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In this work, we characterize the solutions of a nonconvex optimal control problem, using
the Klötzler-Vinter nonconvex duality approach, in terms of generalized solutions of the
Hamilton-Jacobi-Bellman equation (HJB). The dual problem is to find the supremum of
the viscosity subsolutions of the HJB equation. We prove, without convexity assumptions,
a weak duality between the primal and dual problems by using the technique of convo-
lution and mollification. This weak duality provides necessary and sufficient conditions
of optimality and leads to an error estimate. We also establish strong duality under an
additional convexity hypothesis.

Keywords: Optimal control, Hamilton-Jacobi-Bellman equation, nonconvex duality, convolution, viscos-
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1. Introduction

The Hamilton-Jacobi verification technique provides sufficient conditions on minimizing
arcs, for an optimal control problem, in terms of solutions of the Hamilton-Jacobi-Bellman
(HJB) equation (or inequality), which are called verification functions. Classically such
results have required the smoothness of the verification functions, however for general
optimal control problems, smooth solutions may not exist. A number of remedies are
available based on a variety of generalized solutions: Viscosity solutions [17], [18], [9],
contingent solutions [21], [27], lower semicontinuous solutions [22], solutions in terms of
the Clarke generalized gradient [13], [15],.... Another approach by means of duality has
been developed by Klötzler [23] (see also [1], [2] and [29]), Fleming and Vermes [20] and
Vinter [26], for which the dual problem is the upper hull of smooth subsolutions of the HJB
equation. A restrictive feature of this duality approach is the smoothness properties of
subsolutions and the fact that the necessary and sufficient conditions are proved with the
strong duality. But without convexity hypothesis the duality gaps may occur and strong
duality may fail. Our attention in this paper is focused upon nonconvex duality. The
dual problem is to find the supremum of the viscosity subsolutions of the HJB equation.
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Nonconvex duality with the HJB equation as it bears here, contains three distinguishing
features: we establish weak duality without requiring any assumption of convexity on the
cost function. This weak duality provides necessary and sufficient conditions and leads to
an error estimate. Another feature is the mild nature of the hypotheses on the verification
functions involved in the dual problem. These functions are required only to be continuous
viscosity subsolutions of the HJB equation (not smooth subsolutions as in Vinter’s and
Klötzler’s papers: [23], [26]). On the other hand we prove strong duality under a partially
convexity assumption. This paper is expository in nature and the proofs are largely self-
contained. In the second section we introduce the primal problem. In the third section
we use the technique of mollification to construct a family of dual regularized problems
involving the functions regularized by convolution and we establish weak duality between
those problems and the primal problem. In the forth section we exploit the convergence
properties of the mollifier sequence to prove weak duality between the primal problem
and the "viscosity dual problem" involving the supremum of viscosity subsolutions of
the HJB equation. The weak duality leads to an estimate error and provides necessary
and sufficient conditions of optimality. The strong duality is proved under an additional
hypothesis. We conclude by an example in which we show how the nonconvex duality
may confirm the optimality of a suspected candidate.

2. Primal Problem

Among the problems in which optimal control plays a crucial role are those arising from
economy and biology, particularly the bioeconomic problems of renewable resources man-
agement. In this class of problems (and others), the time dependence is usually expressed
by an exponential term e−δ t, where δ denote the instantaneous discount rate, see [[16]
chap. I, section 1.5 Discounting], (see also [12] and [5]). In this work we will use a general
cost function for this type.
We consider the following differential inclusion formulation of the optimal control problem:

(P)























V (0, x0) = inf
x
J(x) :=

∫ T

0

e−δ tl(x(t), Úx(t))dt+ g(x(T )),
.
x(t) ∈ F (t, x(t)) a.e. t ∈ [0, T ],
x(t) ∈ K, ∀ t ∈ [0, T ],
x(0) = x0.

