given by (9).

Proof. It is easy to see that g(|PE+(A)|) = CE+

(

h(PE+(A))
)

where h(PE+(A)) =
f(PE+(A) + |PE+(A)|2, and f+(A) = h(PE+(A)) − 2 detA. Also f+(A) ≥ g(|PE+(A)|) −
2 detA, while the right hand side of the above inequality is quasiconvex (and also rank-
one convex), hence Rf+(A) ≥ Qf+(A) ≥ g(|PE+(A)|) − 2 detA. Now, we show that the
reversed inequality holds. We apply Proposition 1.3 and consider R1f+(A). Let 0 < α < 1
and let B1, B2 ∈ E+ be such that αB1 + (1 − α)B2 = PE+(A). Let B = B1 − B2, we
have, from Lemma 3.1 that there is some a ⊗ b ∈ Λ such that PE+(a ⊗ b) = B. Now we
set A1 = A + (1 − α)a ⊗ b, A2 = A − αa ⊗ b, we have A1 − A2 = a ⊗ b, P+(A1) = B1,
P+(A2) = B2. Therefore

R1f+(A) ≤ αf+(A1) + (1− α)f+(A2) = αf+(A+ (1− α)a⊗ b) + (1− α)f+(A− αa⊗ b)

= αh(P+(A+ (1− α)a⊗ b)) + (1− α)h(P+(A− αa⊗ b))

− 2α det(A+ (1− α)a⊗ b)− 2(1− α) det(A− αa⊗ b)

= αh(B1) + (1− α)h(B2)− 2 detA.

Taking infimum on B1, B2 in E+ with αB1 + (1 − α)B2 = PE+(A) for some 0 ≤ α ≤ 1,
we see that

R1f+(A) ≤ C1h(PE+(A))− 2 detA.

Repeating this process, we see that

Rkf+(A) ≤ Ckh(PE+(A))− 2 detA

for k = 1, 2, . . . . Passing to the limit k → ∞, we obtain Rf+(A) ≤ CE+h(PE+(A)) −
2 detA. Hence

Rf+(A) = Qf+(A) = g(|PE+A|)− 2 detA.

The calculation for Qf−(·) is similar.

Proof of Theorem 1.1. We only need to show that Qf(A) = max{Qf+(A), Qf−(A)}.
Let |PE+(A)| = t, |PE−(A)| = s. Then Qf+(A) = g(t) + s2 − t2, Qf−(A) = g(s) + t2 − s2.
We prove that Qf+(A) ≤ Qf−(A) if and only if s ≥ t. We have g(t)+s2−t2 ≤ g(s)+t2−s2

if and only if g(t)− 2t2 ≤ g(s)− 2s2, which is equivalent to that g(t)− 2t2 is increasing.
The later statement can be easily checked by differentiating the function. Thus we have
established that max{Qf+(A), Qf−(A)} = Qf+(A) if and only if |PE+(A)| ≥ |PE−(A)|,
so that

√
2|PE+(A)| =

√

2|PE+(A)|2 = (|A|2 + 2| detA|)1/2. It is easy to see then that

max{Qf+(A), Qf−(A)} = Qf+(A) = g(|PE+(A)|)− 2| detA| = Qf(A).

If |PE+(A)| ≤ |PE−(A)|,

max{Qf+(A), Qf−(A)} = Qf−(A) = g(|PE+(A)|)− 2| detA| = Qf(A).

The proof is finished.
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Next we prove Theorem 3.2 through Lemma 3.3 and Lemma 3.4.

Lemma 3.3. For X ∈ MN×n with |X| = 1, QfX(·) is given by (11) with gX(·) given by
(12).

