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The paper aims at creating a new insight into our perception of convexity by focusing on two fundamental
problems: the coincidence of two functions (at least one being convex) upon an information on a dense
set and the clarification of the relation between convexity and Fenchel subdifferential. Various results
are established into these directions. Several examples are also illustrated showing that some rather
unexpected situations can often occur.
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1. Introduction

If X is a Banach space, would you say that two lower semicontinuous (in short lsc) convex
functions g1, g2 : X → R ∪ {+∞}, equal on a dense subset of their domain, necessarily
coincide? In other words, can we determine a lsc convex function if we know its values on
a dense set? In Proposition 3.4, we show that in infinite dimensions the answer is negative
even if it is assumed that g1 ≤ g2 and that both functions are positively homogeneous.
Motivated by these considerations, we introduce the class G1(X) of lsc convex functions
g that do not admit any non trivial lsc majorant f coinciding with g on a dense subset of
dom g. We show that G1(Rd) coincides with the set of lsc convex functions (see Corollary
3.7). This is not the case in infinite dimensions, since - as we prove in Theorem 3.8 - a
lsc convex function with a dense domain belongs to the class G1(X) if, and only if, its
domain is equal to X.

We also investigate the relation between Fenchel subdifferential and convexity by focusing
on the following question: given a lsc function f : X → R∪ {+∞}, can we conclude that
f is necessarily convex whenever the domain of the Fenchel subdifferential of f is dense in
X? This assertion is true in finite dimensions but fails impressively as soon as we consider
infinite dimensional spaces (see Proposition 4.3). An interesting relevant question is the
following. Given a lsc convex function g and a lsc function f such that the domain of the
Fenchel subdifferential of f is dense in the domain of g and such that the closed convex
∗The research of the second author was supported by the TMR post-doctoral grant ERBFMBI CT
983381.
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envelope of f is equal to g, can we conclude that f = g? If G2(X) denotes the class of lsc
convex functions g for which the latter conclusion is true for all f , we show in Proposition
4.5 that G2(X) strictly contains G1(X). Finally we obtain the analogue of Theorem 3.8 for
the class G2(X). More precisely, we show in Theorem 4.8 that a lsc convex and positively
homogeneous function with a dense domain belongs to the class G2(X) if, and only if, its
domain is equal to X.

2. Preliminaries

In the sequel, let N denote the set of strictly positive integers,X a Banach space andX∗ its
dual. For any x ∈ X and p ∈ X∗ we denote by 〈p, x〉 the value of p at x. Given a function
f : X → R∪ {+∞}, we denote by dom f = {x ∈ X : f(x) ∈ R} its domain. Throughout
this article, we shall deal with proper (i.e. dom f is nonempty) and lsc functions. Let us
recall that the Fenchel subdifferential ∂f of any such function f at the point x ∈ dom f
is defined as follows

∂f(x) = {p ∈ X∗ : f(y)− f(x) ≥ 〈p, y − x〉, ∀y ∈ X}. (1)

If x /∈ dom f , we set ∂f(x) = ∅. We denote by dom ∂f = {x ∈ X : ∂f(x) 6= ∅} the
domain of the subdifferential of f . We recall that whenever f is convex, dom ∂f is dense
in dom f . In fact, the following result holds (see for example [5, Theorem 3.17]).

Proposition 2.1. Let f : X → R∪{+∞} be a proper lsc convex function. Then dom ∂f
is f -graphically dense in dom f , that is, for every x ∈ dom f, there exists a sequence {xn}
in dom ∂f converging to x such that the sequence {f(xn)} converges to f(x).

Let us further recall that the closed convex hull of the function f , denoted co f , is defined
as the greatest lsc convex function majorized by f . It is well known that its epigraph
coincides with the closed convex hull of the epigraph of f . Let us remark that co f takes its
values in R∪{+∞} if, and only if, there exists an affine continuous function minimizing f
on X. It is known (see [4] for example) that for a proper lsc function f : X → R∪{+∞}
one has f = co f on dom ∂f . This fact can be seen in the following simple way. Fix
x ∈ dom ∂f , take any p ∈ ∂f(x) and consider the function g = p + (f(x) − 〈p, x〉). It
follows from (1) that f ≥ g. Since g is lsc convex, we get that f ≥ co f ≥ g. The result
follows from the observation that f(x) = g(x).

