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1. Introduction

Let V be a Hilbert space which is supposed imbedded in Lp(Ω) where Ω is an open subset
of IRn and p ≥ 2. The theory of hemivariational inequalities was first introduced by P.D.
Panagiotopoulos in 1981 (see [24] and [19]), as : find u ∈ V such that

α (u, v − u) +

∫

Ω

j0 (u (x) ; v (x)− u (x)) dx ≥ 0 ∀v ∈ V.

This problem can be considered as a nonconvex generalization of the classical variational
inequalities of J. L. Lions and G. Stampacchia. For typical examples in connection with
mechanics and engineering we refer to the books of Panagiotopoulos [20, 22] and [18].
The techniques used for resolution of hemivariational inequalities are subsequently based
on arranging fixed point theorems, Galerkin methods and the convolution product regu-
larization, see [15]-[17], [21], [22] and the bibliography therein.
In the last few years, much attention has been focused to the existence theory of such
inequalities by means of the generalized Ky Fan minimax theorem [5, 4].
It is the aim of the present paper to investigate the variational-hemivariational inequality
(V HI): find u ∈ D and λ ∈ IR such that ∀v ∈ D

λ〈H(u), v − u〉 ≤ α (u, v − u) + 〈C (u) , v − u〉

+

∫

Ω

j0 (u (x) ; v (x)− u (x)) dx+ Φ(v)− Φ(u).
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Here V is supposed a reflexive Banach space, D ⊂ V is convex, H is the duality mapping
(i.e. H(x) := {x∗ ∈ V ∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2}), α : V × V → IR is a continuous
bilinear form, Φ is a proper convex lower semicontinuous function with domain D =
D(Φ) := {u ∈ V : Φ(u) < +∞}, C : D → V ∗ is a nonlinear operator and j : IR → IR is a
locally Lipschitz function.
Notice that if j = 0, the problem (V HI) reduces to a generalized variational inequality,
if λ = 0 and Φ = 0 problem (V HI) becomes the hemivariational inequality considered
by Naniewicz and Panagiotopoulos [18, 20, 22], and if λ = 0,Φ = 0 and C = 0 we refer
to [4, 8, 21]. In a Hilbert framework with Φ = 0 Motreanu and Panagiotopoulos [14]
provided the existence for (V HI) by using the critical points method.
It is the aim of our work to investigate existence and stability of solution for (V HI) by
means of a mixed version of Ky Fan’s minimax inequality (see [3], [2] and [6]).
After recalling some basic tools we need in the sequel, in Section 3 we present existence
theorems under the δ−positivity condition on the bilinear form α (Theorems 3.7 and 3.11)
which generalizes and unifies some results obtained in [5], [11] and [14].
Section 4 is devoted to the qualitative convergence of solutions. More precisely, taking (for
i = 1, 2) a solution ui of (V HIi), we estimate the value ‖u1 − u2‖ in terms of Ôadequate
distancesÔ between the operators Ci, the functions ji and the bilinear forms αi, Theorems
4.1, 4.5. Afterwards, see Proposition 4.7 we cope with the convergence of solutions un

when the sequences Cn , αn and jn are converging in adequate sense to C, α and j,
respectively.
Finally, some remarks and comments are given in the last section.

2. Basic tools and preliminaries

We treat (V HI) problem by a variational method involving a generalized Ky Fan’s min-
imax approach. Roughly speaking we need the following existence result of Blum and
Oettli [3], [6].

Theorem 2.1. Let X be a topological vector space, D a nonempty closed convex subset
of X and f, g be two real functions defined on D ×D such that :

(i) For each x in D, f(x, x) = g(x, x) = 0.

(ii) For each y ∈ D, g(., y) is upper hemicontinuous, i.e., g(., y) is upper semicontinuous
on each line segment in D.

(iii) g is monotone, i.e., g(x, y) + g(y, x) ≤ 0 for each x, y ∈ D.

(iv) For each x in D, f(x, .) and g (x, .) are convex.

(v) For each x in D, g (x, .) is lower semicontinuous.

(vi) For each y in D, f(., y) is upper semicontinuous.

(vii) (Coercivity) There exists a nonempty convex compact A ⊂ D such that ∀x ∈
A\coreDA, ∃y ∈ coreDA such that f(x, y) + g(x, y) ≤ 0.

Then, f + g admits an equilibrium point x ∈ D, i.e., f(x, y) + g(x, y) ≥ 0 ∀y ∈ D.

Here the core of A relative to D, denoted by coreDA, is defined through

x ∈ coreDA ⇔ x ∈ A, and A ∩ (x, y] 6= Ø∀y ∈ D\A.

Note that coreDD = D.
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Remark 2.2. [6] WhenX is a reflexive Banach space, endowed with the weak topology, a
sufficient condition for the coercivity requirement (vii) in Theorem 2.1, which is obviously
satisfied if D is bounded, is :

∃a ∈ D such that f(x, a) ≤ M‖x− a‖∀x ∈ D with ‖x− a‖ ≥ c, and

g(x, a)/‖x− a‖ → −∞ if ‖x− a‖ → +∞, x ∈ D, for some positive constants M and c.

In this respect, we make use of the previous result by endowing the space V with the
weak topology.