Proof. If rank(X) > 1, let x1 be the greatest eigenvalue of [X] =
√
XTX. We have,

from Proposition 1.3 that λX = 1/x2
1 − 1. From the definition of λX , we also see that

|PX⊥(·)|2−λX |PX(·)|2 is a rank-one convex quadratic form, so is quasiconvex [3]. In fact,
for every rank-one matrix a ⊗ b ∈ MN×n, |PX⊥(a × b)|2 − λX |PX(a × b)|2 ≥ 0 and we if
we let ΛX = {a⊗ b, |PX⊥(a⊗ b)|2−λX |PX(a⊗ b)|2 = 0}, then PX : Λ → span(X) is onto
by taking a = Xu, b = tu for t ∈ R. Thus a similar argument as in the proof of Lemma
3.2 gives

RfX(A) = QfX(A) = CX

(

H(|PX(A)|2 + λX |PX(A)|2
)

+(|PX⊥(A)|2−λX |PX(A)|2), (14)

where CX(H(|PX(A)|) + λX |PX(A)|2 = gX(|X · P |/x1) is the convex relaxation along the
one dimensional space span(X). The calculation of the convexification is by examining
tangent lines of t2 + λ passing through the origin and is left to the reader.

If rank(X) = 1, X = a0 ⊗ b0, then λX = 0. We can easily show that

RfX(A) = QfX(A) = CX(H(|PX(A)|)) + |PX⊥(A)|2

by using a similar method as in the proof of Lemma 3.2. In fact, if PX(A) = t0X and
X1 = t1X, X2 = t2X ∈ span(X), with αX1+(1−α)X2 = t0X = PX(A), for some 0, α < 1,
then X1 −X2 is obviously a rank-one matrix. Let A1 = A + (1− α)X1, A2 = A − αX2,
then rank(A1 − A2) = 1 and αA1 + (1− α)A2 = A. Furthermore,

PX⊥(A1) = PX⊥(A2) = PX⊥(A), PX(A1) = X1, PX(A2) = X2.

Hence

R1fX(A) ≤ αfX(A1) + (1− α)f(A2) = αH(|X1|) + (1− α)H(|X2|) + |PX⊥(A)|2,

so that R1fX(A) ≤ C1(H(|PX(A)|)) + |PX⊥(A)|2. Repeating this we see that

RfX(A) ≤ CX (H(|PX(A)|) + |PX⊥(A)|2.

Since the reversed inequality is trivially true, we reach our conclusion.

In both cases we have a unified formula (12) for QfX .

Lemma 3.4. For a fixed A 6= 0, the maximum max|X|=1 QfX(A) achieves at ÝRA =
RA/|RA|, where RA is given by Proposition 1.4 and

Qf(A) = Qf ÝRA
(A). (15)

Proof. We first establish (15) with Qf given by (3), which implicitly establishes the fact
that QfX(A) reaches its maximum at X = ÝRA. However, we will give a direct proof that
the maximum is attained at ÝRA in Proposition 3.5 following the proof of Lemma 3.4.

Recall (11) that

RfX(A) = QfX(A) =







|A|2 + 2
√
λ
(

|X·A|
x1

)

−
(

|X·A|
x1

)2

, if 0 ≤ |X·A|
x1

≤
√
λ,

|A|2 + λ, if |X·A|
x1

≥
√
λ.
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We notice that rank(RA) = rank([A]) = rank(A) := m ≥ 1. So |RA| =
√
m and the

all non-zero eigenvalues of [ ÝRA] equal to 1/
√
m. In fact [ ÝRA] =

√

ÝRT
A
ÝRA = PR([A])/

√
m.

Hence if we substitute X = ÝRA in the formula above and write A = RA[A], firstly, we
have λ ÝRA

= m− 1. Secondly, we have

|P ÝRA
(A)|2 =

(

tr(RT
ARA[A])√
m

)2

=

(

tr(PR([A])[A])√
m

)2

=
(tr[A])2

m
.

Hence

Qf ÝRA
(A) = g ÝRA

(

tr[A]√
m

)

+ |A|2 − (tr[A])2, (16)

with

g ÝRA

(

tr[A]√
m

)

=

{

2
√
λ tr[A], if 0 ≤ tr[A] ≤

√
λ,

(tr[A])2 + λ, if tr[A] ≥
√
λ.

(17)

Combining (16) and (17) and recalling our notation tr[A] = a1 + · · · + an we may claim
that at A, if we compare (3) and (16)-(17), we have Qf(A) = Qf ÝRA

(A). Implicitly, we
have also proved that max|X|=1 QfX(A) = Qf ÝRA

(A) because for each X with |X| = 1,

fX(·) ≤ f(·), so max|X|=1 QfX(A) ≤ Qf(A). Since at ÝRA, the upper bound Qf(A) is
reached, we see that Qf ÝRA

(A) is a maximum.

