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In the sequel, unless otherwise stated, X is a finite dimensional Euclidean vector space
of dimension d, with closed unit ball U and unit sphere S. We denote by H the set of
positively homogeneous functions h : X → R which are bounded on U. Clearly, H is a
Banach space when endowed with the norm given by

‖h‖ = sup
x∈U

|h(x)| .

The Legendre-Young-Fenchel conjugacy f 7→ f ∗, with

f ∗(x∗) := sup
x∈X

(〈x∗, x〉 − f(x)) ,

is a fundamental tool of convex analysis. Its continuity for various topologies or conver-
gences has been extensively studied during the last decades. One of the most classical
convergences used in this context is epiconvergence, which corresponds to the Painlevé-
Kuratowski convergence of the epigraphs of the functions [15]; in the infinite dimensional
case, it has several variants: Mosco convergence, Joly convergence or slice convergence,
bounded-hemi-convergence or Attouch-Wets convergence...). Here we are interested in
the continuity of the biconjugacy f 7→ f ∗∗ = (f ∗)∗ for the topology induced by the norm
of H. We limit our study to this case for the sake of simplicity and for the needs of the
application we have in view. As a matter of fact, our study has been motivated by the
hope of a simplified approach to a differentiability result of Silin [17]. This result relies on
delicate estimates ([17, Lemma 2.20], [13]) which are by-passed when one uses the criteria
for Lipschitz behavior of h 7→ h∗∗ we present here.

1. Local Lipschitz behavior

Although the norm of H induces the usual dual norm on X∗, the topology associated to
it does not corresponds to the topologies used in variational analysis. Let us compare it

ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag



602 J.-P. Penot / Lipschitzian Behavior of the Fenchel Biconjugacy

with the topology of bounded Hausdorff (or bounded hemiconvergence). Recall that the
latter is defined through the family of écarts

dn(f, g) := sup{|d ((x, r), epi f)− d ((x, r), epi g)| : (x, r) ∈ X × R, ‖x‖ ≤ n, |r| ≤ n},

where epi f and epi g are the epigraphs of f and g respectively. Equivalently, setting for
two nonempty subsets A,B of X × R and p > 0

ep(A,B) := sup{d(a,B) : a ∈ A ∩ (pU × [−p, p])},

it can be shown that a net (fi)i∈I in RX
converges to f ∈ RX

iff for each p > 0 one has
(ep(epi fi, epi f))i∈I → 0, (ep(epi f, epi fi))i∈I → 0 (see [1] Prop. 2.1 for instance).

Lemma 1.1. The topology induced on H by the norm defined above is stronger than the
bounded Hausdorff topology. For each k > 0 the two topologies coincide on the subset Hk

of h ∈ H which are Lipschitzian with rate k.

Proof. Let f, g in H. Then, for any p > 0 and any (x, r) ∈ (epi f) ∩ (pU × [−p, p]) we
have

inf{max(‖x− y‖ , |r − s|) : (y, s) ∈ epi g} ≤ |r − (g(x) + r − f(x))| ≤ p ‖f − g‖ ,

hence ep(epi f, epi g) ≤ p ‖f − g‖ and, similarly, ep(epi g, epi f) ≤ p ‖f − g‖ .
Now, given k > 1 and f, g ∈ Hk, for each x ∈ U and each δ > ek(epi f, epi g) we can find
(y, s) ∈ epi g such that max(‖x− y‖ , |f(x)− s|) < δ. Then

g(x) ≤ g(y) + kδ ≤ s+ kδ ≤ f(x) + (k + 1)δ.

Similarly, for δ > ek(epi g, epi f) and x ∈ U we have f(x) ≤ g(x) + (k + 1)δ. Thus
‖f − g‖ ≤ (k + 1)max(ek(epi f, epi g), ek(epi g, epi f)).

In the sequel we denote by H+ the set of h ∈ H which are positive definite, i.e. for which
there exists some α > 0 such that h(x) ≥ α ‖x‖ for each x ∈ X. We define the positivity
rate π(h) of h ∈ H+ as the supremum of the set of positive numbers α satisfying this
condition. Equivalently,

π(h) = infh(S).