We shall henceforth make the following assumptions :

(H1) V be a reflexive1 Banach space, and D a nonempty closed convex subset of V .

(H2) V is imbedded in Lp(Ω) where Ω is an open bounded subset of IRn and p > 1,
and the imbedding is supposed to be compact. If we denote by ‖.‖ the norm of
V and by ‖.‖p the norm of Lp (Ω), then ∀u ∈ V , ‖u‖p ≤ cp ‖u‖ for some positive
constant cp.

(H3) α : D ×D → IR is a continuous bilinear form and δ-positive; i.e.

δ := inf
u,v∈D,u6=v

α(u− v, u− v)

〈H(u)−H(v), u− v〉
≥ 0.

(H4) Φ is a proper convex lower semicontinuous function with domainD⊂ dom(Φ) :=
{u ∈ V : Φ(u) < +∞}.

(H5) C : D → V ∗ is a weakly-strongly continuous nonlinear operator (i.e., C is
continuous from V endowed with the weak topology to V ∗ endowed with norm
topology) and C(D) is bounded.

(H6) j : IR → IR is a locally Lipschitz function defined by j (t) :=
∫ t

0
β(s)ds, where

(i) either β ∈ L∞(IR),
(ii) or ∃α1 > 0, α2 > 0 such that |β(s)| ≤ α1 + α2|s|p−1 ∀ s ∈ IR.

Above j0 denotes the Clarke’s generalized derivative of j which is defined as follows

j0(u; v) := lim sup
x→u
t↘0

1

t
(j (x+ tv)− j (x))

and the generalized gradient of j is given by

∂j(u) = {ζ ∈ X∗ : 〈ζ, v〉 ≤ j0(u; v)∀v ∈ X}.

When we suppose that j is continuously differentiable, ∂j(x) is reduced to {∇j(x)}.
We end this section of preliminaries with useful properties of Clarke’s generalized deriva-
tive.

Proposition 2.3. [10, Prop. 2.1.1] Let φ be a real Lipschitz function of rank k near x.
Then

a) The function v → φ0 (x; v) is positively homogeneous and subadditive (thus convex),
continuous and Lipschitz of rank k on X,

1Without loss of generality we can assume that 0 ∈ D and the norms of V and V ∗ are strictly convex.
Let us recall [25] that in that case H is one-to-one and strictly monotone.
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b) For each v in X, one has |φ0 (x; v)| ≤ k ‖v‖,
c) φ0 (x; v) is upper semicontinuous as a function of (x, v).

d) For every v in X, one has

φ0(x; v) = max{〈ζ, v〉 : ζ ∈ ∂ϕ(x)}

Lemma 2.4. ([7], see also [10, Example 2.2.5])Let Φ ∈ L∞
loc(IR), the function defined by

Ψ(t) =
∫ t

0
Φ (s) ds is locally Lipschitz, and for Φ+ (t) = lim

δ→0
ess sup
|s−t|≤δ

Φ(s) and Φ− (t) =

lim
δ→0

ess inf
|s−t|≤δ

Φ(s), we have Ψ0(t; z) ≤ Φ+(t)z if z > 0 and Ψ0(t; z) ≤ Φ−(t)z if z < 0, and

then ∂Ψ(t) ⊂ [Φ−(t),Φ
+(t)] .

3. The existence results

In this section we prove a basic existence result for the (V HI) problem. For this we
introduce the following definition and collect some lemmata, which we need in the sequel.

Definition 3.1. We say that β is γ-lower essentially r-Hölder (γ ∈ IR), if

β+ (t1) ≤ β− (t2) + γ(t2 − t1)
r,∀t1 < t2. (1)

Remark 3.2. Note that the γ-lower essentially r-Hölder of β is incomparable to the
following condition introduced by Panagiotopoulos in his existence results (see [11] and
[23] and the bibliography therein): there exists δ > 0 such that

ess sup
(−∞,−δ)

β(s) ≤ 0 ≤ ess inf
(δ,+∞)

β(s). (2)

Lemma 3.3. Suppose β is γ-lower essentially r-Hölder, then for every s, t ∈ IR we have

j0(t; s− t) + j0(s; t− s) ≤ γ|s− t|r+1

Proof. By Lemma 2.4, if t ≤ s we have,

j0(t, s− t) + j0(s, t− s) ≤ (s− t)β+(t) + (t− s)β− (s)

= (s− t)
(

β+(t)− β− (s)
)

≤ γ(s− t)r+1

and if t ≥ s we have j0(t, s− t) + j0(s, t− s) ≤ (t− s)(β+(s)− β−(t)) ≤ γ(t− s)r+1.

Remark 3.4. From Lemma 3.3, it follows that if γ < 0, then ∂j is strongly monotone
(i.e. ∀s, t ∈ IR, ξ ∈ ∂j(s) and η ∈ ∂j(t) imply 〈ξ − η, s − t〉 ≥ −γ | s − t |r+1); and if
γ = 0, ∂j is monotone. Thus when γ ≤ 0 the (V HI) problem comes back to a variational
inequality, since this case corresponds to convexity of j, whereas if γ > 0 the function j
is not necessarily convex.

