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A standard approach to duality in stochastic optimization problems with constraints in L∞ relies upon
the Yosida - Hewitt theorem. We develop an alternative technique which employs only ”elementary”
means. The technique is based on an ε-regularization of the original problem and on passing to the limit
as ε → 0 with the help of a simple measure-theoretic fact – the biting lemma .
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1. Introduction

The paper analyzes dynamic problems of stochastic optimization in discrete time. The
problems under consideration are concerned with maximizing concave functionals on con-
vex sets of feasible strategies (programs). Feasibility is defined in terms of linear inequality
constraints in L∞ holding almost surely. The focus of the work is the existence of dual
variables – stochastic Lagrange multipliers in L1 – relaxing the constraints. Such Lagrange
multipliers are important in various applications. In particular, they play key roles in the
analysis of stability and sensitivity of solutions to stochastic optimization problems, as
well as in the design of algorithms for computing these solutions [14]. Also, such multi-
pliers often have clear interpretations, especially in models related to economics, which
sheds additional light on the issues under study [1].

The most common approach to Lagrangian relaxation for the class of optimization prob-
lems in question is as follows. First, by using an infinite-dimensional version of the Kuhn -
Tucker theorem, one constructs multipliers belonging to the dual, (L∞)∗, of the space L∞.
Linear functionals in (L∞)∗ are finitely additive measures. According to the Yosida - He-
witt theorem [23], any functional π ∈ (L∞)∗ can be decomposed into the sum π = πa+πs,
where πa is absolutely continuous and πs is singular. Absolute continuity means that πa

is representable by a function in L1. The functions in L1 representing the absolutely con-
tinuous components of the functionals constructed turn out to be the desired Lagrange
multipliers.
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The idea of the method outlined goes back to Dubovitskii and Milyutin [6] (who dealt
originally with deterministic continuous-time problems). Variants of the method appli-
cable to stochastic models were developed by Evstigneev [9], [10], Radner [18], Taksar
[22], Rockafellar and Wets [19], [20], Fl̊am [12], Dempster [5], and others. Analogous
techniques for equilibrium (rather than optimization) problems arising in economics were
proposed by Bewley [2].

In the present paper, we suggest a different procedure for constructing the Lagrange
multipliers. We first consider an appropriate ÔregularizationÔ of the given problem, de-
pending on a small parameter, ε > 0. We construct (L∞)∗-multipliers for this version of
the problem. Its regularity permits to show that the multipliers obtained are absolutely
continuous, i.e., representable by functions in L1. Having established this, we let ε → 0
and prove that the corresponding vector functions in L1 are norm-bounded. Then we
use an elementary measure-theoretic fact – the Ôbiting lemmaÔ. By virtue of this lemma,
any L1-bounded sequence of functions contains a subsequence which can be modified on
a family of sets with measures tending to zero so that the resulting sequence will be uni-
formly integrable. Any uniformly integrable set of functions in L1 has a weak limit point.
Such a limit point provides the sought-for vector of Lagrange multipliers.

The above procedure can be applied to a whole range of optimization problems with
constraints in L∞. In this paper, we have chosen – as a convenient vehicle for presenting
the method – a stochastic analogue of Gale’s [13] economic model. Stochastic versions
of Gale’s model represent a class of dynamic stochastic optimization problems which is
investigated in much detail – see, e.g., Dynkin [7], Radner [18], Arkin and Evstigneev [1].
Our assumptions are milder than those in the literature cited (in particular, they do not
imply that the optimal values are attained).

The paper is organized as follows. In Section 2, we describe the optimization problem
and state the results. In Section 3, we present the proof of the main theorem.

2. The problem and the result

Let (Ω,F , P ) be a probability space and F0 ⊆ F1 ⊆ ... ⊆ FT a sequence of sub-σ-algebras
of F . Let d be a natural number. We denote by L1 (resp. L∞) the space of integrable
(resp. essentially bounded) F -measurable vector functions with values in the Euclidean
space Rd. The analogous spaces of Ft-measurable vector functions are denoted by L1(t)
and L∞(t). We write Xt for the standard nonnegative cone in L∞(t).

