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1. Introduction

Stability and sensitivity analysis for parametric mathematical programs in finite dimen-
sion has been well developed and the results are fairly complete (see e.g., [3]). Such an
analysis for parametric optimal control problems is less advanced. Here the difficulties
are connected with infinite dimensionality of the problems. In particular, the so called
two-norm discrepancy is typical for nonlinear control problems. Namely, as a rule, the
Lagrangians of such problems are twice differentiable in a stronger norm (of L* type),
whereas coercivity conditions are satisfied in a weaker norm (of L? type), in which the
Lagrangian is not twice differentiable. This phenomenon creates difficulties in stability
analysis. However, in case of control constrained problems, these difficulties can be over-
come using the structure of optimality conditions. For these problems, Lipschitz stability
in stronger norm of L™ type has been established both for ODEs (see e.g., [7]) and PDEs
(see [11, 12]). These stability results will be the starting point for our sensitivity analysis.
It is crucial that the stability holds in L*°, since it allows to consider general nonlinear
control problems, subject to a broad class of perturbations. If only L? stability is used, one
has to impose some restrictions on the problem (linear-quadratic with respect to control)
and on the class of perturbations (see [2, 4]).

In sensitivity analysis of optimal control problems mostly the concept of directional dif-
ferentiability of the solutions has been exploited. This refers in particular to PDEs (see
e.g., [3, 20]). In parametric mathematical programs a stronger concept of differentiability,
the so called Bouligand or B-differentiability has been used (see [6, 16, 17, 18, 19]). Let
us recall the definition of Bouligand differentiability (see [6, 16, 18]).
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Definition 1.1. A function ¢, from an open set G of a normed linear space H into
another normed linear space X, is called B-differentiable (or Bouligand differentiable) at
a point hy € G if there exists a positively homogeneous map Dyp(hg) : G — X, called
B-derivative, such that

¢(ho + Ah) = ¢(ho) + Dpd(ho) Ah + o ||AR| ). (1.1)

O

Clearly, if Dp¢(hg) is linear, it becomes the Fréchet derivative. Accordingly, the Bouli-
gand derivative is sometimes called the directional Fréchet derivative [3]. Note that B-
differentiability is a stronger property than conical differentiability, exploited e.g., in [13],
where the remainder term in (1.1) is uniform on compact subsets of increments Ah (see
Remark (2), p.142 in [13]).

To the knowledge of the author, the only B-differentiability result for solutions to para-
metric optimal control problems was obtained in [10] for nonlinear ODEs. The purpose
of this paper is to extend the B-sensitivity result of [10] to systems described by PDEs.
We will study an optimal control problem for a semilinear parabolic equation. Stabil-
ity results for this problem were derived in [11]. As in [10], we use abstract results of
Dontchev [6], which allow to deduce differentiability properties of the solutions to general
nonlinear parametric optimization problems from the same properties of the solutions to
linear-quadratic accessory problems (see Theorem 3.2). Sensitivity analysis for the acces-
sory problem is performed in two steps. First, we prove directional differentiability of the
solutions and characterize the differentials. Then, using this characterization, we obtain
estimates, which show that the differentials are actually Bouligand.

In the principal Theorem 5.1 we show B-differentiability in L”, p < oo, of the solutions to
our initial nonlinear problem and we characterize the B-differential as the solution to an
auxiliary linear-quadratic optimal control problem. As a corollary, we obtain a uniform
second order expansion of the optimal value function. Throughout the paper, we often
refer to [11] and adapt the notation used therein.

Note that the methodology developed in [10] and in this paper can be used in sensitivity
analysis for a broad class of control constrained optimal control problems with different
dynamics.

2. Preliminaries

We will recall the parametric optimal control problem for semilinear parabolic equations,
which was considered in [11]. Let Q C IRY (N > 2) be a bounded domain with boundary
0 =T. For a fixed T > 0, we put Q@ =Q x (0,7) and X =T x (0,7T). By A we denote

an elliptic differential operator

N

Ay = — Z Dj (az’jDi y)

1,j=1

with sufficiently smooth coefficients a;; = a;;(x) satisfying the condition of symmetry
a;j = aj;. By 0,y the co-normal derivative of y at I' is denoted, where v is the outward
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normal to I'. Thus we have
oy = Z a;;v; Djy.
ij=1
Let H be a Banach space of parameters and G C H a bounded open set of feasible
parameters. For any feasible h consider the following optimal control problem depending
on h:

(Py)  Find (y,u) € C(Q) x L=(Q) such that

jh(yhauh) = min{jh(ya U) = / w(l’,t;y’ u, h)d.fl)'dt} (21)
Q
subject to
Oy(z,t) +b(x,t,y(x,t),h) = 0in X, (2.2)
y(xz,0) = 0in Q,
uel :={ue L>®Q) | m(z,t) <u(z,t) <my(x,t)}, (2.3)

where 1, a, b, my, mo are given functions. Note that we assume the homogeneous initial
condition of the state equation (2.2) just to simplify some further evaluations. We could

have assumed as well y(0) = x € C(Q).