Remark 3.5. It is easy to check that j is Lipschitz near x of rank
R(x) := ess sup

|s−x|≤τ
|β|(s) for some positive constant τ . Particularly, when β satisfies (H6)(i)

we have R(x) = R = ‖β‖∞ for all x ∈ IR.
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Lemma 3.6. Assume that (H6) is satisfied. Then, for all v in V the functional u 7→
f(u, v) := 〈C(u), v − u〉+

∫

Ω
j0(u; v − u)dx is weakly upper semicontinuous.

Proof. Let {un} be a weakly converging sequence to some u in V , we have to show that
lim sup f(un, v) ≤ f(u, v).

Step 1. Suppose (H6)(i) is satisfied. Then j is Lipschitz of rank R, and by Proposition
2.3, the function Ψn given by

Ψn (x) := j0 (un (x) ; v (x)− un (x))−R |un (x)− v (x)|

is nonpositive.
V is supposed compactly imbedded in Lp (Ω), we deduce for a subsequence also denoted
by {uk} we have strong convergence to u in Lp (Ω). It follows for an other subsequence
also denoted by {uk}, that uk (x) → u (x) almost everywhere on Ω.
Using Fatou’s Lemma, we have

lim sup
k

∫

Ω

Ψk (x) dx ≤
∫

Ω

lim sup
k

Ψk (x) dx.

Taking into account the usual properties of lim sup we have

lim sup

∫

Ω

j0(uk; v − uk)dx

≤
∫

Ω

lim sup j0(uk; v − uk)dx+R lim

∫

Ω

(|uk (x)− v (x)| − |u (x)− v (x)|) dx

≤
∫

Ω

lim sup j0(uk; v − uk)dx+R mes(Ω)(p−1)/p lim ‖uk − u‖p

=

∫

Ω

lim sup j0(uk; v − uk)dx,

since uk → u inLp (Ω). We deduce

lim sup

∫

Ω

j0(uk; v − uk)dx ≤
∫

Ω

lim sup j0(uk; v − uk)dx.

As j0 (., .) is upper semicontinuous, we deduce

lim sup

∫

Ω

j0(uk; v − uk)dx ≤
∫

Ω

j0 (u; v − u) dx.

Step 2. Suppose (H6)(ii) is satisfied. Let us first prove for each x, y ∈ R that

j0(x; y) ≤ (α1 + 2p−1α2|x|p−1)|y|. (3)

To this end, take γ > 0 and fix s in [x− γ, x+ γ].
By (H4)(ii) it follows that

|β(s)| ≤ α1 + α2(|x|+ γ)p−1

≤ α1 + 2p−2α2(|x|p−1 + γp−1).
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(The last inequality is trivial for p = 2 and comes from convexity of t → xp−1 upon R+

for p > 2.)

Thus

| ess sup
|s−t|≤δ

β(s)| ≤ α1 + 2p−2α2(|x|p−1 + γp−1).

Thus we conclude that

|β+(x)| = | lim
δ→0

ess sup
|s−t|≤δ

β(s)| ≤ α1 + 2p−2α2|x|p−1.

In the much same way, we can check that

|β−(x)| ≤ α1 + 2p−2α2|x|p−1.

On the other hand, by Lemma 2.4 we have

∂j(x) ⊂ [β+(x), β−(x)],

hence we deduce for all ξ ∈ ∂j(x) that

|ξ| ≤ max(|β+(x)|, |β−(x)|) ≤ α1 + 2p−2α2|x|p−1.

It turns out from Proposition 2.3 (d) that

j0(x; y) = max
ξ∈∂j(x)

〈ξ, y〉

≤ (α1 + 2p−2α2|x|p−1)|y|.

Since {un} is a weakly converging sequence to some u ∈ V and the embedding of V
in Lp(Ω) is compact, for a subsequence {uk}, one has uk → u (strongly) in Lp, and
uk(x) → u(x) almost everywhere on Ω.
From Egoroff’s Theorem, since mes(Ω) < +∞, we get for each ε > 0, the existence of a
measurable subset Aε of Ω such that mes (Aε) ≤ ε and uk → u uniformly on Ac

ε.
Now taking into account (3) one sees by setting Rk(x) := α1 + 2p−1α2|uk(x)|p−1, that for
each k and x ∈ Ac

ε,

j0(uk (x) ; v (x)− uk (x)) ≤ Rk(x) |v (x)− uk (x)| .

So let us show that

lim sup
k

∫

Ac
ε

j0(uk; v − uk)dx ≤
∫

Ac
ε

lim sup
k

j0(uk; v − uk)dx. (4)

To this end, consider

Ψk (x) := j0 (uk (x) ; v (x)− uk (x))−Rk(x) |uk (x)− v (x)|

Since Ψk ≤ 0, Fatou’s Lemma implies that

lim sup
k

∫

Ac
ε

Ψk (x) dx ≤
∫

Ac
ε

lim sup
k

Ψk (x) dx.
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As Rk(x)|v(x) − uk(x)| → R(x)|v(x) − u(x)| almost everywhere on Ac
ε, where R(x) :=

α1 + 2p−1α2|u(x)|p−1, and uk is dominated independently on k for k large enough (because
is uk uniformly converging to u on Ac

ε) it follows that

lim
k

∫

Ac
ε

Rk(x)|v(x)−uk(x)|dx =

∫

Ac
ε

lim
k→∞

Rk(x)|v(x)−uk(x)|dx =

∫

Ac
ε

R(x)|v(x)−u(x)|dx.