In the model under consideration we are given: non-empty convex sets Zt ⊆ X (t − 1) ×
X (t), t ∈ {1, ..., T}, real-valued concave functionals Ft(v), v ∈ Zt, and a vector y0 ∈ X0.

The optimization problem is as follows.

(P) Maximize

F (z) =
T
∑

t=1

Ft(xt−1, yt)

over the set of sequences
z = {(xt−1, yt)}Tt=1 (1)

satisfying

(xt−1, yt) ∈ Zt, t ∈ {1, 2, ..., T}, (2)
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and
yt ≥ xt, t ∈ {0, ..., T − 1}. (3)

All inequalities between random vectors are supposed to hold coordinatewise and almost
surely (a.s.). If a sequence z = {(xt−1, yt)}Tt=1 satisfies (2), we call z a program and write
z ∈ Z. If z satisfies (3) as well, then z is termed a feasible program. The optimal value of
problem (P) (which is not necessarily attained) is denoted by sup(P). We assume that
sup(P)< ∞. Solutions to problem (P) are called optimal programs.

In the economic applications of the above model, elements (x, y) in Zt are interpreted
as technological processes (feasible input-output pairs). The sets Zt are called technology
sets. Inequalities (3) express resource constraints. The objective functionals Ft(x, y) may
represent, for example, expected utilities Eut(ω, x(ω), y(ω)).

For a finite-dimensional vector a = (ai), we write |a| =
∑

|ai|. The L1-norm of a random
vector v(ω) is defined as ||v||1 = E|v(ω)|, where E stands for the expectation with respect
to the given probability P . We put e = (1, ..., 1) ∈ Rd. If Γ is a set in Ω, then χΓ stands
for the indicator function of Γ. We impose the following assumptions.

(A.1) We have (0, 0) ∈ Zt.

(A.2) If (x, y) ∈ Zt, (x
′, y′) ∈ Zt, and Γ ∈ Ft−1, then χΓ(x, y)+ (1− χΓ)(x

′, y′) ∈ Zt.

(A.3) There exists a program
o
z= {( oxt−1,

o
yt)}Tt=1 such that, for each t = 0, ..., T − 1, we

have
o
yt≥

o
xt +δe, where δ > 0 is some non-random constant (for t = 0, we define

o
y0= y0).

(A.4) For all v, v′ ∈ Zt,

lim[Ft(v)− Ft(χΓv
′ + (1− χΓ)v)] = 0

as P (Γ) → 0 (Γ ∈ Ft−1).

Requirements (A.1), (A.2) and (A.4) are supposed to be fulfilled for all t = 1, ..., T . Con-
dition (A.1) says that the sequence of zero inputs and outputs forms a feasible program
(inactivity is feasible). Hypothesis (A.2) expresses a possibility of choice between two
input-output pairs (x, y) ∈ Zt and (x′, y′) ∈ Zt depending on an event Γ ∈ Ft−1. Assump-
tion (A.3) guarantees the existence of a program which satisfies the resource constraints
with excess. Condition (A.4) – a continuity property of Ft(·) – holds, for example, if
Ft(z) = Eut(ω, z(ω)), where ut(ω, b) is a measurable function of ω ∈ Ω and b ∈ R2d

meeting the following requirement: there exists a real-valued random variable ht(ω) ≥ 0
such that Eht(ω) < ∞ and |ut(ω, v(ω))| ≤ ht(ω) for any v ∈ Zt and ω ∈ Ω.

Denote by Pt the standard nonnegative cone in L1(t). The main result, holding under
assumptions (A.1) - (A.4), is as follows.

Theorem 2.1. There exist p0 ∈ P0, ..., pT−1 ∈ PT−1 such that

F (z) +
T−1
∑

t=0

Ept(yt − xt) ≤ sup(P) (4)

for all programs z = {(xt−1, yt)}Tt=1.