We assume that at a reference value hy € G of the parameter there exists a solution
(Yo, u0) := (Yny, Uny) Of (Pp,), and we are interested in the following problem:

Find conditions under which there are neighborhoods Gy C G and Y C C(Q) x L™ of
ho and (yo,uo), respectively, such that for each h € Gq there exists a unique solution
(Yn,up) in Y of (Pn), and the map h — (yp,up) NY is B-differentiable.

Our starting point will be the result of [11], where conditions are derived, under which
the solutions to (Pj) exist are locally unique and Lipschitz continuous with respect to
h. We will show that, virtually the same conditions ensure also B-differentiability of the
solutions. As in [11] we assume:

(A1) T is of class C%“ for some «a € (0,1]. A is uniformly elliptic (see e.g., the definition
given in [5]). Its coefficients a;; belong to CH(Q).

(A2) The nonlinear real-valued function @ = a(z,t,y,u,h), defined on Q x IR?* x G,
satisfies the following Carathéodory type condition:

(i) For all (y,u,h) € R?> x G, a(-,-,y,u, h) and its first- and second order deriva-
tives Dya, Dya, Dy a, D},a, D3 a (all depending on (-,-,y,u,h)) are Lebesgue
measurable on Q.

(ii) For all h € G and almost all (z,t) € Q, a(z,t,-,-, h) is twice continuously
differentiable with respect to (y,u) € IR* on IR?.

(A3) For any fixed K > 0, the function « fulfils the following conditions:
(i) Boundedness
la(z,t,0,u, h)| < ag(x,t) V(z,t) € Q, |u| <K, hegd, (2.4)

where ag € L9(Q) and ¢ > & + 1. There are constants ¢% > 0 and cf such
that
C?{ S ay(xa ta Yy, u, h) S C}{ (25>
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for a.e. (z,t) € @Q, ally € R, all |u| < K and h € G.
(ii) Differentiability with respect to the parameter
For almost all (x,t) € @, all |y| < K and |u| < K, the functions a(x,t,y,u,-)
as well as D,a(x,t,y,u,-) and Dya(z,t,y,u,-) are Fréchet differentiable on G.
(A4) The nonlinear real-valued function b = b(x,t,y, h), defined on ¥ x IR X G, satisfies
conditions analogous to (A2), (A3). These conditions are obtained by substituting
Q) by ¥ and deleting v in (A2), (A3).
(A5) The real-valued function v satisfies the assumptions (A2), (A3) imposed on a,
except the growth condition (2.5).
(A6) The functions m; and mgy are of class L>(Q) and my(z,t) < mo(z,t) on Q.

By a weak solution of (2.2) we understand a function y € L?(0,T; H'(Q2)) N C(Q) such
that
J(=y-pe+(Vay, Vap))dadt + [ a(w,t,y,u,h) p drdi

Q O ,
+ [ bz, t,y,h) p dSydt =0 (2.6)
b

for all p € W, (Q) satisfying p(x, T) = 0. Here dS, denotes the surface measure induced
in I". The following theorem is a special case of a more general result proved in [5] or [14].

Theorem 2.1. Suppose that (A1)-(A4) are satisfied and u € L*(Q). Then problem
(2.2) has a unique weak solution

y e L*0,T; H(Q)) N C(Q).

O
Let us introduce the following spaces
W(0,T) = {y € L*(0, T; H'(Q)) | y € L*(0, T3 (H'(2))) },
where prime denotes the dual space, @7

W= {y e W(0,T) | yr + Ay € L*(Q), dpy € L*(%), y(0) € C(Q)}
75 =W*x L*(Q), where s € [2,00].

In W?#, we shall use the norm

[yllws = llye + Ayllze@ + 190yl o) + [yl c@)-

For s > max{N/2+ 1, N + 1}, this space is continuously embedded in C(Q). This follows
from the results of [5] and [14]. By the definition of the norm in W*, the operators y;+ Ay
and 0,y are continuous from W* to L*(Q)) and L*(X), respectively.

Define the following Hamiltonian H = H(x,t,y,u,p,h) : RN ™ x G — IR,
H=(x,t,y,u,h) —p-a(z,t,y,u,h) (2.8)
and the Lagrangian £ : W™ x L*(Q) x W(0,T) x G — IR,

Q bY

- / p(0)y(0)dz — / (vo + Ay) pded.
Q Q

(2.9)
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The stationarity conditions of the Lagrangian have the form:
D,L(y,u,p,h) z=0 for all z € W*°, (2.10)
D L(y,u,p,h)(v—u)

= /DUH(y,u,p, h)(v —u)dzdt >0 forall v el. (2.11)
Q

Condition (2.10) yields the adjoint equation
—pi(x,t) + Ap(x,t) = DyH(z,t,y,u,p,h) inQ,
Oyp(x,t) + Dyb(z,t,y,h)p(z,t) =0 in X, (2.12)
p(z,T) =0 in €.
Define the spaces:
W ={yeW*|y(0)=0}, Wp={peW*|p(T)=0}
X* =W x L¥(Q) x W2, (2.13)
A = L15(Q) x L¥(X) x L*(Q) x L*(Q) x L*(X).
Introduce the following set-valued map with the closed graph