3. Uniquely determined majorants of convex functions

In this section we are interested in the question of determination of a convex function, by
means of an information for its values on a dense set.

A relevant, but more specific question is the following. Let g : X → R ∪ {+∞} be a
proper lsc convex function. If f is lsc and D is a dense subset of dom g then

f ≥ g

f = g on D







=⇒ f = g ? (2)

Let us first tackle (2) for the special case where D = dom ∂g.
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Lemma 3.1. Let g : X → R∪{+∞} be a proper lsc convex function. Then for every lsc
function f satisfying f ≥ g we have

f |dom ∂g = g |dom ∂g =⇒ f = g.

Proof. Since f ≥ g, it clearly suffices to show that f coincides with g on dom g. By
Proposition 2.1, for every x ∈ dom g, there exists a sequence {xn} in dom ∂g converging to
x such that the sequence {g(xn)} converges to g(x). By our hypothesis, f(xn) = g(xn) for
all n. Since f is lsc at x, letting n → +∞ this last equality yields f(x) ≤ g(x). Recalling
that f ≥ g, we conclude that f(x) = g(x). £

We now have the following proposition.

Proposition 3.2. Let g : X → R ∪ {+∞} be a proper lsc convex function and let D be
a subset of dom g which is g-graphically dense in dom ∂g (that is, any point in dom ∂g is
the g-graphical limit of a sequence in D). Then for every lsc function f satisfying f ≥ g
we have

f |D = g |D =⇒ f = g.

Proof. In view of Lemma 3.1, it suffices to show that f coincides with g on dom ∂g. Let
any x ∈ dom ∂g. Then there exists a sequence {xn} in D converging to x with {g(xn)}
converging to g(x). Then f(xn) = g(xn) for all n ≥ 1, and letting n → +∞ we obtain
f(x) ≤ g(x), since f is lsc at x. Recalling that f ≥ g, we conclude that f(x) = g(x). £

The following corollary is a direct consequence of Proposition 3.2.

Corollary 3.3. Let g : X → R∪{+∞} be a proper lsc convex function such that g |dom ∂g

is continuous and let D be a dense subset of dom ∂g. Then for every lsc function f
satisfying f ≥ g we have

f |D = g |D =⇒ f = g.

Remark.
1. As observed by the referee, the assumptions of Lemma 3.1 (as well as those of Propo-
sition 3.2 and Corollary 3.3) yield ∂g(x) ⊂ ∂f(x), for all x ∈ X. Thanks to the convexity
of g, this inclusion still holds even if ∂ is remplaced by any abstract subdifferential in the
sense of [8, page 35], which relates directly to results concerning integration of subdif-
ferentials (see [6], [8], [9], [3] and references therein, as well as [7, Theorem 24.9] for the
convex case).

2. The assumption “g |dom ∂g is continuousÔ adapted in Corollary 3.3 is strictly weaker
than the relative continuity of g on dom g. We refer to [2] for further details and a dual
characterization of this property.

The above results establish positive answers for the assertion (2) provided that the dense
set D satisfies certain conditions. The following proposition shows that without these
conditions, assertion (2) may fail even if both functions g1 and g2 are convex and positively
homogeneous. As usual, `2(N) denotes the Hilbert space of square summable sequences
and {ei} the canonical basis.

Proposition 3.4. There exist two distinct positively homogeneous lsc convex functions
g1, g2 : `2(N) → R∪{+∞} such that g1 ≤ g2 and g1 = g2 < +∞ on an open dense subset
of `2(N).
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Proof. Consider the functions g1, g2 : `2(N) → R∪{+∞} defined for any x = (xi) ∈ `2(N)
as follows:

g1(x) = sup
i≥1

{ i |xi | } and g2(x) = max
{

2 |x1 | , g1(x)
}

.