Therefore, from the previous Fatou’s inequality we have

lim sup
k

∫

Ac
ε

j0(uk; v − uk)dx+ lim
k→∞

∫

Ac
ε

Rk(x)|v(x)− uk(x)|dx ≤

≤
∫

Ac
ε

lim sup
k

j0(uk; v − uk)dx+

∫

Ac
ε

lim
k→∞

Rk(x)|v(x)− uk(x)|dx

Thus

lim sup
k

∫

Ac
ε

j0(uk; v − uk)dx ≤
∫

Ac
ε

lim sup
k

j0(uk; v − uk)dx

On the other hand limε→0mes (Aε) = 0 we get

lim
ε→0

∫

Aε

lim sup
k−→+∞

j0(uk; v − uk)dx = 0.

Then, thanks to a diagonalization Lemma [1, Corollary 1.16, p.33] it results that for some
converging sequence {ε(k)} to 0

∫

Ω

j0(u, v − u)dx ≥ lim sup
ε→0

lim sup
k→+∞

∫

Ac
ε

j0(uk; v − uk)dx

≥ lim sup
k→+∞

∫

Ac
ε(k)

j0(uk; v − uk)dx. (5)

Now, using (3), then ∀k ∈ IN∗,∀x ∈ Aε(k),

j0(uk(x); v(x)− uk(x)) ≤ (α1 + α2|uk(x)|p−1|)v(x)− uk(x)|.

Therefore

∫

Aε(k)

j0(uk; v − uk)dx ≤
∫

Aε(k)

(

α1 + α2 |uk(x)|p−1) |v (x)− uk(x)| dx

≤



α1mes(Aε(k))
1/q + α2

(

∫

Aε(k)

|uk(x)|p
)1/q



 ‖v − uk‖p ,(6)

where q = (p−1)/p. Letting, in (6), mes(Aε(k)) → 0 and uk → u in Lp(Ω) when k → +∞,
we obtain

lim sup
k→+∞

∫

Aε(k)

j0(uk; v − uk)dx ≤ 0. (7)
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Using (5) and (7), it turns out that
∫

Ω

j0(u, v − u)dx ≥ lim sup
k

∫

Ac
ε(k)

j0(uk; v − uk)dx+ lim sup
k

∫

Aε(k)

j0(uk; v − uk)dx

≥ lim sup
k

[

∫

Ac
ε(k)

j0(uk; v − uk)dx+

∫

Aε(k)

j0(uk; v − uk)dx

]

= lim sup
k

∫

Ω

j0(uk; v − uk)dx.

Combining these two steps we confirm

lim sup

∫

Ω

j0(uk; v − uk)dx ≤
∫

Ω

j0 (u; v − u) dx.

This is true for each sub-subsequence of {un}, it follows that the function u →
∫

Ω
j0(u, v−

u)dx is upper semicontinuous.
On the other hand C is weakly-strongly continuous, thus C(un) −→ C(u) as n → +∞.
We conclude that f(., v) is weakly upper semicontinuous .

Theorem 3.7. Suppose that (H1)− (H5) are satisfied. Assume either
a)(H6)(i),
or
b)(H6)(ii) for p ∈ (1, 2),
or
c)(H6)(ii) for p ≥ 2 and β is γ-lower essentially r-Hölder with r < 1.
Then, for all λ < δ, the set of solutions to (V HI) is nonempty.

Remark 3.8. In [6], the authors recalled a quite different coercivity condition ensuring
the compactness of the set of solutions.

Remark 3.9. Note that the use of minimax approach is fruitful since it will lead to
existence theorems without the structural decomposition assumption upon the operator
C as in [14]. However, we demand the positivity of the bilinear form and either the
boundedness or some Hölder type condition on the function β (see Definition 3.1), which
will be useful for existence results and will also prove to play a crucial role for the stability
ones.

Proof. The argument is based on Theorem 2.1 with V endowed with the weak topology
σ (V, V ∗), and for each u, v ∈ D

g (u, v) := α (u, v − u)− λ〈H(u), v − u〉+ Φ(v)− Φ(u),

f (u, v) := 〈C(u), v − u〉+
∫

Ω
j0 (u; v − u) dx.

The assumptions i), iv) and v) are immediately satisfied, and vi) follows from Lemma 3.6.
Assumption ii) follows from the demicontinuity of the duality mapping H.
Assumption iii) is also satisfied since using (H3) and monotonicity of H, we have for every
u, v ∈ D

g(u, v) + g(v, u) = −α(v − u, v − u) + λ〈H(v)−H(u), v − u〉
≤ (λ− δ)〈H(v)−H(u), v − u〉 ≤ 0.
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We have only to prove (vii). Assume contradiction that (vii) is not true, then for each
n ∈ IN∗ there exists some un ∈ D with ‖un‖ = n and f(un, 0) + g(un, 0) > 0. Then

0 ≤ −α(un, un) + λ〈H(un), un〉+ Φ(0)− Φ(un)− 〈C(un), un〉+
∫

Ω

j0 (un;−un) dx

≤ n2

(

(λ− δ) +
1

n2
(Φ(0)− Φ(un))− 〈C(un),

un

n2
〉+ 1

n2

∫

Ω

j0 (un;−un) dx

)

.