N(u):{ SG{L"O(QH fQ)\(v—u)dxdtSO Yo e U} izzz, (2.14)

Using (2.14), the optimality system consisting of (2.12) and (2.11) as well as of (2.2) and
(2.3) can be expressed in the form of the following generalized equation

0€ F(&h) +T(),

where ¢ = (y,u,p), while F : X®° x G — A® and 7 : X — 227 are, respectively, a
function and a set valued map with closed graph, given by

-pe+Ap— Dy/H(y,u,p,h) inQ

Oyp+ Dyb(y, h)p in 2

F(& h)=| DH(y,u,p,h) inQ |, (2.15)
v+ Ay + aly,u, h) in Q

T = [{0},{0}, N'(u), {0}, {0}]". (2.16)

To simplify notation, the subscript 0 will be used to denote that a given function is
evaluated at the reference solution, e.g., Ho(z,t) := H(x, t, yo, g, Po, ho)-

We assume:

(A7) For a fixed reference value hy € G of the parameter there exists a solution (yo, ug) :=
(Yngs Uny) € Z of (Py,) and an associated adjoint state py := pp, € W5°. The
element & := (yo, ug, po) satisfies the generalized equation

0 € F(&, ho) + 7 (&). (2.17)



548 K. Malanowski / Sensitivity Analaysis for Parametric Optimal Control of ...

3. Application of abstract theorems for generalized equations

We are going to investigate conditions of existence, local uniqueness, Lipschitz continuity
and differentiability of solutions &, = (yn, un, pr) to the generalized equation

0€ F(&h)+T(). (3.1)

We will use certain theorems for abstract generalized equations [15, 6]. Note that, by
our assumptions, F is Fréchet differentiable in £ for h € G and in h for £ € X*°. Along
with (3.1), let us introduce the following generalized equation, obtained from (3.1) by
linearization of F and by perturbation:

6 € F(&o, ho) + DeF (o, ho) (¢ — o) +7T(C), (3.2)

where § € A™ is the perturbation. Clearly, for § = 0, &, is a solution to (3.2).

We will denote by
B, (w0) == {z € X | [lz — zollx < p}

the closed ball of radius p centered at x( in a Banach space X.

To investigate Lipschitz continuity properties of the solutions to (3.1), the following Robin-
son’s abstract implicit function theorem is used (see Theorem 2.1 and Corollary 2.2 in
[15]).

Theorem 3.1. If there exist py > 0 and ps > 0 such that, for each 6 € BPAIOO(O) there is a
unique solution Cs in B, (&) of (3.2), which is Lipschitz continuous in 6, then there exist
o1 > 0 and o3 > 0 such that, for each h € BE (ho) there is a unique solution &, in B (&)
of (3.1), which is Lipschitz continuous in h. O

Similarly, to investigate differentiability of the solutions to (3.1) we use the following
theorem of Dontchev (see Theorem 2.4 and Remark 2.6 in [6]).

Theorem 3.2. If the assumptions of Theorem 3.1 are satisfied and, in addition, the solu-
tions (s of (3.2) are directionally (respectively, Gateauz, Bouligand, Fréchet) differentiable
functions of § in a neighborhood of the origin, with the differential (Ds(o;n), then the solu-
tions &, of (3.1) are directionally (respectively, Gateaux, Bouligand, Fréchet) differentiable
in a neighborhood of hy. For a direction g € H, the differential at hy is given by

(Dnéo: g) = (DsCo; —DpF (&0, ho)g). (3.3)
O

Note that, the result of Theorem 3.2 is actually contained in Theorem 2.3 in [15].

Remark 3.3. In Theorem 3.1, Lipschitz continuity of ¢ and £ is understood in the sense
of this norm in the space X, in which F (-, h) is differentiable. On the other hand, Theorem
3.2 remains true, if the differentiability is satisfied in a norm in the image space X weaker
than that in which Lipschitz continuity in Theorem 3.1 holds (see Remark 2.11 in [6]);
e.g., in LP, (p < 00), rather than in L>. This property will be used in Section 4. O

Theorems 3.1 and 3.2 allow us to deduce stability and sensitivity properties of solutions
to nonlinear generalized equations (3.1) from the same properties of solutions to linear
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equation (3.2). Usually, checking these last properties is much easier than the original
ones.

We will proceed in the following steps:

1) For F and 7 given in (2.15) and (2.16), we find the generalized equation (LOs) being
the linearization (3.2) of (3.1).

2)  We notice that (LOjy) constitutes an optimality system for a linear-quadratic acces-
sory problem (QPj).

3) We impose coercivity condition (AC). By the results of [11], we find that, for 0
sufficiently small, (QPs) has a locally unique stationary point, which is a Lipschitz
continuous function of §. Thus, (LOjs) has a locally unique solution, which is Lipschitz
in 6.

4)  We show that, under (AC), the solutions to (LOs) are B-differentiable functions of
J.

5) Using the abstract theorms we find that the solutions to the nonlinear generalized
equation (3.1) are B-differentiable functions of h.