The infimum is taken on x : [0, T ] → Rn absolutely continuous (x ∈ AC), a class of
functions we call arcs.
The functions g : Rn → R, l : Rn × Rn → R, the set valued map F : [0, T ] × RnÀRn

and the set K ⊂ Rn are the data of the problem. We recall that the function x ∈ AC is
a trajectory of F if

.
x (t) ∈ F (t, x(t)) a.e. t ∈ [0, T ].

Consider the following set

S[t,T ](ξ) := {x trajectory of F on [t, T ] such that x(t) ∈ K ∀ t ∈ [t, T ] and x(t) = ξ}.
We say that x ∈ AC is admissible for (P) if x ∈ S[0,T ](x0).
The value function V is given at (t, x) as

V (t, x) = inf{
∫ T

t

e−δ sl(x(s), Úx(s))ds+ g(x(T )) : x ∈ S[t, T ](x)}.
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Hypotheses.
H1− g is lower semicontinuous (l.s.c.), l is bounded, k−lipschitz.
H2 −K is a compact subset of Rn such that K = cl(int(K)),
where cl(int(K)) denotes the closure of the interior of K.
H3− ∀ (t, x) the set F (t, x) is nonempty, compact, convex and there exist γ and c such
that, for all (t, x)

v ∈ F (t, x) =⇒ ‖v‖ ≤ γ ‖x‖+ c. (1)

H4− F is locally lipschitz i.e. for all ς > 0, There exist cς > 0 such that for all (t1 −
t2, x1 − x2) ∈ Bς(0), we have

F (t1, x1) ⊂ F (t2, x2) + cς‖(t1 − t2, x1 − x2)‖B1(0). (2)

where Bm(0) denotes the closed ball in [0, T ]× Rn, with center 0 and radius m.
H5− There exists at least one admissible arc for the problem (P).

Our object in the following sections is to construct a dual problem to problem (P) involving
the viscosity subsolutions of the HJB equation.
Let H be the Hamiltonian defined by

H(t, x, p) := min
v ∈F ( t,x)

{v.p+ e−δ tl(x, v)}. (3)

and ˜H the augmented Hamiltonian

˜H(t, x, θ, p) := θ +H(t, x, p). (4)

The hamiltonian H is locally lipschitz with respect the variables (t, x, p) (see [13]). In
the following proposition we give a proof that the hamiltonian H is locally lipschitz with
respect the variables t and x in order to find explicitly the lipschitz constants which we
will use later.

Proposition 2.1. Assume that the hypotheses H1 −H4 are satisfied.

Then H(., ., p) is locally lipschitz.

Proof. Let v1 ∈ F ( r, x) the point where the minimum ofH(r, x, p), given by the relation
(3), is achieved. Then we have

H(t, x, p)−H(r, x, p) ≤ (v − v1).p+ e−δ tl(x, v)− e−δ rl(x, v1) ∀v ∈ F ( t, x). (5)

On the other hand, according to H4, F is locally lipschitz, then, since v1 ∈ F ( r, x), there
exist ṽ ∈ F ( t, x) such that the inclusion (2) implies

‖ṽ − v1‖ ≤ cT |r − t| ,

this for all r such that |r − t| ≤ T .
By choosing, in the inequality (5), v = ṽ and by adding and subtracting the term
e−δ tl(x, v1), we obtain

H(t, x, p)−H(r, x, p) ≤ cT . ‖p‖ . |r − t|+ e−δ t(l(x, v)− l(x, v1))

+(e−δ t − e−δ r)l(x, v1).
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But the facts that the function exp(.) is locally lipschitz and l is bounded k−lipschitz
implies that there exist q := q1.q2, where q1 is the local lipschitz constant of the exponential
function (on t : |r − t| ≤ T ) and q2 is the constant by which l is bounded, such that

H(t, x, p)−H(r, x, p) ≤ cT . ‖p‖ . |r − t|+ k.cT . |r − t| e−δ t + q |r − t| . (6)

From the fact that e−δ t ≤ 1 for all t ∈ [0, T ], it follows that

H(t, x, p)−H(r, x, p) ≤ [cT . ‖p‖+ k.cT + q] |r − t|.
Since r and t are arbitrary, we conclude that

|H(t, x, p)−H(r, x, p)| ≤ [cT . ‖p‖+ k.cT + q] |r − t| . (7)

Likewise, let v2 ∈ F (t, y) the point where the minimum of H(t, y, p) is achieved, we have

H(t, x, p)−H(t, y, p) ≤ p.(v − v2) + e−δ t(l(x, v)− l(y, v2))

≤ ‖p‖ . ‖v − v2‖+ e−δ tk.[ ‖x− y‖+ ‖v − v2‖ ].