Proposition 1.2. Let h ∈ H be positive definite. Then there exists λ, ρ > 0 such the
mapping f 7→ f ∗∗ is Lipschitzian with rate λ on the open ball B(h, ρ) with center h and
radius ρ. More precisely, for each ρ ∈]0, π(h)[ and for λ = (d + 1)(π(h) − ρ)−1(‖h‖ + ρ)
one has, for any f, g ∈ U(h, ρ),

‖f ∗∗ − g∗∗‖ ≤ λ ‖f − g‖ (1)

Proof. Let α := π(h) > 0, so that h(x) ≥ α ‖x‖ for each x ∈ X. Let λ := (d + 1)(α −
ρ)−1(‖h‖ + ρ). Let us prove the estimate (1). For any ρ ∈]0, α[ and for any g ∈ H such
that ‖g − h‖ < ρ, setting β := α− ρ, one has g(x) ≥ β ‖x‖ . Moreover,

‖g‖ < µ := ‖h‖+ ρ.



J.-P. Penot / Lipschitzian Behavior of the Fenchel Biconjugacy 603

Given r > β−1µ, let us show that for each x ∈ U one has

g∗∗(x) = inf

{

d
∑

i=0

g(xi) : xi ∈ rU,
d

∑

i=0

xi = x

}

. (2)

We first observe that the sublinear envelop gc of g is majorized by g, hence is continuous;
therefore, it coincides with g∗∗. Since its epigraph is the “vertical closureÔ of the convex
hull of the epigraph of g, from the Caratheodory theorem, for each x ∈ X we get that

g∗∗(x) = gc(x) = inf {t : (x, t) ∈ co(epi g)} = inf

{

d
∑

i=0

g(xi) : xi ∈ X,
d

∑

i=0

xi = x

}

. (3)

We observe that for any finite family (x0, ..., xd) ∈ Xd+1 such that
∑d

i=0 xi = x ∈ U and
xj ∈ X\rU for some j ∈ {0, ..., d} we have

d
∑

i=0

g(xi) ≥ g(xj) ≥ β ‖xj‖ ≥ βr > µ,

and since g∗∗(x) ≤ g(x) ≤ µ ‖x‖ ≤ µ, we can discard such a family in (3). This proves
(2). Now, for any f, g ∈ U(h, ρ) and for any finite family (x0, ..., xd) ∈ (rU)d+1 such that
∑d

i=0 xi = x we have

d
∑

i=0

g(xi) ≥
d

∑

i=0

(f(xi)− r ‖f − g‖) ≥
d

∑

i=0

f(xi)− (d+ 1)r ‖f − g‖ .

Taking the infimum over such families, it follows that

g∗∗(x) ≥ f ∗∗(x)− (d+ 1)r ‖f − g‖ .

Interchanging the roles of f and g, we get

|f ∗∗(x)− g∗∗(x)| ≤ (d+ 1)r ‖f − g‖ ∀x ∈ U.

Taking the supremum over x ∈ U and the infimum over r > β−1µ we get the announced
estimate.

The preceding result can be extended to the set H+ + X∗ of positively homogeneous
functions which are the sum of a continuous linear form and of a positive definite positively
homogeneous function bounded on U . We call the elements of H+ + X∗ transdefinite
positive functions. Let us characterize such functions.

Lemma 1.3. An element h of H is in H+ iff h∗ is non positive on some ball of X∗

centered at 0. An element h of H is a transdefinite positive function iff h∗ is non positive
on some ball of X∗.

Proof. It is easy to check that for any h ∈ H one has h∗ = ιS(h) where S(h) := ∂h(0) :=
{x∗ ∈ X∗ : x∗ ≤ h} and ιA is the indicator function of A ⊂ X∗ given by ιA(x

∗) = 0
if x∗ ∈ A, +∞ else. Given h ∈ H+ let α > 0 be such that h ≥ α ‖·‖ . Then h∗ ≤
αιU∗(α−1·) = ιαU∗ where U∗ is the closed unit ball of X∗. Conversely, if h∗ ≤ 0 on αU∗

then h ≥ h∗∗ ≥ α ‖·‖.
The second assertion follows from the relation (g + `)∗(x∗) = g∗(x∗ − `) for x∗ ∈ X∗.
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Corollary 1.4. The biconjugacy f 7→ f ∗∗ is locally Lipschitzian on the set H+ + X∗ of
transdefinite positive functions.