Using convexity of Φ, it is readily shown that

0 < δ − λ ≤ lim sup
n→+∞

(Φ(0)− Φ(
un

n2
)) + lim sup

n→+∞
〈C(un),

−un

n2
〉+

+ lim sup
n→+∞

1

n2

∫

Ω

j0 (un;−un) dx.

Since Φ is lower semicontinuous and C(D) is bounded we deduce

0 < δ − λ ≤ lim sup
n→+∞

1

n2

∫

Ω

j0 (un;−un) dx.

We shall prove that lim supn→+∞
1
n2

∫

Ω
j0 (un;−un) dx ≤ 0; once this has been done we

end to a contradiction.

First, suppose that β ∈ L∞(IR). Then j0 (un;−un) ≤ ‖β‖∞|un|, and by Hölder inequality
it follows that

lim sup
n→+∞

1

n2

∫

Ω

j0 (un;−un) dx ≤ ‖β‖∞ lim sup
n→+∞

1

n2

∫

Ω

|un|dx

≤ ‖β‖∞ lim sup
n→+∞

cp
n2

mes(Ω)1/q‖un‖

= 0.

Suppose now (H6)(ii) is satisfied with p ∈ (1, 2), then

lim sup
n→+∞

1

n2

∫

Ω

j0 (un;−un) dx ≤ lim sup
n→+∞

1

n2

∫

Ω

(α1 + α2|un|p−1)|un|dx

≤ lim sup
n→+∞

1

n2

(

α1cpmes(Ω)1/q‖un‖+ α2c
p
p‖un‖p

)

≤ lim sup
n→+∞

(

α1cpmes(Ω)1/qn−1 + α2c
p
pn

p−2
)

.

So that since p ∈ (1, 2) we have lim supn→+∞
1
n2

∫

Ω
j0 (un;−un) dx ≤ 0.

We are going to treat the case where β is γ-lower essentially r-Hölder with r < 1 and
p ≥ 2.
Remarking that p ≥ r + 1, by means of Lemma 3.3, we have

1

n2

∫

Ω

j0(un,−un)dx ≤ 1

n2

(

−
∫

Ω

j0(0, un)dx+ γ

∫

Ω

|un|r+1dx

)

≤ 1

n2

(

R(0)

∫

Ω

|un|dx+ γ

∫

Ω

|un|r+1dx

)

≤
(

R(0)cpmes(Ω)1/qn−1 + γcr+1
p mes(Ω)1−(r+1)/pnr−1

)

.
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Thus lim supn→+∞
1
n2

∫

Ω
j0 (un;−un) dx ≤ 0.

The proof is therefore complete.

Remark 3.10. Theorem 3.7 remains valid if, instead of (H5), the operator C is weakly-
strongly continuous and for each sequence (un) with ‖un‖ = n one has

lim inf
n→∞

〈C(un),
un

n2
〉 > λ− δ,

which is a more general condition.

As it was remarked by one of the referees, the minimax technique may be used to establish
the existence of solution to (V HI) under more general conditions. He suggested, instead
of the γ-lower essential r-Hölder, the more larger condition:

(H6∗) lim
R→∞

ess inf|s|>R
β(s)

s
≥ 0. Following the arguments of the referee, we have the

following result.

Theorem 3.11. Assume that (H1)− (H5), (H6)(ii) and (H6∗) are satisfied. Then, for
every λ < δ, the set of solutions to (V HI) is nonempty.

Proof. As (H6)(ii) is fulfilled, Lemma 3.6 implies that condition (vi) from the minimax
inequality is satisfied. All we have to prove is condition (vii), which, follows if relation

lim sup
n→+∞

1

n2

∫

Ω

j0 (un;−un) dx ≤ 0

is established every time when ‖un‖ = n.

To prove this, let ε > 0; from (H6∗) it follows that there is R > 0 such that β(s)
s

≥ −ε
for almost every s such that |s| > R. Then β(s) ≥ −εs for almost every s > R, and
β(s) ≤ −εs for almost every s < −R, so

β−(s) ≥ −εs∀s > R, β+(s) ≤ −εs ∀s < −R.

On the other hand, from condition (H6)(ii) we read that

|β+(s)| ≤ α1 + α2R
p−1, |β−(s)| ≤ α1 + α2R

p−1 ∀|s| ≤ R

and that
β−(s) ≥ −α1 − α2s

p−1, β+(s) ≤ α1 + α2|s|p−1 ∀s < −R.