The proof of Lemma 3.4 and hence Theorem 1.5 is complete.

If we did not know formula (3) for Qf , we can still show that

Proposition 3.5. We have max|X|=1 QfX(A) = Qf ÝRA
(A).

Proof. In the last part of (11), if we let t = |X·A|
x1

and define

F (t) =

{

2
√
λt− t2, if 0 ≤ t ≤

√
λ,

λ if t ≥
√
λ,

we see that F (t) is increasing. So the maximum of QfX(A) is attained if we can find
max|X|=1(|X · A|/x1). Now we apply Proposition 2.1 to X and A to obtain

|X · A|
x1

=
| tr(XTA)|

x1
≤

n
∑

i=1

ai
xi

x1
≤

n
∑

i=1

ai.

This is because x1 is the largest eigenvalue of [X]. We can easily check that this upper
bound can be reached by taking X = ÝRA and by assuming that rank(A) = m ≤ n.
Therefore QfX(A) is maximized at ÝRA. The proof is finished.

Remark 3.6. Without knowing the quasiconvex relaxation formula (3), we can only
claim that the right hand side of (3), which is alternatively obtained by maximizing
simple quasiconvex functions, is just a quasiconvex lower bound. So we still need to use
‘Step 3’ of the one page proof in [1,pp.313–314] to show that the right hand side of (3)
is a rank-one convex upper bound to finish the proof. However, that part in [1] is also
elementary, by which I mean that it does not involve either G-closure or homogenization
arguments.
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Notice that in Lemma 3.3, the function H needs not to be quadratic. In fact we can
obtain the quasiconvex relaxation of fX by using a single ‘universal’ translation. The
following example serves as another justification for using the translation method where
I do not know how to use the G-closure theory.

Example 3.7. Suppose X ∈ MN×n with |X| = 1 and rank(X) > 1. Then for any non-
negative continuous function g : span(X) → R, the quasiconvex envelope of GX : MN×n

defined by GX(A) = g(PX(A)) + |PX⊥(A)|2 is given by

QGX(A) = CX(g(PX(A)) + λX |PX(A)|2) + [|PX⊥(A)|2 − λX |PX(A)|2)].

This result follows directly from the proof of Lemma 3.3.

Let us use this general formula to find the quasiconvex relaxation for some slightly more
general two-matrix models than that of Kohn [7]. Suppose X be as above and

g(t) = λX
2p−1

p
min{|t− 1|p, |t+ 1||p}

with p > 0. Let us consider GX(A) = g(PX(A)) + |PX⊥(A)|2. Here we have misused
notation and identified g(PX(A)) as g(X · A). The coefficient of g is just to make the
calculation of C[g(t)+λX |t|2) easier. We then have, by using the relaxation formula above
that

QGX(A) =















GX(A) |PX(A)| ≥
1

2
,

λX(
1

22
+

1

2p
)− λX |PX(A)|2 + |P⊥

X (A)|2.

Note that both GX and QGX vanish precisely at X and −X and along the X-direction
the function is of p-th growth at infinity. For example, when t > 1, QGX(tX) = g(t) =
λX

2p−1

p
|t− 1|p. If 0 < p < 1, QGX(tX) is of sublinear growth.

Now we turn to the proof of Theorem 1.6.

Lemma 3.8. The quasiconvex and rank-one relaxations of fX in Theorem 1.6 are both
given by (13), where X ∈ E⊥, |X| = 1.

Proof. We use the same method as in the proof of Lemma 3.4. We recall that span(X)
has rank-one connections in the linear elasticity setting if either X is a rank-one matrix
or X is rank-two while the two non-zero eigenvalues have opposite signs [7]. In this case,
there is a rank-one matrix a ⊗ b ∈ Mn×n such that PX⊥∩E⊥(a ⊗ b) = 0 and we define
λX = 0. If rank(X) > 2 or rank(X) = 2 but the nonzero-eigenvalue have the same sign,
we see that for some CX > 0, one has |PX⊥∩E⊥(a ⊗ b)|2 ≥ CX |a|2|b|2 for all rank-one
matrices a⊗ b. We then define

1

λX

= sup
|a|=|b|=1

|PX(a⊗ b)|2

|PX⊥∩E⊥(a⊗ b)|2
=

1

inf|a|=|b|=1
|P

X⊥∩E⊥ (a⊗b)|2
|PX(a⊗b)|2

.