Proof. The result is an immediate consequence of the relations f ∗∗ = (f − `)∗∗ + `,
g∗∗ = (g − `)∗∗ + `.

2. Applications

In the sequel we will apply the result of the preceding section to support functions. Recall
that the support function hC of a subset C of X is defined by

hC(x
∗) = sup {〈x∗, x〉 : x ∈ C} ,

with the usual convention sup ∅ = −∞. We will also use the Pompeiu-Hausdorff excesses
of two nonempty subsets C, D of X given by

e(C,D) := sup
x∈C

d(x,D) where d(x,D) := inf
y∈D

‖x− y‖

and the Pompeiu-Hausdorff distance given by

d(C,D) := max(e(C,D), e(D,C)).

A well-known relation links the two quantities when C and D are closed convex [2],
[9, Lemma 2.1], [16]; we recall it now and slightly extend it to a nonconvex situation, in
an obvious way. Here for r ∈ R, s, t ∈ R we write r ≥ s− t if r + t ≥ s; if s or t is finite
the inequality r ≥ s − t has its usual meaning. We write r ≥ supi∈I(si − t) if r ≥ si − t
for each i ∈ I.

Lemma 2.1. For any nonempty subsets C, D of X, one has

e(C,D) ≥ sup{hC(x
∗)− hD(x

∗) : x∗ ∈ U}.

If D is convex and bounded equality holds. If C and D are convex and bounded

d(C,D) = sup{|hC(x
∗)− hD(x

∗)| : x∗ ∈ U}.

Let us observe that there is an analogy between the biconjugate transform f 7→ f ∗∗ and
the mapping C 7→ co(C) which assigns to any subset C of X its closed convex hull. In
fact, denoting by ιC the indicator function of C (defined by ιC(x) = 0 if x ∈ C, +∞ else)
we have ι∗∗C = ιco(C). However, since ιC is not positively homogeneous and definite positive
in general, we cannot apply the result of the preceding section. However, one has the
following elementary result which completes Proposition 1.2.

Proposition 2.2. For any nonempty subsets C, D of a reflexive Banach space X one
has e(co(C), co(D)) ≤ e(C,D) and d(co(C), co(D)) ≤ d(C,D).

Proof. It suffices to prove the first inequality and to assume that e(C,D) < ∞. For any
r > e(C,D) we have C ⊂ D+rU. It follows from the convexity of U that co(C) ⊂ co(D)+
rU. Since co(D) + rU is weakly closed, as easily deduced from the weak compactness of
U, we get co(C) ⊂ co(D) + rU, hence e(co(C), co(D)) ≤ r. The result follows by taking
the infimum on r > e(C,D).
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As an immediate consequence, we get the Lipschitz property of the bipolar operation.
Recall that the polar C0 of a subset C of X is given by

C0 := {x∗ ∈ X∗ : ∀x ∈ C 〈x∗, x〉 ≤ 1}

and that the bipolar C00 of C is (C0)0 := co(C ∪ {0}), by the bipolar theorem.

Corollary 2.3. For any nonempty subsets C, D of a reflexive Banach space X one has
e(C00, D00) ≤ e(C,D) and d(C00, D00) ≤ d(C,D).

Proof. It suffices to apply the preceding proposition and to observe that e(C,D) ≥
e(C ∪ {0}, D ∪ {0}), and d(C,D) ≥ d(C ∪ {0}, D ∪ {0}).

More generally, we have

Corollary 2.4. For any nonempty subsets A, B, C, D of a reflexive Banach space X
one has e(co(A∪B), co(C ∪D)) ≤ max(e(A,C), e(B,D), and d(co(A∪B), co(C ∪D)) ≤
max(d(A,C), d(B,D)).

Now let us turn to the study of the Minkowski difference of sets. Let us recall that the
Minkowski difference of two subsets C, D of X is the set

C
∗
− D := {x ∈ X : D + x ⊂ C}.

It plays a role in differential games, in nonsmooth analysis, infinitesimal geometry and
in d.c. optimization (see for instance [14], [4], [8], [11], [10] respectively). When C is

convex, C
∗
− D is convex; when C is closed, then C

∗
− D is closed. We need the following

observation noted in [3] under a slightly less precise formulation.