Accordingly,
j0(un(x);−un(x)) ≤ min(ε|un|2, α1|un|+ α2|un|p),

for every x ∈ Ω such that |un| > R, and

j0(un(x);−un(x)) ≤ α1R + α2R
p,

for every x ∈ Ω such that |un| ≤ R.
Thus

1

n2

∫

Ω

j0(un;−un)dx ≤ 1

n2
mes(Ω)(α1R + α2R

p)

+min(
1

n2

∫

Ω

ε|un|2dx,
1

n2

∫

Ω

(α1|un|+ α2|un|p)dx)
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But
∫

Ω

|un|dx ≤ (mes(Ω))
p−1
p ‖un‖p ≤ cp(mes(Ω))

p−1
p n,

∫

Ω

|un|pdx = ‖un‖pp ≤ cppn
p,

and

(p ≥ 2) ⇒ (

∫

Ω

|un|2 ≤ (mes(Ω))
p−2
p ‖un‖2p ≤ c2p(mes(Ω))

p−2
p n2.

Consequently,

min(
1

n2

∫

Ω

ε|un|2dx,
1

n2

∫

Ω

(α1|un|+ α2|un|p)dx) ≤ α1cpmes(Ω))
p−1
p n−1 + α2c

p−2
p np−2,

and if p ≥ 2 then

min(
1

n2

∫

Ω

ε|un|2dx,
1

n2

∫

Ω

(α1|un|+ α2|un|p)dx) ≤ c2p(mes(Ω))
p−2
p ε.

When p < 2, the sequence α1cpmes(Ω))
p−1
p n−1 + α2c

p−2
p np−2 converges to 0, so

lim sup
n→∞

min(
1

n2

∫

Ω

ε|un|2dx,
1

n2

∫

Ω

(α1|un|+ α2|un|p)dx) ≤ c2p(mes(Ω))
p−2
p ε,

and as

lim
n→∞

1

n2
mes(Ω)(α1R + α2R

p) = 0,

we deduce that

lim sup
n→+∞

1

n2

∫

Ω

j0(un;−un)dx ≤ c2p(mes(Ω))
p−2
p ε.

Since the previous relation holds for every ε > 0, it follows that

lim sup
n→+∞

1

n2

∫

Ω

j0(un;−un)dx ≤ 0,

and the proof is completed.

Remark 3.12. Remark that, if p < 2 then (H6)(ii) ⇒ (H6)∗, and if β is γ-lower essential
r-Hölder with r < 1, then (H6∗) is fulfilled.

Condition (H6∗) is much larger than the γ-lower essential r-Hölder for some r < 1, as
functions like

√

|s| and −s
ln(s)

, which are not γ-lower essentially r-Hölder for any r < 1,

fulfills (H6∗) which seems to be more natural. In addition, (H6∗) is a condition "at the
infinity", therefore this condition may be regarded as γ-lower essential r-Hölder "at the
infinity".

4. Stability results

In this section, we are interested to the qualitative stability results for solutions of (V HI)
when the data are perturbed. Throughout this section we suppose that V is a Hilbert
space, and δ − λ > 0.
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4.1.

We first treat the case where only the operator C is perturbed. Let us consider Ci for
i = 1, 2, then by Theorem 3.7 the solution-set of the corresponding problem (V HIi) is
nonempty.

Theorem 4.1. Assume that α is δ-positive and let β ∈ L∞(IR) be a γ-lower essentially
r-Hölder function, and p ≥ 2. If ui is a solution of (V HIi) and 0 < δ − λ, then

(δ − λ)‖u1 − u2‖ ≤ ‖C1(u1)− C2(u2)‖+ γ

∫

Ω

|u2 − u1|r+1dx (8)

Proof. Since ui is a solution of (V HIi), we have ∀v ∈ V

λ〈ui, v − ui〉 ≤ α(ui, v − ui) + 〈Ci(ui), v − ui〉+
∫

Ω

j0 (ui; v − ui) dx+ Φ(v)− Φ(ui). (9)

By setting v = uj in (V HIi) for j 6= i, and adding the two relations, we obtain

−λ ‖u1 − u2‖2 ≤ −α (u1 − u2, u1 − u2) + 〈C1 (u1)− C2 (u2) , u2 − u1〉

+

∫

Ω

(

j0 (u1;u2 − u1) + j0 (u2;u1 − u2)
)

dx (10)

Using the fact that α is δ-positive and Lemma 3.3, it follows that

(δ − λ)‖u1 − u2‖ ≤ ‖C1(u1)− C2(u2)‖+ γ

∫

Ω

|u2 − u1|r+1dx

Remark 4.2. If r = 1, K := γcp
2(mes(Ω))(p−2)/p and C2 is c-monotone, i.e. 〈C2 (u1) −

C2 (u2) , u1 − u2〉 ≥ c‖u1 − u2‖2, with c + δ −K − λ > 0 we obtain from the evaluation
(10) the following estimate

(δ − λ+ c) ‖u1 − u2‖ ≤ ‖C1 (u1)− C2 (u1)‖+K ‖u1 − u2‖ .

In fact, from (10) we can write

−λ ‖u1 − u2‖2 ≤ −δ‖u1 − u2‖2 + 〈C1 (u1)− C2 (u1) , u2 − u1〉

+γ

∫

Ω

|u2 − u1|2dx

+〈C2 (u1)− C2 (u2) , u2 − u1〉

which leads to

−λ ‖u1 − u2‖2 ≤ −δ‖u1 − u2‖2 + ‖C1 (u1)− C2 (u1) ‖‖u2 − u1‖

+

∫

Ω

|u2 − u1|2dx

−c‖u2 − u1‖2.
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Corollary 4.3. Suppose that β is γ-lower essentially 1-Hölder, α is δ-positive and C2 is
Lipschitz of rank k; then for λ such that K + k < δ − λ, the solution u2 of (V HI2) is
unique and the solution-set S1 of (V HI1) is included in the ball of center u2 and radius

r := sup
v∈D

‖C1 (v)− C2 (v)‖ / (δ − λ−K − k) .