But according to H4 we have, for a > 0, if ‖x− y‖ ≤ a then there exist ca such that

‖v − v2‖ ≤ ca ‖x− y‖.
Therefore

H(t, x, p)−H(t, y, p) ≤ ca ‖p‖ ‖x− y‖+ e−δ tk.[ ‖x− y‖+ ca ‖x− y‖ ]

≤ [ ca ‖p‖+ e−δ tk.(1 + ca) ] ‖x− y‖
≤ [ ca ‖p‖+ k.(1 + ca) ] ‖x− y‖ .

We permute x and y, this leads to the following

|H(t, x, p)−H(t, y, p)| ≤ [ ca ‖p‖+ k.(1 + ca) ] ‖x− y‖ . (8)

By combining the inequality (7) and (8) we obtain

|H(t, x, p)−H(r, y, p)| ≤ b[ |r − t|+ ‖x− y‖ ], (9)

where b := sup{[ cT . ‖p‖+ k.cT + q ], [ ca ‖p‖+ k.(1 + ca) ]}.
Which completes the proof of theorem.

3. Regularized Dual Problems

Our interest here is to construct a family of dual problems of the problem (P) by using
convolution and mollification techniques. We will exploit the smoothness properties of
regularized functions obtained by convolution.

3.1. Regularization by Convolution

Let ϕ : R× Rn → R be a bounded l.s.c. function, ε > 0 small and h > 0 arbitrary.
By the convolution technique, (see for instance [3], [8] and [24]), we regularize ϕ in order
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to obtain a function ψε locally lipschitz and then a function ϕε ∈ C1(R× Rn).
Let, for all (t, x) ∈ R× Rn

ψε(t, x) := sup
(s,y)∈R×Rn

{ϕ(s, y)− e−ht‖x− y‖2

ε2
− |t− s|2

ε4
}. (10)

Note that the supremum in ψε is achieved for (s, y) satisfying

e−ht‖x− y‖2

ε2
+

|t− s|2

ε4
≤ M2, (11)

where M =
√

2 ‖ϕ‖∞, (see [8]).
Consider now the following mollifier sequence (ρε)ε

ρε(t, x) := ε− (n+1)ρ( t
ε
, x
ε
),

where ρ ∈ C∞(Rn+1), nonnegative, supp(ρ) ⊂ B1(0) and

∫∫

Rn+1

ρ(τ, ξ)dτdξ = 1.

It is easy to see that
∫∫

Rn+1

ρε(τ, ξ)dτdξ = 1.

We now define ϕε as

ϕε(t, x) =

∫∫

Rn+1

ψε(t+ τ, x+ ξ)ρε(τ, ξ)dτdξ . (12)

Proposition 3.1. ψε is locally lipschitz and ϕε ∈ C1(R× Rn).

The proof is similar to the proof of the Lemma 5.5 in [[8], p.136].

Proposition 3.2. Assume that ϕ is bounded continuous (∈ CB(R× Rn)).

Then the sequences {ψε} and {ϕε} converge pointwise towards ϕ as ε → 0.

Proof. First we prove that ψε converges pointwise towards ϕ.
Fixe (t, x) in R× Rn and let Λ > 0, since ψε(t, x) ≥ ϕ(t, x), we have

|ϕ(t, x)− ψε(t, x)| = ψε(t, x)− ϕ(t, x)

= sup
(s,y)∈R×Rn

{ϕ(s, y)− e−ht‖x− y‖2

ε2
− |t− s|2

ε4
} − ϕ(t, x).