It follows directly that both functions are lsc convex and positively homogeneous and that
g1 ≤ g2. Let us also note that g1(e1) 6= g2(e1) and consequently g1 6= g2. Moreover, it is
easily seen that g1 = g2 < +∞ on the subset

D = {(xi) ∈ `2(N) : ∃i ∈ N, |x1 | <
i

2
|xi |}.

Since D is an open dense subset of `2(N), the assertion is established. £

In the sequel we consider the question (2) globally, in the sense that we are interested
to lsc convex functions g for which the assertion holds true simultaneously for all dense
subsets D of dom g. This class is introduced in the following definition.

Definition 3.5. We say that a proper lsc convex function g : X → R ∪ {+∞} belongs
to the class G1(X), if g does not admit any non trivial lsc majorant that coincides with g
on a dense set of dom g.

Proposition 3.2 guarantees that G1(X) contains all convex continuous functions onX. The
following result shows that, more generally, G1(X) contains also all lsc convex functions
g with int dom g 6= ∅.
Proposition 3.6. If g : X → R ∪ {+∞} is a proper lsc convex function satisfying
int dom g 6= ∅, then g ∈ G1(X).

Proof. Let f be a lsc majorant of g such that f = g on a dense subset D of dom g. Let
D1 = D∩ int dom ∂g. Thanks to the continuity of g on int dom g it is easily seen that D1

is g-graphically dense in dom ∂g, whence f = g, in view of Proposition 3.2. £

Taking the relative interior, one gets the following corollary.

Corollary 3.7. G1(Rd) coincides with the class of all proper lsc convex functions.

The following theorem gives information on G1(X) in the infinite dimensional case.

Theorem 3.8. Let g : X → R ∪ {+∞} be a proper lsc convex function with a dense
domain. Then g ∈ G1(X) if, and only if, dom g = X.

Proof. Suppose that dom g 6= X. Since dom g is convex and dense in X, it follows easily
that int dom g = ∅. Hence g takes at least one infinite value in every neighborhood of
each point of X. Since the function g is lsc at every x in X, we conclude that for every
integer n the set

Dn = {x ∈ dom g : g(x) ≥ n}

is dense in X. Let us now take n > inf g and consider the lsc function f : X → R∪{+∞}
defined by

f(x) = max{g(x), n}.
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It is easily seen that f violates (2), i.e. f ≥ g, f = g on the dense set Dn and f 6= g.
Hence g /∈ G1(X), which proves the “necessityÔ part. The “sufficiencyÔ part is a direct
consequence of Proposition 3.6, since dom g = X implies that dom ∂g = X. £

4. Fenchel subdifferential and convexity

In this section we investigate the relation between Fenchel subdifferential and convex-
ity. The central question in this section is whether the non-emptiness of the Fenchel
subdifferential of a lsc function f on a dense set guarantees the convexity of f .

Let f : X → R ∪ {+∞} be a proper lsc function. If we assume that f is convex, then
Proposition 2.1 asserts that dom ∂f is dense in dom f . Let us observe that the converse
assertion is not true even if X = R as shows the example below:

f(x) =







0 if x = 0 or 1;

+∞ elsewhere.

Indeed, the function f is obviously lsc, non-convex and dom f = dom ∂f = {0, 1}.
However, assuming that dom f is convex, the following proposition ensures the converse
in finite dimensions.

Proposition 4.1. Let f : Rd → R∪{+∞} be a proper lsc function with a convex domain.
Then f is convex if, and only if, dom ∂f is dense in dom f .

Proof. The “necessityÔ part follows from Proposition 2.1. For the “sufficiencyÔ part,
assume that f is lsc and that D = dom ∂f is dense in dom f . Setting g = cof we
obviously have that g is lsc convex, f ≥ g and f |D= g |D. Since dom f is convex, it
follows that dom f (and subsequently also dom ∂f) is dense in dom g. This finishes the
proof in view of Corollary 3.7. £

In case where the lsc function f has a dense domain in X, the converse assertion becomes:

if dom ∂f is dense in X, is f convex ? (3)

This question was first considered in [1] where the following positive result was established
(see [1, Section 3]).