We are going now to consider the distance d between two strongly continuous operators
C1 and C2 defined by

d (C1, C2) := max
u∈D

‖C1(u)− C2(u)‖.

Let {Cn, n = 1, 2, ...} be a sequence of nonlinear compact and Lipschitz operators (with
the same rank k) corresponding to problems (V HIn) for n = 1, 2, ....
From the Corollary 4.3, for each n = 1, 2, ... there exists un the unique solution of (V HIn)
such that

e (S, un) := sup
v∈D

‖v − un‖ ≤ sup
v∈D

‖v − un‖ ≤ 1

δ − λ−K − k
d(Cn, C).

Here S denotes the solution-set of (V HI).

Corollary 4.4. Suppose that α is δ-positive, β is γ-essential 1-Hölder and Cn are con-
verging to C relatively to d. Then, for λ < δ −K − k, the sequence {un} converges to a
unique solution u of (V HI).

Proof. Since e (S, un) ≤ d (Cn, C) /(δ−λ−K−k) and lim d(Cn, C) = 0, we deduce that
{un} converges to some u which must be the unique solution of (V HI).

4.2.

Let us consider now the problems (V HIi) i = 1, 2 where the corresponding positive
bilinear forms αi, nonlinear operators Ci and functions ji given by ji(t) =

∫ t

0
βi(s)ds

(where βi ∈ L∞(IR)) are perturbed.
Between j1 and j2 we consider the distance

D(j1, j2) := ‖β1 − β2‖∞.

Theorem 4.5. Suppose that α2 is δ-positive and β1, β2 ∈ L∞(IR) such that β2 is γ-lower
essentially 1-Hölder, and p ≥ 2. If ui of (V HIi), for i = 1, 2, and λ < δ −K, then

‖u1 − u2‖ ≤ 1

δ −K − λ
(‖C1(u1)− C2(u2)‖+ τ‖α1 − α2‖+ σD(j1, j2))

where σ = cp(mes(Ω))(p−1)/p and τ ≥ ‖u1‖.

Proof. By definition of ui, setting v = uj in (V HIi) for j 6= i, and adding these two
relations we obtain

−λ‖u1 − u2‖2 ≤ α1(u1, u2 − u1) + α2(u2, u1 − u2) + 〈C1(u1)− C2(u2), u2 − u1〉

+

∫

Ω

(

j01(u1;u2 − u1) + j02(u2;u1 − u2)
)

dx.
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As β2 satisfies (1) for r = 1, it follows from Lemma 3.3 that

∫

Ω

(

j01(u1;u2 − u1) + j02(u2;u1 − u2)
)

dx ≤

≤
∫

Ω

(

j01(u1;u2 − u1)− j02(u1;u2 − u1)
)

dx+K‖u1 − u2‖2

≤
∫

Ω

(j1 − j2)
0(u1;u2 − u1)dx+K‖u1 − u2‖2

≤ ‖β1 − β2‖∞
∫

Ω

|u1(x)− u2(x)| dx+K‖u1 − u2‖2

≤ σ ‖β1 − β2‖∞ ‖u1 − u2‖+K‖u1 − u2‖2.

Since α2 is positive, we obtain

−λ ‖u1 − u2‖2 ≤ (α1 − α2)(u1, u2 − u1)− δ ‖u1 − u2‖2 +K‖u1 − u2‖2

+ ‖C1 (u1)− C2 (u2)‖ ‖u1 − u2‖+ σD(j1, j2) ‖u1 − u2‖ .

Thus

‖u1 − u2‖ ≤ 1

δ − λ−K
(τ‖α1 − α2‖+ ‖C1(u1)− C2(u2)‖+ σD(j1,j2)) .

Remark 4.6. If moreover C2 is Lipschitz of rank k such that K + k < δ − λ, then for
M := 1/ (δ − λ−K − k) we obtain

‖u1 − u2‖ ≤ M [τ ‖α1 − α2‖+ d (C1, C2) + σD(j1,j2)] .

When C2 is c-monotone, the same result holds by taking M = 1/ (δ − λ−K + c).

Let us consider {Cn;n = 1, 2, ...} be a sequence of weakly- strongly continuous and Lip-
schitz operators of the same rank k with K + k < δ − λ ,jn(t) =

∫ t

0
βn(s)ds (where

β, βn ∈ L∞(IR)), and αn, n = 1, 2, .... Let un (n = 1, 2, ...) be the unique solution of the
associated problem (V HIn).
When we suppose that all these sequences converge, then Remark 4.6 ensures that {un}
is a Cauchy sequence and moreover if u is limit of {un}

‖u− un‖ ≤ 1

δ − λ−K − k
(τ‖α− αn‖+ d(C,Cn) + σD(j, jn)).

Here τ is taken so as : τ ≥ ‖u‖.