The random vectors p0, ..., pT described in Theorem 1 represent stochastic Lagrange mul-
tipliers relaxing constraints (3). As is well-known and easy to prove (see, e.g., [15], Section
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8.6), the existence of such vectors is equivalent to the truth of the following duality theo-
rem:

sup(P) = min(P∗),

where the dual problem (P∗) is defined as follows:

(P∗) Minimize

F ∗(p) = sup
z∈Z

{F (z) +
T−1
∑

t=0

Ept(yt − xt)}

over all p = (p0, ..., pT ) ∈ P0 × ...× PT .

From (4), it follows immediately that a feasible program z̄ = {(x̄t−1, ȳt)}Tt=1 is optimal if
and only if

F (z) +
T−1
∑

t=0

Ept(yt − xt) ≤ F (z̄) (5)

for all z ∈ Z. Simple arguments show that (5) holds if and only if

Ft(x, y) + Epty − Ept−1x ≤ Ft(x̄t−1, ȳt) + Eptȳt − Ept−1x̄t−1 [(x, y) ∈ Zt, t = 1, ..., T ],

pt(ȳt − x̄t) = 0 [t = 0, ..., T − 1],

where ȳ0 = y0 and pT = 0. In economic terms, this means that p0, ..., pT are supporting
prices associated with the resource constraints (see [1], Chapter 4).

In the proof of the above theorem, we will use the following fact.

Lemma 2.2 (Ôbiting lemmaÔ). Let {qm(ω)} (ω ∈ Ω, m = 1, 2, ...) be a sequence of
random d-dimensional vectors such that {E|qm|} is bounded. Then there exist measurable
sets ∆1 ⊆ ∆2 ⊆ ... and natural numbers m1 < m2 < ... such that P (∆k) → 1 and the
sequence qmk

χ∆k
is uniformly integrable.

Various versions of this lemma have been established by many authors. A number of
important results related to it are contained in the papers by Castaing [3] and Saadoune
and Valadier [21], where one can find further references. A proof is given, e.g., in [21], p.
349.

Remark 2.3. According to the Dunford – Pettis theorem (see, e.g., [16], Theorem II.23),
every uniformly integrable sequence contains a subsequence converging in the weak topol-
ogy σ(L1, L∞). Thus, there exist natural numbers n1 < n2 < ..., measurable sets
D1 ⊆ D2 ⊆ ..., and a random vector q ∈ L1 such that P (Dk) → 1 and

qnk
χDk

→ q [σ(L1, L∞)]. (6)

3. Proof of the main theorem

1st step. Fix a sequence of numbers 1 > ε1 > ε2 > ... > 0 converging to zero. For each
m ∈ {1, 2, ...}, consider an auxiliary problem (Pm) which is formulated like (P) with the
only difference that Zt is replaced by

Zm
t = {(x, y) ∈ Zt : y ≥ εm

o
yt}.
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The definitions of programs and feasible programs for problem (Pm) are analogous to
those for (P) (with Zm

t in place of Zt). We write z ∈ Zm if z is a program for (Pm).
Clearly sup(Pm) ≤ sup(Pm+1) ≤ sup(P). By virtue of (A.1) and (A.3), the sequence

{εm(
o
xt−1,

o
yt)} belongs to Zm, and, for any {(xt−1, yt)} ∈ Zm, we have

yt ≥ εm
o
yt, t = 0, ..., T. (7)

(For t = 0, the last inequality holds because
o
y0= y0 and εm < 1.) Furthermore,

εm
o
yt −εm

o
xt≥ εmδe (t = 1, 2, ..., T ), and y0 − εm

o
x0≥ εmδe. (8)

Viewing inequalities (3) as linear inequality constraints in the spaces L∞(0), L∞(1),. . . ,
L∞(T − 1), we can use an infinite-dimensional version of the Kuhn-Tucker theorem (see,
e.g., Theorem 8.3.1 in [15]) and construct nonnegative linear functionals πm

t ∈ (L∞(t))∗

such that
T
∑

t=1

Ft(xt−1, yt) +
T−1
∑

t=0

< πm
t , yt − xt >≤ sup(Pm) (9)

for any program z = {(xt−1, yt)}T1 ∈ Zm. The Slater constraint qualification, which allows
to apply the above result, holds by virtue of (8).