6) By the results of [11], condition (AC) imply that for h in a neighborhhod of hy,
solutions to (3.1) correspond to the solutions of (Pj) and to the associated adjoint
states. Thus, we arrive at our principal differentability result.

We start with point 1). Let § = (61,042,562, 6°) € A> be the vector of perturbations.
Recall that the subscript 0 is used to denote that a given function is evaluated at the
reference solution. In view of (2.15) and (2.16), the generalized equation (3.2) takes the
form

(LOs)

—q; + Aq+ Dyagq = g+ 6" + D2, Ho = + D2, Hov, } (3.4)

9vq + Dybo q = g3 + 0* — po - D}, boz,
Dino z+4 D% Hov — Dyagq — g0 — 6° € =N (v), (3.5)

zt+Az+Dyaoz:d%+54—Duaov, (36)

Oyz 4+ Dybgz = d% + &°, ’
where

96 = Dybo — D2 Hoyo — D, Houo,

9% = po-D;,boyo,

gn = —Dutho+ D; Hoyo + D;, Houo, (3.7)

dOQ = —ag+ Dyagyo + Dyag uo,

d% = —bo + Dybo Yo- )
Note that

(20, %0, 90) = (Yo, Yo, Po) (3.8)

is a solution to (LO)s for § = 0. An inspection shows that (LOjy) constitutes an optimality



550 K. Malanowski / Sensitivity Analaysis for Parametric Optimal Control of ...

system for the following linear-quadratic accessory problem:

(QPy) Find (z5,v5) € W(0,T) x L*(Q) that minimizes
T5(C) = (2 0), D2 Lo(z0)) + [, (g% + oY)z dudt
0, 53 0 2 (3.9)
+ Jolgn + 0P vdrdt + [ (g% + 0%) 2 dS,dt
subject to
2+ Az+ Dyagz = dy +6* — Dyagw in Q
dyz+ Dybyz =d%+d° in % (3.10)
z2(0) =0 in Q,
and
veuU, (3.11)
where the quadratic form in the cost functional Zs({) is given by
D2 H() D2UH0 Z9
((Zl,vl),DgCEO(ZQ,'UQ)) = /[zl,vl] |: D%ZHO D%uHO Vs dxdt
? (3.12)

+/le0 . Dzybozg dedt
by

Remark 3.4. Problem (QP;) is defined in the Hilbert space W (0,7T) x L*(Q), rather
than in Z*. It follows from classical results for parabolic equations (see e.g., Theorem
5.1, Chpt I1I in [9]) that for v € L?(Q) there exists a unique weak solution z € W(0,T) of
(3.10). So, (QPj) is well-defined. It can be shown (see e.g., [21]) that, under the coercivity
assumption stated below in Section 4, for ¢ sufficiently small, solutions to (QPjs) exist are
locally unique and belong to Z°. O

In order to apply Theorems 3.1 and 3.2, we have to show that the stationary points of
(QPjs) are Lipschitz continuous and differentiable functions of ¢.

4. Differentiability of the solutions to accessory problems

In [11] a coercivity condition was introduced, under which, for § sufficiently small, sta-
tionary points of (QPs) are Lipschitz continuous. We are going to show that, under the
same conditions, the stationary points are also B-differentiable.

To introduce this coercivity condition, define the sets:
I={(z,t) € Q| uo(w,t) =ma(z, 1)}, J={(2,t) € Q[ uolw,t) =my(x,t)}. (41)
Moreover, for a > 0 define
I ={(z,t) € I | D/Ho(z,t) > a}, J*={(z,t) € J | — D,/Ho(z,t) > a}. (4.2)

Assume the following;:
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(AC) (Coercivity) There exist a > 0 and > 0 such that

(¢ DZcLoC) = v ||vl[Z2qy  for all € := (2,v) such that

2+ Az+ Dyagz+ Dyagv =0 inQ (4.3)
O0yz2 4+ Dybyz =0 in X
v=0 in [*U J.

By Lemma 5.1 in [21], (AC) implies

D2 H(z,t) >~ foraa. (x,t)cQ\ (I*UJ). (4.4)

The following result is a slight modification of Theorem 5.1 in [21] (see also Theorem 4.3
in [11]).

Proposition 4.1. If conditions (A1)-(A7) and (AC) hold, then there exist constants
p >0 and ¢ > 0 such that for each § € BPAOO(O) there is a unique stationary point

(25,2}5,(]5) ELX XY™

in BX™ (&) of (QPs). Moreover, there exists a constant £ > 0 such that

125 = zs llws, [lve — vorll o) la — gorllws < €116 = 6", (4.5)

for all ¢,6" € B}™(0) and all s € [2,00]. O

Remark 4.2. Coercivity condition (4.3) is not satisfied in L*> in which problem (Pj)
is well posed and differentiable, but in the weaker L?-norm. This phenomenon is called
two-norm discrepancy and it is typical for nonlinear optimal control problems. Two-norm
discrepancy complicates the stability analysis, since under (AC), the natural norm in
which we can get Lipschitz continuity is L?, and it is too weak to apply Theorem 3.1. In
the proof of Theorem 5.1 in [21], the smoothing property of the state equation is exploited
to pass from Lipschitz continuity in L? to such continuity in L*. Below, in the proof of
B-differentiability, we will use (4.5) for s < oo. O

The proof of B-differentiability of the stationary points of (QPs) is performed in two steps.
In the first step, directional differentiability is proved and the directional differential is
characterized. This characterization is used in the second step to show that the differential
is actually Bouligand.