Notice that
|PX⊥∩E⊥(a⊗ b)|2 = |PE⊥(a⊗ b)|2 − |PX(a⊗ b)|2

=
1

2

(

|a|2|b|2 + 2(a · b)2
)

− |PX(a⊗ b)|2 ≥ 0,
(18)
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we have, when |a| = |b| = 1, that

λX = inf
|a|=|b|=1

1

2

(1 + (a · b)2)
|PX(a⊗ b)|2

− 1 =
1

ξ2X
− 1

where

ξ2X = 2 sup
|a|=|b|=1

|PX(a⊗ b)|2

1 + (a · b)2
.

We can then claim that the quadratic form

qX(A) = |PX⊥∩E⊥(A)|2 − λX |PX(A)|2

is rank-one convex and there is some rank-one matrix a⊗ b such that qX(a⊗ b) = 0. Now
we have

QfX(e(A)) ≥ C
(

f(PX(A) + λX |PX(A)|2
)

+ qX(A)

and the right hand side of the above inequality is quasiconvex. Since span(X) is one
dimensional and M = {(a⊗ b), qX(a⊗ b) = 0} 6= {0}, the projection PX : M → span(X)
is onto, so we can show as in the proof of Theorem 1.1 that

RfX(e(A)) ≤ C
(

f(PX(A) + λX |PX(A)|2
)

+ qX(A).

A simple calculation of the above convexification gives (13).

Now we establish Theorem 1.6. Suppose x ∈ R, we let x+ = x if x ≥ 0 and x+ = 0
if x < 0. Similarly, we let x− = −(−x)+. The following result gives the value of ξX in
Theorem 1.6.

Lemma 3.9. Let X ∈ E⊥ with |X| = 1. Suppose x1 ≥ x2 ≥ · · · ≥ xn are the eigenvalues
of X. Let a, b ∈ Rn. Then

ξ2X = 2 max
|a|=|b|=1

(aTXb)2

1 + (a · b)2
= max

1≤i, j≤n
{(xi)

2
+ + (xj)

2
−} := η2X . (19)

We see from (18) that ξX ≤ 1, and the equality holds if and only if X is compatible, that
is, either rank(X) = 1 or rank(X) = 2 and the non-zero eigenvalues of X have opposite
signs. We establish Lemma 3.9 in the Appendix. Note that Lemma 3.9 is interesting
by its own right. If we view aTXb above as a symmetric bilinear form on Rn, (19) is
equivalent to

|aTXb| ≤ ηX√
2

√

|a|2|b|2 + (a · b)2,

and the coefficient is optimal. If X is positive definite, one has ηX = λmax, the largest
eigenvalue of X and the inequality above becomes

|aTXb| ≤ λmax√
2

√

|a|2|b|2 + (a · b)2.

This is a sharp generalization of the Cauchy-Schwartz inequality and can give improved
Hilbert inequality in l2 [16].
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Lemma 3.10. For A ∈ E⊥, A 6= 0, Rf(e(A)) = Qf(e(A)) = maxX∈E⊥, |X|=1 QfX(e(A))

and the maximum is reached at some X = ÝSA.

Proof. Since for each X ∈ E⊥ with |X| = 1, we have fX(e(A)) ≤ f(e(A)),

max
X∈E⊥, |X|=1

QfX(e(A)) ≤ Qf(e(A)) = Rf(e(A)).

As in the proof of Lemma 3.4, we observe that H(·) defined by (13) is an increasing
function of |X · A|/ξA. Notice that we only need to consider A ∈ E⊥ so that e(A) = A.
If the eigenvalues of A are all non-negative or non-positive, we take SA = I and ÝSA =
SA/|SA| = I/

√
n so that ξSA

= 1/
√
n and | ÝSA ·A|/ξ ÝSA

= tr[A]. A direct calculation then
gives

Qf(A) = Qf ÝSA
(A) ≤ max

|X|=1, X∈E⊥
QfX(A)

and the required conclusion follows.

If the eigenvalues of A have different signs, we may assume that they satisfy

a1 ≥ · · · ap ≥ 0 ≥ ap+1 ≥ · · · ≥ an.