Proposition 4.2. Let f be a lsc function such that dom ∂f is dense in X. Suppose that
at least one of the conditions (a), (b) or (c) is satisfied:

(a) X = Rd;

(b) dom f = X;

(c) ∂f has a locally bounded selection on dom ∂f , i.e., for every x ∈ X there exist
M > 0 and r > 0 such that for all y ∈ dom ∂f,

‖y − x‖ ≤ r =⇒ ∃p ∈ ∂ f(y) : ‖p‖ ≤ M.

Then f is a convex continuous function.

The following proposition completes the above results by exhibiting an example showing
that, in infinite dimensions, (3) is not true without additional assumptions. Let us note
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that in the forthcoming example the domain of the constructed nonconvex function f is
convex as was the case in Proposition 4.1.

Proposition 4.3. In the Banach space X = `2(N), there exists a proper lsc non-convex
function with a dense domain of Fenchel subdifferential.

Proof. Let us consider the functions g, f : `2(N) → R∪{+∞} defined for x = (xi) ∈ `2(N)
by

g(x) = sup
i6=1

{ i |xi | } and f(x) = max
{

χ(−1,1)(x1), g(x)
}

,

where χ(−1,1)(x1) = 0 if x1 ∈ (−1, 1), and χ(−1,1)(x1) = 1 if not. The functions f, g
are clearly lsc and g is convex. Considering the restriction of f to the one-dimensional
subspace Re1 we deduce that f is not convex. Set

U = {(xi) ∈ `2(N) : ∃i ∈ N, |xi | >
1

i
}.

We obviously have
f ≥ g ≥ 0 and f |U = g |U . (4)

Let us remark that the domain of g contains the subspace of almost everywhere null
sequences, thus it is dense in `2(N). Since g is a lsc convex function, it follows that dom ∂g
is dense in dom g, and consequently also in `2(N). On the other hand, we conclude from
(4) that dom ∂g ∩ U ⊂ dom ∂f ∩ U . Since U is open and dense, it follows that dom ∂f
is dense in X. £

Motivated by the above example, let us consider the following general problem. Given a
lsc convex function g : X → R ∪ {+∞} and a lsc function f : X → R ∪ {+∞}, is it true
that

cof = g

dom ∂f dense in dom g







=⇒ f = g ? (5)

Analogously to Definition 3.5, we introduce the following class of lsc convex functions.

Definition 4.4. We say that a lsc convex function g : X → R ∪ {+∞} belongs to the
class G2(X), if g does not admit any non trivial lsc f such that co f = g and dom ∂f is
dense in dom g.

It is easily seen that assertion (5) is related with (2). In particular, if g ∈ G1(X), then
obviously (5) holds and g ∈ G2(X). Hence, for any Banach space X, we have

G1(X) ⊂ G2(X). (6)

In finite dimensions, in view of Corollary 3.7, G1(X) = G2(X) and both classes coincide
with the class of all proper lsc convex functions. The following proposition shows that
inclusion (6) can be strict in infinite dimensions.

Proposition 4.5. Consider the lsc convex function g : `2(N) → R ∪ {+∞} defined for
every x = (xi) ∈ `2(N) by

g(x) =
+∞
∑

i=1

|xi |3/2 .
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Then g ∈ G2(X), but g /∈ G1(X). More precisely, for every lsc function f : `2(N) →
R ∪ {+∞}, the following implication is satisfied

cof = g =⇒ f = g.

Proof. Let us observe that

g(x) =
+∞
∑

i=1

ϕ(xi), (7)

where the function ϕ : R → R defined for all t ∈ R by ϕ(t) = | t |3/2 is convex, differentiable
on R and twice continuously differentiable on R\{0} with ϕ′′(t) > 0, for all t 6= 0. Clearly
the function g is lsc and convex. Since ϕ(0) = 0, the domain of g contains the subspace
of almost everywhere null sequences, thus it is dense in `2(N). Considering the sequence

x =
(

3

√

(1
i
)2
)

i≥1
, we conclude that dom g 6= `2(N). Hence according to Theorem 3.8 we

have g /∈ G1(X).