Let us start with the directional differentiability.

Proposition 4.3. Let (A1)-(A7) as well as (AC) be satisfied and let p > 0, ¢ > 0 be
as in Proposition 4.1. Let (5 := (zs,vs,q5) € BX" (&) denote the unique stationary point
in BX™ (&) of (QPs). Then the map

oo

G == (25,05, 05) - By (0) — X2,

1s directionally differentiable. The directional differential at 6 = 0 in a direction n € A™
is given by (w,, wy,,r,), where (w,,w,) is the solution and r, the associated adjoint state
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of the following linear-quadratic optimal control problem:

(LQ,) Find (w,, w,) € W? x L*(Q) that minimizes

Ty, 0) = (@), D Lol w)) + [ ' dud

@ (4.6)
+/n3w dxdt + /772wd5zdt
Q )
subject to
w+ Aw+ Dyagw = —Dyagw +n? mn Q,
O, + Dyboww =P in X, (4.7)
w(0) =0 in Q,
and
=0  for (z,t) € (I°UJY),
>0 or (z,t) € (I\ I°),
w(z, 1) ; 0 j‘[or Ex,t; € EJ\\ JO), (4.8)
free  for (z,t) € Q\ (IUJ)
O

Proof. Let us choose n € A> and let {7} | 0 be an arbitrary sequence of positive
numbers convergent to zero. Denote §; = 7n. Let (zx,vr) and g, be the solution to
(QPs,) and the associated adjoint state, respectively. By Proposition 4.1 we have

12k = Zollwee, [lor — vollzoe(@), llar — qollwes < € [Tl ax, (4.9)
which implies that there exists a constant [ > 0 such that
Zk — 20

Vi — Vo dr — qo

Tk

<1 (4.10)

W (0,T)

)

w(0,T)

)

L2(Q)

Tk Tk
Hence there exist a subsequence, still denoted {7}, and elements w, r € W(0,T) such

that
Zk — 20

—w weakly in W(0,7),
e (a
—r weakly in W (0, 7).
T
It is well known (see [1]) that the embedding W(0,T) C L*(Q) is compact. So (4.11)
implies

Rk — 20

— strongly in L?(Q),
- (4.12)

&—% _,, strongly in L?(Q).
Tk

Hence, in particular

zk(@,t) — 20(2,1) — w(x,t) a.e. in @,
- (4.13)

t) — t
(@, 1) — go(z, ) — r(z, 1) a.e. in Q.
Tk
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Let us rewrite (3.5) in the equivalent form of the following variational inequality:
(D2, Hoz+ D}, Hov — Dyagq— gy — 6%, u—v) >0 Yuel.
In view of the structure of the set U, this inequality implies
[D;, Ho(z,t) z(x,t) + D}, Ho(z, t)v(x,t) — Dyag(z,t) q(z,t) — gy (x,t)

—53(x,t)] X [u —v(z,t)] >0 (4.14)
for all w € [my(x,t), ma(z,t)] and a.a. (z,t) € Q.

The linear variational inequality (4.14) depends on the vector
(2(x,1), (1), 6°(x, 1)) € IR?,

which can be treated as a parameter. Let vi(z,t) be a solution to (4.14) corresponding
to z(z,t) = zx(x,t), q(z,t) = qu(x,t), 3(z,t) = apn®(z,t). In view of (4.4) and (4.13),
well known sensitivity result for finite dimensional mathematical programs (see e.g., [8])
implies that
vg(z,t) —vo(x, t)
Tk

— w(zx,t), (4.15)
where w(z,t) is the solution of the following variational inequality:

(D2, Ho(x,t) w(z,t) + D;, Ho(x, t)w(x,t) — Dyao(x,t)r(z,t) —n(z, )] x

o (4.16)
X[v—w(z,t)] >0 forall v € IR satisfying (4.8).

By the Lebesgue dominated convergence theorem, the pointwise convergence (4.15) to-
gether with the bound (4.10) implies

V. — Vg

—w strongly in L*(Q), (4.17)
Tk

where w is the solution of the variational inequality

(D2, How + D2 How — Dyagr —1*,v —w) >0

o (4.18)
for all v € L?(Q) satisfying (4.8).