We also have A = RT diag(a1, . . . , an)R where R is a rotation. In this case we take
SA = RT diag(s1, · · · , sn)R where

sk =























p
∑

i=1

ai, if 1 ≤ k ≤ p,

n
∑

i=p+1

ai, if p+ 1 ≤ k ≤ n.

Observe that
∑p

i=1 ai > 0 and
∑n

i=p+1 ai < 0, and SA has only two distinct eigenvalues

and they have opposite signs. Let ÝSA = SA/|SA|, then

ξ2ÝSA
=

1

|SA|2

(

(

p
∑

i=1

ai)
2 + (

n
∑

i=p+1

ai)
2

)

,

so that

| ÝSA · A|
ξSA

=

√

√

√

√

(

(

p
∑

i=1

ai)2 + (
n

∑

i=p+1

ai)2

)

=
√

2g(A).

Hence we obtain Qf ÝSA
(A) = Qf(A) by a direct calculation. The proof is finished.

We conclude by examine the well-known explicit relaxation for the double-well energy
given by the squared-distance function to a two-point set [7] and explain what further
information we may obtain if we use a single translation.

Remark 3.11. Let us consider

f(X) = dist2(X, {A1, A2}) = min{|X − A1|2, |X − A2|2},
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where dist2 is the squared distance function from a point X ∈ MN×n to the set {A1, A2}.
We give a short proof of the relaxation formula Qf first. An explicit formula for Qf was
obtained by Kohn [7] through Fourier analysis. We adopt the same method for the proof
of Lemma 3.3.

After a simple translation in MN×n, we may consider an equivalent function

g(A) = dist2(A, {−X0, X0}).

If we let X = X0/|X0|, we can re-write g(A) as g(A) = dist2(PX(A), {−X0, X0}) +
|PX⊥(A)|2, so

Rg(A) = Qg(A)

= CX

(

dist(PX(A) + λX |PX(A)|2
)

+ [|PX⊥(A)|2 − λX |PX(A)|2]
= G(A) +H(A),

where λX is given by Proposition 1.3. Note that G(A) is a convex function and H(A)
a rank-one convex quadratic form. It is easy to see that Qg still has the double-well
structure and the gradient of Qg is quasimonotone. Furthermore, if we consider the
variational integral Iε(u) =

∫

Ω
Qg(Du) + εf · udx under the natural boundary condition,

we can show that Iε(·) satisfies a weak version of the Palais-Smale compactness condition,
and for sufficiently small ε > 0, Iε(·) has at least three critical points - a global minimizer,
a local minimizer and a mountain pass solution.

Let us compare our relaxation formula with Kohn’s original result obtained by using the
Fourier analysis and examine the difference.

We still consider the special case g(A) = dist2(A, {−X0, X0}) as above. Then the quasi-
convex envelope of Qg of g is given by [7]

Qg(P ) = min
0≤θ≤1

{

|X − (1− 2θ)X0|2 + 4θ(1− θ)[|X0|2 − λmax]
}

,

where λmax is the largest eigenvalue of the matrix XT
0 X0.

Although the two relaxation formulae are in fact the same, It would be more difficult
to see that the second relaxation formula obtained in [7] naturally gives quasimonotone
gradient, the fact that Iε(·) satisfies the weak PS condition is even less obvious.

Appendix

We give proofs of Propositions 1.3, 1.4, 2.1 and Lemma 3.9 in this section.

Proof of Proposition 1.3. If rank(X) > 1, let x1 ≥ x2 ≥ · · · ≥ xn ≥ 0 be the eigenval-
ues of [X] =

√
XTX. From the definition of λX , we see that

1

λX

= max
|a|=|b|=1

|PX(a⊗ b)|2

|PX⊥(a⊗ b)|2
= max

|a|=|b|=1

|PX(a⊗ b)|2

1− |PX(a⊗ b)|2
,

hence

λX =
1

max|a|=|b|=1 |PX(a⊗ b)|2
− 1.
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If we view a ∈ RN , b ∈ Rn as column vectors, we have

|PX(a⊗ b)|2 = (aTXb)2 ≤ |a|2|Xb|2 ≤ x2
1.