Let us now prove that g ∈ G2(X). To this end, let f : `2(N) → R ∪ {+∞} be a lsc
function satisfying cof = g (the other assumption in (5) that dom ∂f is dense in dom g
will be superfluous in the sequel). By Lemma 3.1, in order to show that f = g it suffices
to ensure that f |dom ∂g = g |dom ∂g .

Let us show that for every x ∈ dom ∂g and p = (pi) ∈ ∂g(x), there exists m > 0 such
that for all u ∈ X with ‖u‖ ≤ 1 we have

g(x+ u) ≥ g(x) + 〈p, u〉+m ‖u‖2. (8)

Indeed, let us fix x ∈ dom ∂g and p = (pi) ∈ ∂g(x). Applying (1) for y = x + tei (where
t ∈ R and {ei} is the canonical basis), we have ϕ(xi + t) ≥ ϕ(xi) + pit. This inequality
shows that pi ∈ ∂ϕ(xi). Since ϕ is convex and differentiable we conclude that

pi = ϕ′(xi). (9)

Choose m = 1
2
min {ϕ′′(t) : | t | ≤ ‖x‖+ 1, t 6= 0} ; obviously m > 0. Consider now any

u = (ui) ∈ `2(N) with ‖u‖ ≤ 1. Then for all i ≥ 1 a direct calculation gives

ϕ(xi + ui) = ϕ(xi) + uiϕ
′(xi) +

xi+ui
∫

xi

(xi + ui − t)ϕ′′(t) dt, (10)

where the above integral is defined as the sum of the generalized integrals lim
δ→0+

−δ
∫

xi

(xi+ui−t)

ϕ′′(t) dt and lim
δ→0+

xi+ui
∫

δ

(xi+ui− t) ϕ′′(t) dt in case that xi ≤ 0 ≤ xi+ui (and analogously,

if xi + ui ≤ 0 ≤ xi). (Note that if xi(xi + ui) > 0, then (10) is nothing but the Taylor’s
integration formula for the twice differentiable function ϕ on the segment [xi, xi + ui]
(respectively on [xi + ui, xi], if ui < 0)).

Let us remark that for all i ≥ 1

xi+ui
∫

xi

(xi + ui − t)ϕ′′(t) dt ≥ 2m

xi+ui
∫

xi

(xi + ui − t) dt = m u2
i .
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Combining with (10) we obtain

ϕ(xi + ui) ≥ ϕ(xi) + uiϕ
′(xi) +m u2

i . (11)

Adding the above inequalities for all i and recalling (7) and (9), we obtain

g(x+ u) ≥ g(x) + 〈p, u〉+m ‖u‖2.

Hence (8) holds and the proof finishes in view of the following lemma.

Lemma 4.6. Let g be a proper lsc convex function on X and x ∈ X. Suppose that there
exist p ∈ X∗, r > 0 and m > 0 such that for all u ∈ X with ‖u‖ ≤ 1 we have

g(x+ u) ≥ g(x) + 〈p, u〉+m ‖u‖r. (12)

Then, for every lsc function f such that f ≥ g, the following implication is satisfied:

f(x) > g(x) =⇒ cof 6= g. (13)

Proof. Let us set

G(u) = g(x+ u)− g(x)− 〈p, u〉 and F (u) = f(x+ u)− g(x)− 〈p, u〉.

Thus G is a lsc convex function with G(0) = 0, F is a lsc function with F (0) > 0 and
F ≥ G. Moreover, relation (12) becomes:

m ‖u‖r ≤ G(u), (14)

for all u ∈ X with ‖u‖ ≤ 1. To prove the assertion of the lemma, it suffices to show that
coF 6= G. Let us remark that if x ∈ X with ‖x‖ > 1, we have

G

(

x

‖x‖

)

≤ 1

‖x‖
G(x) + (1− 1

‖x‖
)G(0) =

1

‖x‖
G(x),

since G is convex. This shows, in view of (14), that for all ‖x‖ > 1

m‖x‖ ≤ G(x). (15)

Let us now prove that there exists a > 0 such that F ≥ a. Indeed, if this were not the
case, there would exist a sequence {xn} in X such that for all n ≥ 1

F (xn) <
1

n
. (16)

Since G(xn) ≤ F (xn) we conclude thanks to (15) that for n large enough ‖xn‖ ≤ 1. Thus
(14) yields m‖xn‖r < 1

n
. It follows that the sequence {xn} converges to 0. Letting n → ∞

in (16), and using the fact that F is lsc we conclude that F (0) ≤ 0. This contradiction
shows that what asserted is true.