2nd step. Let us show that the functionals πm
t involved in (9) are in fact absolutely

continuous, i.e., representable in the form < πm
t , x >= Epmt x, p

m
t ∈ Pt. Fix any t ∈

{0, 1, ..., T − 1} and any natural number m. Furthermore, fix any real number κ > 0 and
consider some feasible program z = {(xt−1, yt)} of problem (Pm) for which

F (z) ≥ sup(Pm)− κ. (10)

For any Γ ∈ Ft, define a sequence zΓ = {(xΓ
j−1, y

Γ
j )} by

(xΓ
j−1, y

Γ
j ) =

{

(xj−1, yj), j ≤ t;

(1− χΓ)(xj−1, yj) + χΓεm(
o
xj−1,

o
yj), j > t.

Observe that zΓ is a feasible program for (Pm). Indeed, if j > t, then Γ ∈ Fj−1, and so

(xΓ
j−1, y

Γ
j ) = (1− χΓ)(xj−1, yj) + χΓεm(

o
xj−1,

o
yj) ∈ Zj

by virtue of (A.2). Further, we have y0 ≥ xΓ
0 because xΓ

0 = x0 if t > 0 and

xΓ
0 = (1− χΓ)x0 + χΓεm

o
x0≤ (1− χΓ)y0 + χΓεm

o
y0≤ y0

if t = 0. If T > j > 0 and j 6= t, then the inequality yΓj ≥ xΓ
j holds because both

{(xj−1, yj)} and {( oxj−1,
o
yj)} are feasible programs of problem (Pm). If j = t, then, by

virtue of (7) and (8), we have

yΓj − xΓ
j ≥ yt − [(1− χΓ)xt + χΓεm

o
xt] ≥

(1− χΓ)(yt − xt) + χΓ(yt − εm
o
xt) ≥ χΓεm(

o
yt −

o
xt) ≥ χΓεmδe ≥ 0. (11)



242 I. V. Evstigneev, S. D. Fl̊am / Convex Stochastic Duality and the ÔBiting LemmaÔ

By applying (9) and (11) to zΓ, we find

εmδ < πm
t , χΓe >≤

T−1
∑

t=0

< πm
t , y

Γ
t − xΓ

t >≤ sup(Pm)−
T
∑

t=1

Ft(x
Γ
t−1, y

Γ
t ) ≤

T
∑

t=1

Ft(xt−1, yt)−
T
∑

t=1

Ft(x
Γ
t−1, y

Γ
t ) + κ,

where yΓ0 =
o
y0= y0. Since κ > 0 is arbitrary, we obtain

εmδ < πm
t , χΓe >≤

T
∑

t=1

Ft(xt−1, yt)−
T
∑

t=1

Ft(x
Γ
t−1, y

Γ
t ) .

By virtue of (A.4), the last expression tends to zero as P (Γ) → 0. Thus < πm
t , χΓe >→ 0

as P (Γ) → 0. This implies that the functional πm
t (≥ 0) is absolutely continuous, i.e.,

representable in the form < πm
t , x >= Epmt x, x ∈ L∞(t), where pmt ∈ Pt (see, e.g., [17],

Corollary to Proposition IV.2.1).

By substituting {( oxt−1,
o
yt)} into (9), we get

δE|pmt | = Epmt δe ≤ Epmt (
o
yt −

o
xt) ≤ sup(P)−

T
∑

j=1

Fj(
o
xj−1,

o
yj).

This shows that the random vectors pmt are uniformly bounded in the L1 norm.