As a review of this convergence’s rate, we introduce the following local convergence of jn
to j:

Dτ,u(jn, j) := ‖kτ (β, βn)(u(.))‖Lq(Ω) where kτ (β, βn)(t) := ess sup
|s−t|≤τ

|(β − βn)(s)|.

Proposition 4.7. Let Cn as stated in Remark 4.6 and suppose that, for n = 1, 2, ..,
αn is δ-positive, βn is γ-lower essential 1-Hölder, (H6)(ii) is verified with α1 and α2
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independent of n and βn converges to β almost uniformly on each bounded line segment
of IR. Then

‖u− un‖ ≤ 1

δ − λ− k − c
[η‖α− αn‖+ dη(C,Cn) + cpDτ,u(j, jn)] (11)

where η > 0 is such that ‖u‖ ≤ η and

dη(C,Cn) := max
‖u‖≤η

‖C1(u)− Cn(u)‖.

Proof. By using the same argument as in the proof of Theorem 4.5, we have

(δ − λ−K − c) ‖u− un‖2 ≤ (α− αn)(u, un − u) + ‖Cn (u)− C (u)‖ ‖un − u‖

+

∫

Ω

(j − jn)
0(u;un − u)dx.

Note, for some τ > 0, we have from Remark 2.2 and Proposition 2.3
∫

Ω

(j − jn)
0(u;un − u)dx ≤

∫

Ω

kτ (β, βn)(u(x)) |un (x)− u (x)| dx. (12)

Since β and βn satisfy (H6)(ii), it follows that kτ (β, βn)(u(.)) ∈ Lq (Ω) and
∫

Ω
(j − jn)

0(u;un − u)dx ≤ ‖kτ (β, βn)(u(.))‖Lq(Ω)‖un − u‖p
≤ cpDτ,u(jn, j)‖un − u‖

where Dτ,u(jn, j) := ‖kτ (β, βn)(u(.))‖Lq(Ω) . Thus (11) is satisfied. Now, thanks to (H6)
(ii), the function kτ,u(βn, β) is dominated independently on n in Lq (Ω). Using Lebesgue’s
Theorem, we deduce that Dτ,u(jn, j) converges to 0 in Lq (Ω) and thus un → u.

5. Comments and Remarks

5.1.

By setting D = V , α (u, v) = 〈Au, v〉, Φ = 0 and J (u) =
∫

Ω
j(u(x)), then under suitable

conditions the problem (V HI) can be expressed by

〈Au, v〉+ 〈Cu, v〉+ J0(u; v) ≥ λ〈H(u), v〉 for each v ∈ V

which means
J0(u, v) ≥< λH(u)− Au− Cu, v〉 for each v ∈ V.

Using Clarke’s subdifferential we obtain λH(u) − Au − Cu ∈ ∂J(u), i.e. λH(u) ∈
(A+ C + ∂J) (u). This justifies the eigenvalue nomenclature.

5.2.

In [14], the solution to (V HI) has been established for all λ belonging to the resolvent
set of the bilinear form α.
In Theorem 3.7, the condition on λ implies that λ is contained in the resolvent set of the
bilinear form α.

Indeed, the spectrum σ (α) of α is included in the closure of numerical range of α (see
[12, p. 171] ) that is σ(α) ⊂ {α(u, u) : ‖u‖ = 1}.
As α is δ-positive, we have σ (α) ⊂ [δ,+∞[ which join the assumption of [14] upon λ.
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5.3.

Neither existence nor stability results are affected if we consider the following hemivaria-
tional inequality

(P1)
find u ∈ X such that ∀v ∈ X,
α(u, v − u) + 〈C(u), v − u〉+

∫

Ω
j0(u; v − u)dx ≥ 〈l, v − u〉

where X is a reflexive Banach space and l ∈ X∗. In fact, this inequality would require
only minor changes. Note that, if we take C = 0 in (P1), we find again the result obtained
in a recent paper by O. Chadli, Z. Chbani and H. Riahi, by weaking their assumption
(h4), see [5] for more details.

5.4.

As we have mentioned before, on a Hilbert space, with Φ = 0, the (V HI) reduces to the
problem introduced and studied in [14]. Here, our approach imposes only the positivity
on the bilinear form α, but not the symmetry. However, we do not involve any structural
decomposition upon the operator C (assumption (H1) there). Also, in our case, the space
V is a reflexive Banach and not necessarily dense in Lp (Ω). Moreover, using Assumption
(1), we obtain the convergence of solutions with an estimate for the rate of convergence.

5.5.

If we take λ = 0 and C = −h where h is a derivative of a GÝateaux-Differentiable function
G, the (V HI) contains as a particular case the problem considered and treated in [11],
namely : find u ∈ D such that ∀v ∈ V

(P2) α(u, v − u) +

∫

Ω

j0(u; v − u)dx+ Φ(v)− Φ(u) ≥ 〈h(u), v − u〉,

where h is a derivative of a GÝateaux-Differentiable G.
With just the positivity but not necessarily coercivity on the bilinear form α, our Theorem
3.7 extends the result of [11], by weakening assumption A4) there, to the case where V is
imbedded in Lp(Ω) for p such that 2 ≤ p ≤ 3.
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