Thus F ≥ a, which implies that coF ≥ a. Consequently coF and G cannot coincide at 0.
This finishes the proof. £
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Remark 4.7. It is easily seen that, more generally, the lsc convex function g : `2(N) →

R ∪ {+∞} defined for all x = (xi) ∈ `2(N) by g(x) =
+∞
∑

i=1

| xi |p (1 < p < 2) satisfies the

conclusion of Proposition 4.5.

The following result, analogous to Theorem 3.8, deals with the case of lsc positively
homogeneous convex functions g with dense domain.

Theorem 4.8. Let g : X → R ∪ {+∞} be a proper lsc positively homogeneous convex
function with a dense domain. Then g ∈ G2(X) if, and only if, dom g = X.

Proof. Suppose that dom g 6= X and let us prove that g /∈ G2(X). For that, let us
consider the function f : X → R ∪ {+∞} defined by

f(x) =







max {g(x), 1} if g(x) > 0;

g(x) if g(x) ≤ 0.

It is directly seen that f ≥ g, which implies cof ≥ g since g is convex, and that for all
x ∈ X

f(x) = g(x) ⇐⇒ x ∈ D,

where D = { x ∈ X : g(x) /∈ (0, 1) }.
Let us show that cof = g. This equality holds clearly on D. Let us now consider any
x /∈ D and let us set x1 = 1

g(x)
x, x2 = 0 and λ = g(x) ∈ (0, 1). Since g is positively

homogeneous, g(x1) = 1 and g(x2) = 0 which implies that both points x1 and x2 belong
to D. Thus cof(xi) = g(xi) for i = 1, 2. Since the functions g and cof are convex, and
since x = λx1 + (1− λ)x2 we deduce

cof(x) ≤ λcof(x1) + (1− λ)cof(x2) = λg(x1) + (1− λ)g(x2) = g(x).

It follows that cof(x) = g(x).

Let us show that f is lsc. Since g is lsc, f ≥ g and f |D = g |D, the function f is
obviously lsc at every point of D. Let now any x /∈ D and let {xn} be a sequence in X
converging to x. Since g is lsc at x and g(x) > 0, we have g(xn) > 0 for n large enough,
and consequently f(xn) = max{g(xn), 1} ≥ 1 = f(x). This shows that f is lsc at x.

Let us show that dom ∂f is dense in dom g. To this end, let us consider any x ∈ dom g.
Since g takes arbitrarily large finite values around x (see the proof of Theorem 3.8), there
exists a sequence {xn} in dom g such that g(xn) > 2 and ‖xn − x‖ < 1

n
for all n ≥ 1.

Using Proposition 2.1, we obtain a sequence {yn} in dom ∂g such that g(yn) > 2 and
‖xn − yn‖ < 1

n
for all n. Since f ≥ g and f(yn) = g(yn) for all n, by definition of the

Fenchel subdifferential we have ∂g(yn) ⊂ ∂f(yn) for all n. It follows that the sequence
{yn} is included in dom ∂f. Since the sequence {yn} converges to x, it follows that dom ∂f
is dense in dom g.

Since g is positively homogeneous and takes finite arbitrarily large (hence in particular
positive) values, it follows that D 6= X, whence f 6= g. Thus g /∈ G2(X), which proves the
“necessityÔ part.

The “sufficiencyÔ part is a direct consequence of Theorem 3.8 and inclusion (6). £
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Remark 4.9. The example of the function given in Proposition 4.5 shows that the as-
sumption “g is positively homogeneousÔ is indispensable in Theorem 4.8.
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