In view of the definition (2.6) of the weak solutions to parabolic boundary value problems,
equations (3.6) and (3.4) together with (4.11) and (4.17) imply that @ and r are the
solutions of the following equations:

@ + Aw + Dyagw = —Dyapw + 1,
Oy + Dyboww = 1, (4.19)
w(0) = 0,

—r, + Ar + Dyaor = Dinow + D;uHow + 771>

8V7"+Dyb07" = —poDzybow—i—TF, (420)
r(T) = 0.
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The state and adjoint equations (4.19) and (4.20), together with the variational inequal-
ity (4.18), constitute the optimality system for problem (LQ,). In view of (AC), this
problem has a unique solution (w,,w,) and a unique adjoint state r,,. This shows that
the convergence in (4.11) and (4.17) holds for the whole sequence {7} and completes the
proof of the proposition. Il

Note that, by the same argument as in Proposition 4.1, we find that the stationary points
of (LQ,) are Lipschitz continuous functions of 7. Since (wy, wo,79) = (0,0,0), we have

[y llws [lwyllzs @) rallws < Clinllas, s € [2,00]. (4.21)

We are now going to show that (w,,w,) and r, are actually B-differentials at § = 0 of
(z5,vs) and gs, respectively.

Theorem 4.4. Let (A1)-(A7) as well as (AC) be satisfied and let p > 0, ¢ > 0 be as
i Proposition 4.1. Then the map

G5 = (25,05, 45) - By (0) — X°, (4.22)

where (s = (25,v5,q5) € B (&) denotes the unique stationary point in BX™ (&) of
(QPj), is B-differentiable for any s € [2,00). The B-differential at 6 = 0 in a direction
n € A% is given by ¥, := (w,, wy, r,), where (w,, w,) is the solution and r, the associated
adjoint state of problem (LQ,). O

Proof. We have to show that the solution (cw,, w,,r,) of (4.18)-(4.20) are B-differentials
of the solution to (LOs). Clearly, (w,,w,,r,) is a positively homogeneous function of 7,
so it is enough to show that

Zy =20 + @y +01(n), v, = v+ wy,+02(n), G, = qo+1y+ 01(n),

where |o1(m)]|ws 0, |2 (n) L (Q) — 0, as|nflax — 0, (4.23)
1l 2= 1l 2
for any s € [2,00).
Denote
(zn = 20) =@y, (g —v0) =Wy, (@ — q0) =Ty (4.24)

It follows from (3.6) and (3.4) that (@, w,, ) satisfy equations identical with (4.19) and
(4.20):

(@) + Aw, + Dyagw, = —Dyaow, + 1,
d,@y + Dybotm, =17, (4.25)
%n(()) =0,
—(7y)e + ATy + Dyaer, = DngOz%,, + DjuHo@n +
Oy + Dybor, = —po D}, boto, + 17, (4.26)

7(T) = 0.
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Let us choose € (0, «), where « is given in (AC). Define the sets

Ky = {(x,t) € I’ | D}, Ho(x,t) € (0, 0)},
Ky ={(x,t) € J° | = D}, Ho(, 1) € (0,8},
LP ={(x,t) €Q
| uo(x,t) € (my(x,t),my(x,t) + ) U (ma(x,t) — 5,ma(x,t))}.

(4.27)

Note that
meas (K UK UL’) =0 as 8 — 0. (4.28)

Let us split up the set ) into the following subsets
A=Q\(IUJUL?),  B=("\K))U(J'\KY),
C=(I\IU(J\J, D=K'UKJUL’,

where I, J,I° and J° are given in (4.1) and (4.2). We will analyze conditions analogous
to (4.14) on each of these subsets successively.

Subset A
Choose o(8) = ¢7'3. Then by (3.8) and (4.1), as well as by Proposition 4.1, for all
n e BQA(;; (0) we get

vy(z,t) € (my(x,t), ma(z,t)) for a.a. (z,t) € A, (4.29)
., by (4.14)

D} Ho(x,t) zy(x,t) + D Ho(x, t)vy(x,t) — Dyao(x,t) g(z,t)

(4.30)
—g%(z,t) —n?(z,t) =0 for a.a. (z,t) € A.

Subtracting from (4.30) the analogous equation for (2, vy, go) and using notation (4.24),
we obtain

D2 Ho(x,t) @y (x,t) + D5, Ho(z, t)wy,(x,t) — Dyao(x,t) 7, t)

4.31
—p3(z,t) =0 for a.a. (z,t) € A (4.31)

Subset B
It follows from Proposition 4.1 that, shrinking o(3) > 0 if necessary, for all n € Bﬁ(;)(O)
we obtain

DZyHO('T? t) Zn(x? t) + DiuHo(fE,t)’Uﬁ(éE, t) - Duao(xat) qn(xat)

>0 foraa. (xt)el°\ K’ (4.32)
<0 foraa. (z,t)eJO\ K’

—gg(x, t) - 773(957 t) {
which, by (4.14) implies

(2.0 my(z,t)  for a.a. (x,t) € I°\ K7,
vp(z,t) =
! mo(z,t)  for a.a. (z,t) € JO\ K7,



556 K. Malanowski / Sensitivity Analaysis for Parametric Optimal Control of ...
ie.,
Wy(z,t) =0 for a.a. (x,t) € B. (4.33)

Subset C
By (3.8), (4.1) and (4.2) we have

my(z,t)  for a.a. (z,t) e\ 17

vo(x,t) = up(x,t) = { (4.34)

mo(x,t)  for a.a. (z,t) € J\ J°
and

Dngo(x, t) zo(w,t) + D% Ho(x, t)vg(x,t) — Dyao(z,t) go(x,t) =0

(4.35)
for a.a. (z,t) € (I\I°)U(J\ J°).