New we show that the maximum can be reached. Let u be a unit eigenvector of [X]
corresponding to the largest eigenvalue x1 and let a = Xu/x1, b = u. Then

|PX(a⊗ b)|2 = (aTXb)2 = (uTXTXu)2/x2
1 = x2

1.

Therefore, λX = 1
x2
1
− 1.

Proof of Proposition 1.4. We follow [6] for the n×n case and notice that |[A]x| = |Ax|
for every x ∈ Rn. We first define RA on R([A]) as a mapping to R(A). If y = [A]x,
we let RAy = Ax. This mapping is well-defined because if y = [A]x1 = [A]x2, we can
easily seen that Ax1 = Ax2. In fact, |A(x1 − x2)| = |[A](x1 − x2)| = 0. It is also easy to
check that RA : R([A]) → R(A) is linear and |RAy| = |y|, hence RA is an isometry. Since
both R([A]) and R(A) are finite dimensional, we have dim(R([A])) = dim(R(A), hence
rank(A) = rank([A]). Next we define RAy = 0 if y ∈ (R([A]))⊥. Thus RA is a linear
transform from Rn to RN with rank(RA) = dim(R(RA)) = dim(R(A)) = rank(A).

Finally, we show that RT
ARA = PR([A]). By the parallelogram law, we see that (RAy1) ·

(RAz1) = y1 · z1 for y1, z1 ∈ R([A]). Now for y, z ∈ Rn, we have the orthogonal de-
composition y = y1 + y2, z = z1 + z2 with y1, z1 ∈ R([A]) and y2, z2 ∈ (R([A]))⊥.
So

(RT
ARAy) · z = (RAy) · (RAz) = (RAy1) · (RAz1) = y1 · z1 = (PR([A])y) · z

for all z ∈ Rn, hence RT
ARAy = PR([A])y for all y ∈ Rn. The conclusion follows.

Proof of Proposition 2.1. By a result in [9, pp.173]: | tr(AB)| ≤
∑n

i=1 aibi for A, B ∈
Mn×n, where a1 ≥ · · · ≥ an ≥ 0, b1 ≥ · · · ≥ bn ≥ 0 are the eigenvalues of [A] and [B]
respectively. To apply this result to not necessarily square matrices, we first notice the
well-known fact that for A ∈ MN×n, ATA and AAT have the same non-zero eigenvalues.
Next we can always enlarge A and B to be square matrices by adding n − N rows with
zero entries if N < n, or N − n columns if n < N , say

ÝA =

(

A

0

)

, ÝB =

(

B

0

)

, if N < n; ÝA = (A, 0), ÝB = (B, 0), if N > n.

in both cases we see that the non-zero eigenvalues of [ ÝAT ] and [A], and those of [ ÝB] and
[B] are the same respectively. Moreover, tr ÝAT ÝB = trATB. So the conclusion follows.

We conclude this section by establishing Lemma 3.9.

Proof of Lemma 3.9. Up to a simple rotation, we may assume that |X| = 1 and X =
diag(x1, . . . , xn) is a diagonal matrix. For a fixed a ∈ Rn, |a| = 1, we consider two different
cases:

(i) Xa is parallel to a;

(ii) Xa is not parallel to a.
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If (i) happens, we see that either Xa = 0 and such an a cannot get us the maximum,
so we can safely ignore the case. If Xa 6= 0, all the eigenvalues are the same and equals
±1/

√
n, so

2
(aTXb)2

1 + (a, b)2
=

2

n

(a, b)2

1 + (a, b)2
≤ 1

n
= max

1≤i, j≤n
{(xi)

2
+ + (xj)

2
−}, (A1)

and the maximum is achieved at a = b = (1, 0, . . . , 0)T .

Let us consider Case (ii) which is less as trivial. Our plan is to maximize the left hand
side of (19) with respect to b first, then we maximize the resulting quantity with respect
to a. We apply the Gram-Schmidt process to a and Xa. Let

u =
Xa− (Xa, a)a

|Xa− (Xa, a)a|
,

then a, u form an orthonormal basis of span(a, Xa), and Xa = (Xa, a)a+(Xa, u)u. We
can also write b = αa + βu + v where v is orthogonal to span(a, Xa). Since |b| = 1, we
have α2 + β2 ≤ 1 and

2
(aTXb)2

1 + (a, b)2
= 2

(α(Xa, a) + β(Xa, u))2

1 + α2
.