Lemma 2.5. Let C and D be nonempty subsets of X, D being bounded. Let hC and hD

denote the support functions of C and D respectively. Then the support function h
C

∗
−D

of

C
∗
− D satisfies h

C
∗
−D

≤ (hC − hD)
∗∗. If C is closed convex equality holds.

Proof. The inequality is trivial when C
∗
− D is empty. For any x ∈ C

∗
− D and

any x∗ ∈ X∗ we have hC(x
∗) ≥ hD(x

∗) + 〈x∗, x〉, hence, taking the supremum over

x ∈ C
∗
− D and observing that hD is finite-valued, h

C
∗
−D

≤ hC −hD. Since h
C

∗
−D

is closed

proper convex, we get h
C

∗
−D

≤ (hC − hD)
∗∗ and (hC − hD)

∗∗(0) = 0. Conversely, suppose

(hC − hD)
∗∗(0) = 0 and let x ∈ ∂(hC − hD)

∗∗(0) = ∂(hC − hD)(0), i.e. 〈·, x〉 ≤ hC − hD or
〈·, x〉 + hD ≤ hC ; such an x exists since (hC − hD)

∗∗ is the supremum of the continuous
linear forms in ∂(hC−hD)

∗∗(0). Then, when C is closed convex, the Hahn-Banach theorem

ensures that x+D ⊂ C, so that x ∈ C
∗
− D. Then, for each x∗ ∈ X∗, we have

(hC − hD)
∗∗(x∗) = sup{〈x∗, x〉 : x ∈ ∂(hC − hD)

∗∗(0)} ≤ h
C

∗
−D

(x∗).

It follows that (hC − hD)
∗∗(0) = 0 iff C

∗
− D is nonempty; in the contrary case we have

(hC − hD)
∗∗(0) = −∞ and the equality h

C
∗
−D

= (hC − hD)
∗∗ still holds.
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Proposition 2.6. Let A and B be two nonempty bounded subsets of X, A being closed
convex. Suppose there exist z ∈ X and r > 0 such that A contains the r-enlargement
U(B, r) := B + z + rU of B + z. Then, for each ρ ∈]0, r/2[, there exists k > 0 such that
for any closed convex subsets C,C ′ and any convex subsets D, D′ satisfying

max(d(C,A), d(C ′, A), d(D,B), d(D′, B)) < ρ,

one has
d(C

∗
− D,C ′ ∗

− D′) ≤ λ(d(C,C ′) + d(D,D′)).

Proof. Since A ⊃ B + (z + rU), the preceding lemma ensures that

hA(x
∗)− hB(x

∗) ≥ (hA − hB)
∗∗(x∗) ≥ h

A
∗
−B

(x∗) ≥ hz+rU(x
∗) = 〈x∗, z〉+ r ‖x∗‖ .

Let λ = (d + 1)(r − 2ρ)−1(α + β + ρ) where A ⊂ αU, B ⊂ βU. Let ρ ∈]0, r/2[ and let
closed convex subsets C,C ′ and convex subsets D, D′ satisfy

max(d(C,A), d(C ′, A), d(D,B), d(D′, B)) < ρ.

Lemma 2.1 yields

‖(hA − hB)− (hC − hD)‖ < 2ρ,

‖(hA − hB)− (hC′ − hD′)‖ < 2ρ.

Since ‖hA − hB‖ ≤ α+ β, Lemmas 2.1, 2.5 and Proposition 1.2 ensure that

d(C
∗
− D,C ′ ∗

− D′) =
∥

∥

∥h
C

∗
−D

− h
C′

∗
−D′

∥

∥

∥

= ‖(hC − hD)
∗∗ − (hC′ − hD′)∗∗‖

≤ λ ‖(hC − hD)− (hC′ − hD′)‖
≤ λ ‖hC − hD‖+ λ ‖hC′ − hD′‖
≤ λd(C,D) + λd(C ′, D′).

Remark. In the special case ofD = D′, the estimate of λ given in the preceding proof can
be improved. Let us note in particular that the estimate of [17, Lemma 2.23] for the special
case D = D′ = rαU is more precise. This fact is an incentive to improve Proposition 1.2
in such special cases. Tighter estimates of the Lipschitz rate of the Minkowski difference
are provided in [12].
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