Proposition 4.1, together with (4.34) implies that, shrinking o(3) if necessary, for any
n € BQA(O;)(O) we get

[my(z,t), ma(x,t)) for a.a. t € I\ I°,
un(z,t) € { (mq(x,t), ma(x,t)] for a.a. t € J\ JU. (4.36)

Hence, in view of (4.14) we have
D% Ho(x,t) zy(x,t) + D2 Ho(x, t)vy(x,t) — Dyao(x,t) gy (z, 1)

) >0 foraa. (z,t)el\I° (4.37)
T, <0 foraa. (z,t)eJ\J°

Conditions (4.34)—(4.37) imply:

>0 foraa. (z,t)el\I°

wy(,t) { <0 foraa. (x,t)e J\J° "’ (4.38)

D2 Ho(x,t) @y (2, t) + D2 Ho(x, t)wy(x,t) — Dyag(z, t) 7y (x, t)

3 >0  foraa. (x,t)el\I°
(1) { <0 foraa. (z,t)e J\J, (4.39)

and
(D, Ho(x, t) @y (x,t) + D2, Ho(z, )W, (2, 1) — Dyao(x,t) 7, t)

~ forallw >0 onI\I° (4.40)
_n3 _ = )
n (x,t))(w w’?(xvt)) Z 0 { for all w S 0 on J\JO

Subset D
The analysis of subset D is the most difficult, because we do not know a priori if for
(z,t) € D the constraints are active or not at v,, no matter how small n is chosen.
Without this information, we can say very little about w,(x,t) = v,(z,t) — vo(z,t). Let
us denote

(17%)' (2, 1) = D5 Ho(, 1) (29(x,t) — 20(2, 1)) + Dy, Ho(x, £) (vy(x, t) — vo(x, 1))

(4.41)
—Dyap(z,t) (gy(x,t) — qo(2,t)) for a.a. (z,t) € D.
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By definition (4.24) we have

D2 Ho(x,t) @y (x,t) + D;, Ho(z, )0, (2, t) — Dyao(x,t) 7z, t)

4.4
(i) (x,t) =0 for aa. (z,t) € D. (4.42)
Denote /’7, = <?717 7727 (773)/7 7747 775>7 where
ey = { @@t for @0 €D, (1.43)
TR P at) otherwise. :

It is easy to see that (4.25) and (4.26) together with (4.31), (4.33), (4.38)—(4.40) and

(4.42) can be interpreted as an optimality system for the optimal control problem (LQ,,),
where (ITQ,]) is the following slight modification of (LQ,):

(ITQn) Find (&, w,) € W? x L*(Q) that minimizes
T (@, w) subject to
w+ Aw+ Dyagw = —Dyagw +n? in Q,
O+ Dby =1’ in X,
w(0) =0 in €,
and
=0 for (z,t) € (I°\ KP) U (J°\ KJ),
>0  for (z,t) € (I'\1Y),
w(z,t)
<0 for (z,t) € (J\JY),
free  for (z,t) € (Q\ (IUJ)) U (KV UKY).

Similarly (w,,w,,r,) can be interpreted as a stationary point of (ITQ,],,), where " =
(', 7%, ()", n*, 1), with
(7]3)//(1, t) - (ﬁ‘)’)”(l’,t) for (I,t) < D?

7 n3(z,t) otherwise, (4.44)
() (z,t) = Dngo(x, t) wy(z,t) + D2, Ho(z, t)w,(x,t) — Dyag(x,t) ry(z,t).

It can be easily checked that, as in the case of (LQ),), the stationary points of (ITQU) are
Lipschitz continuous functions of 1. Hence, in view of (4.43) and (4.44), we have

||7577 - wnHWSa |ﬁj?7 - wn| Ls(Q)» ||?77 - TUHWS

(4.45)
<Ol —nfae =0 !/ Y (@, 8) — (7Y )| dudt

KPUuKguLs
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Using the definitions (4.41), (4.44) and taking advantage of (4.5) and of (4.21) we get

() (2, t) = ()" (2, )] < [(0°) (2, )] + |(7°)" (2, 1)]
= D2, ol £) (2o, £) — (1)) + D2 (i, ) (7)ol 1)
~Daas(, ) (e 1) — ol 1) (1.46)
+|D}, Ho(z, t) wy(x,t) + D2, Ho(x, t)vy(2,t) — Dyao(x,t) ry(z,t)]
< ¢ |nllae  for aa. (x,t) e KPUKSU LS.