To simplify our calculation, we may consider the function

g(α, β) =
√
2
α(Xa, a) + β(Xa, u)√

1 + α2
, α2 + β2 ≤ 1,

and maximize it, then square the resulting maximum. The reason is that the function is
odd, hence we only need to consider its maximum.

Since Xa is not parallel to a, (Xa, u) 6= 0, so g does not have any interior stationary
points. Hence the maximum is on the boundary α2 + β2 = 1. We may let α = cos θ,
β = sin θ and find stationary points of g(cos θ, sin θ). A simple calculation leads to the
condition for stationary points:

−(Xa, a) sin θ + 2(Xa, u) cos θ = 0.

so we may choose

sin θ = 2(Xa, u)/
√

(Xa, a)2 + (2(Xa, u))2, cos θ = (Xa, a)/
√

(Xa, a)2 + (2(Xa, u))2

and the maximum is max g =
√

(Xa, a)2 + 2(Xa, u)2. From the definition of u, we see
that (Xa · u)2 = |Xa|2 − (Xa, a)2, hence

max
|b|=1

2
(aTXb)2

1 + (a, b)2
= 2|Xa|2 − (Xa, a)2.

Notice now that if
max
|a|=1

{2|Xa|2 − (Xa, a)2} ≤ η2X ,
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we reach our conclusion.

Now we maximize the right hand side of the above equality by using the Lagrangian
multipliers with the constraint |a|2 = 1: Let a = (a1, . . . , an)

T , we have

4x2
i ai − 4(Xa, a)xiai = 2τai.

If xi = 0 for some i while ai 6= 0, we may claim that τ = 0. So if we sum up the above
equality from 1 to n, we obtain 4|Xa|2 − 4(Xa, a)2 = 0 which implies that Xa is parallel
to a which contradicts to our assumption for Case (ii).

Now we claim that there are less than three non-zero ai’s corresponding to distinct eigen-
values of X respectively. If the claim was not true, there are xi 6= xj 6= xk, such that
al 6= 0, with l = i, j, k, we have x2

i − (Xa, a)xi = τ/2, we subtract the equality corre-
sponding to aj to obtain

xi + xj − (Xa, a) = 0. (A2)

Applying this to i, j, k, we have xi + xj = xi + xk = xk + xj, hence xi = xj = xk, a
contradiction.

If there is only one xi such that a is the corresponding eigenvector, with |a| = 1, then
2|Xa|2 − (Xa, a)2 = x2

i ≤ η2X .

If there are two distinct eigenvalues xi and xj such that a = v + w where Xv = xiv and
Xw = xjw such that |v|2 + |w|2 = 1, v 6= 0, w 6= 0, then from (A2),

0 = xi + xj − (Xa, a) = xi + xj − (xi|v|2 + xj|w|2) = xi(1− |v|2) + xj(1− |w|2).

We see that xi and xj must have different signs. Otherwise, we have |v|2 = 1 and |w|2 = 1
which contradicts to |v|2 + |w|2 = 1 and v 6= 0, w 6= 0. hence we may assume that xi > 0,
xj < 0 and solve |v|2 and |w|2 by xi and xj. We have (1− |w|2)/xi = −(1− |v|2)/xj := t,
so that 1− |w|2 = txi, 1− |v|2 = −txj. Thus 1 = t((xi − xj), hence t = 1/(xi − xj). We
then have

|v|2 = 1 +
xj

xi − xj

, |w|2 = 1− xi

xi − xj

.

Consequently,

2|Xa|2 − (Xa, a)2 = 2

(

x2
i

(

1 +
xj

xi − xj

)

+ x2
j

(

1− xi

xi − xj

))

− (xi + xj)
2

= 2(x2
i + 2x2

j + xixj)− (xi + xj)
2 = x2

i + x2
j = (xi)

2
+ + (xj)

2
−.

Therefore, we may claim that

max
|a|=1

max
|b|=1

2
(bTXa)2

1 + (a, b)2
= max

i,j
{(xi)

2
+ + (xj)

2
−}.

Now it is easy to see that ξ2X ≤ η2X , and η2X can be reached by taking a and b properly.
The proof is finished.
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