3rd step. By using Lemma 2.2, we find sets ∆m
t ∈ Ft such that P (∆m

t ) → 1, ∆1
t ⊆ ∆2

t ⊆ ...,
and the sequence {χ∆m

t
pmt } is uniformly integrable. Without loss of generality, we may

assume in addition that ∆m
0 ⊇ ∆m

1 ⊇ ... ⊇ ∆m
T−1 (the set ∆

m
t can be replaced by ∆m

0 ∩∆m
1 ∩

...∩∆m
t ). Since the sequence {χ∆m

t
pmt } is uniformly integrable, it contains a subsequence

which converges in the topology σ(L1(t), L∞(t)). This is true for each t = 0, ..., T − 1.
Thus, by passing to a subsequence, we may suppose, again without loss of generality,
that, for each t, χ∆m

t
pmt → pt [σ(L1(t), L∞(t))], where pt is a nonnegative random vector

in L1(t).

Let z = {(xt−1, yt)} be any program of problem (P) satisfying yt ≥ ε
o
yt, where ε is some

number in (0, 1). Then z is a program of problem (Pm) for all m for which εm < ε (and
so for all m large enough). Fix any such m and put ∆t = ∆m

t . Define

(x̃t−1, ỹt) = (1− χ∆t−1)ε(
o
xt−1,

o
yt) + χ∆t−1(xt−1, yt), t = 1, ..., T.

By virtue of (A.2), (x̃t−1, ỹt) ∈ Zt. Furthermore, ỹt ≥ ε
o
yt, where ε > εm, and so

z̃ ≡ {(x̃t−1, ỹt)} is a program of (Pm). Consequently,

T
∑

t=1

Ft(x̃t−1, ỹt) +
T−1
∑

t=0

Epmt (ỹt − x̃t) ≤ sup(Pm) ≤ sup(P), (12)

where ỹ0 = y0.

Observe next that (ỹt − x̃t) ≥ χ∆t(yt − xt). Indeed,

(ỹt − x̃t)− χ∆t(yt − xt) ≥ (1− χ∆t−1)ε
o
yt +χ∆t−1\∆tyt − (1− χ∆t)ε

o
xt≥
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(1− χ∆t−1)ε
o
yt +χ∆t−1\∆tε

o
yt −(1− χ∆t)ε

o
xt=

(1− χ∆t)
o

ε(yt −
o
xt) ≥ 0,

because ∆t ⊆ ∆t−1 and yt ≥ ε
o
yt. Consequently, from this and (12), we find

T
∑

t=1

Ft(x̃t−1, ỹt) +
T−1
∑

t=0

Epmt χ∆m
t
(yt − xt) ≤ sup(P).

By passing to the limit (using (A.4)), we conclude

T
∑

t=1

Ft(xt−1, yt) +
T−1
∑

t=0

Ept(yt − xt) ≤ sup(P). (13)

The above inequality was obtained under the assumption that {(xt−1, yt)} is a program

of (P) satisfying yt ≥ ε
o
yt for some ε > 0. Now consider any program {(xt−1, yt)} of (P).

For each ε ∈ [0, 1], set (x
(ε)
t−1, y

(ε)
t ) = ε(

o
xt−1,

o
yt)+ (1− ε)(xt−1, yt). By using the result just

obtained, we find

T
∑

t=1

Ft(x
(ε)
t−1, y

(ε)
t ) +

T−1
∑

t=0

Ept(y
(ε)
t − x

(ε)
t ) ≤ sup(P) (14)

for all ε ∈ (0, 1]. The left-hand side of (14) is a concave function of ε ∈ [0, 1]. Hence, if
inequality (14) holds for each ε ∈ (0, 1], it holds for ε = 0 as well. This proves (13) for
any program of (P).

The proof is complete.

Remark 3.1. We conjecture that the method described can be extended to stochastic
models of economic equilibrium [11] generalizing the optimization model considered in
this paper. In that, more general, setting, the counterpart of the problem of constructing
stochastic Lagrange multipliers is the problem of constructing equilibrium states (solutions
to certain variational inequalities). The conventional approach employing the Yosida–
Hewitt theorem seems to be inapplicable in that context. It would be of interest to find
out whether the technique based on the biting lemma could replace the conventional one
in the framework of equilibrium models.
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