Substituting (4.46) to (4.45) we obtain

||7%n - wnHWS’ |7:‘777 — WpllLs(Q)s Hffn - TnHWS

L (4.47)
< cllnlla {meas (K7 UKF U L)}

In view of (4.24) and(4.28), we find that for any € > 0 and any s € [2,00) we can choose
B(e,s) > 0 and the corresponding o(((e, s)), so small that

HZn_ZO_wnHWS |Un_U0_wn Ls(Q ||q77_qO_Tn||W5

<e|nllas  for all n € By, o) (0)
This shows that (4.23) holds and completes the proof of the theorem. O

Remark 4.5. The proof of Theorem 4.4 cannot be repeated for s = oo and the coun-
terexample in [10] shows that B-differentiability of (4.22) cannot be expected for s = co.

v

5. Differentiability of the solutions to nonlinear problems

Theorems 3.2 and 4.4 imply that, for & in a neighborhood of hg, (Pj,) has a locally unique
stationary point (yn, un, pr), which is a B-differentiable function of A. On the other hand,
by Lammas 5.1 and 5.2 in [11], condition (AC) implies that (ys, up) and py, are a solution
and the associated adjoint state of (P}), respectively. Thus, we arrive at the following
principal result of this paper:

Theorem 5.1. If (A1)—(AT7) and (AC) hold, then there ezist constants oy > 0 and
oy > 0 such that for all b € B (hg) there is a unique stationary point (yp,un,pn) in
BX™ (4o, w0, o)) of (Pr), where (yp,up) is a solution to (Py,). The map

(Yn, un, o) : BE(ho) — X5, 5 €[2,00) (5.1)

18 B-differentiable, and the B-differential evaluated at hy in a direction g € H 1is given by
the solution and adjoint state of the following linear-quadratic optimal control problem
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(Ly) Find (z,,v,) € W? x L*(Q) that minimizes
1
Koler) = (200, Dol ) + [ DiyHoge dads

+/ DihHogvdxdt—l—/pgDzhbogzdsmdt
Q by

subject to
2+ Az+Dyagz = —Dyagv — Dypagg in Q,
Oz 4+ Dybyz = —Dpbog mn X,
2(0) =0 in €,
and
= for (z,t) € (I°U J°),
>0 for(z,t) € (I\1°),
v(z,t)
<0  for (z,t) e (J\J,
free  for (z,t) € Q\ (L UJ))

O

As it was noticed in Introduction, Bouligand differential becomes Fréchet if it is linear.
Hence from the form of (L,), we obtain immediately:

Corollary 5.2. If assumptions of Theorem 5.1 hold and meas (I\1°) = meas (J\J") = 0,
then the map (5.1) is Fréchet differentiable. O

In sensitivity analysis of optimization problems an important role is played by the so-called
optimal value function, which on B (hg) is defined by:

T (h) = Tn(yn, un),

i.e., to each h € BX(hg), J° assigns the (local) optimal value of the cost functional. The
second order directional expansion of the optimal value function has been known from
the literature (see e.g., Theorem 3.1 in [2]). The following corollary of Theorem 5.1 shows
that Bouligand differentiability of the solutions implies the second order expansion of Jp,
uniform in a neighborhood of hy.

Corollary 5.3. If assumptions of Theorem 5.1 hold, then for each h = ho + g € B (hg)
T (h) = Tho) + (DpLo, g)

+% (Zg,'Ug,g), DiyEO D?Lu[ﬂ DZhEO (Zgavgpg) ( ’ )
+o(llgll%),

where (z4,v,) is the B-differential of (yn,un) at ho in the direction g, i.e., it is given by
the solution to (L,). O

Proof Denote Ly, := L(yp, upn, pn, h). It follows from the definition (2.9) that
T (h) = Ln. (5.3)
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From (5.3) and Theorem 4.1 we find the following form of the Bouligand differential of
the value function

Dhjo(h)g = Dyﬁhzg + Duchvg + DthQQ + Dh£h97 (54)

where (z4,vy,q,) is the B-differential of (yp,un,ps) in the direction g. By optimality
condition for (Pj)
D,L; =0, D,L;, = 0. (5.5)

Moreover, since (24, vy, g4) is given by the stationary point of the linear-quadratic problem
analogous to (L,), but evaluated at h rather than at hg, we find that

DoLyv, = 0. (5.6)
Equation (5.4) together with (5.5) and (5.6) yields
Dy J°(h)g = DpLyg. (5.7)

By (5.3) and (5.7) we have

1
T = T(hy) + /0 DiLn. gda, (5.8)

where h, = hg + ag. Using Theorem 5.1 we obtain

Dhﬁha = Dh£0 + (I(D%Lyﬁozg + D}%uﬁ(ﬂ)g + D%LP»COQQ + D}ZLh,COg)

(5.9)
+o(allgll)-

Substituting (5.9) to (5.8) and integrating we get

J(h) = T°(ho) + DinLog (5.10)
+5(D}y Loz + DiLovy + D}, Loty + DiyLog, 9) + olallh). |

Differentiating (5.5) with respect to h, we obtain
Dsyﬁozg + D;uﬁovg + sz[,oqg + D;hﬁog = 0, (511)
Diyﬁozg + Dfmﬁol}g + DZhﬁog =0. (512)

On the other hand, by the optimality condition for (L)

(D32, Lozg + D2, Lovg + Do Logy + Dy Log, vg) = 0. (5.13)
Multiplying (5.11) and (5.12) by z, and g,, respectively, combining with (5.13) and sub-
stituting to (5.10) we obtain (5.2). O
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