So

|ϕ(t, x)− ψε(t, x)| = ϕ(s, y)− e−ht‖x− y‖2

ε2
− |t− s|2

ε4
− ϕ(t, x),

where (s, y) is the point where the supremum is achieved.

The term −e−ht‖x− y‖2

ε2
− |t− s|2

ε4
is negative, then we have

|ϕ(t, x)− ψε(t, x)| ≤ ϕ(s, y)− ϕ(t, x).
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The function ϕ is continuous, so, there exist η(t, x) > 0 such that, for all (s, y) satisfying
‖x− y‖+ |t− s| ≤ η, we have

|ϕ(t, x)− ϕ(s, y)| ≤ Λ.

But we know from (11) that

e−ht‖x− y‖2

ε2
+

|t− s|2

ε4
≤ M2.

It follows that

‖x− y‖+ |t− s| ≤ εM(e
h
2 t + ε).

For small ε we have

‖x− y‖+ |t− s| ≤ η(t, x).

This implies that

|ϕ(t, x)− ψε(t, x)| ≤ Λ,

as required.
We turn now to the convergence of the sequence {ϕε} :

|ϕ(t, x)− ϕε(t, x)| =
∣

∣

∣

∣

ϕ(t, x)−
∫∫

Rn+1

ψε(t+ τ, x+ ξ)ρε(τ, ξ)dτdξ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫∫

Rn+1

[ϕ(t, x)− ψε(t+ τ, x+ ξ) ]ρε(τ, ξ)dτdξ

∣

∣

∣

∣

.

Thus

|ϕ(t, x)− ϕε(t, x)| ≤
∫∫

Rn+1

|ϕ(t, x)− ψε(t+ τ, x+ ξ)| ρε(τ, ξ)dτdξ

≤
∫∫

Rn+1

{|ϕ(t, x)− ϕ(t+ τ, x+ ξ)|+

+ |ϕ(t+ τ, x+ ξ)− ψε(t+ τ, x+ ξ)|}ρε(τ, ξ)dτdξ.

But, we know that lim
ε→ 0

ψε(t + τ, x + ξ) = ϕ(t + τ, x + ξ), then, for Λ > 0 , there exist

ε0(t, x, τ, ξ) > 0 such that, for all ε < ε0(t, x, τ, ξ), we have

|ϕ(t+ τ, x+ ξ)− ψε(t+ τ, x+ ξ)| ≤ Λ

2
. (13)

Since the support of ρε is in Bε(0), we can choose ε0 = inf
τ,ξ

ε0(t, x, τ, ξ), so, inequality (13)

remains true for all (τ, ξ) ∈ Bε(0).
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We obtain therefore

|ϕ(t, x)− ϕε(t, x)| ≤
∫∫

Rn+1

|ϕ(t, x)− ϕ(t+ τ, x+ ξ)| ρε(τ, ξ)dτdξ +
Λ

2
.

On the other hand, ϕ is continuous, i.e., there exist η(t, x) > 0 such that, for all (s, y)
satisfying ‖y − x‖+ |t− s| ≤ η(t, x), we have

|ϕ(t, x)− ϕ(s, y)| ≤ Λ

2
.

But the support of ρε is in Bε(0) ; i.e., ‖ξ‖+ |τ | = ‖x+ ξ − x‖+ |t+ τ − t| ≤ ε, then for
small values of ε, (i.e. ε ≤ η(t, x)), we have

|ϕ(t, x)− ϕ(t+ τ, x+ ξ)| ≤ Λ

2
.

Hence,

|ϕ(t, x)− ϕε(t, x)| ≤
Λ

2
+

Λ

2
= Λ.

This completes the proof of the proposition.

3.2. Regularized Dual Formulation

Our goal now is to construct a family of dual problems to (P) based on the regularized
functions defined above.
Consider the following dual problem

(Dε)







βε = sup
ϕ
{
∫ T

0

inf
x∈K

˜H(t, x,
∂ϕε

∂t
(t, x),

∂ϕε

∂x
(t, x))dt+ δε + ϕε(0, x0)},

ϕ(T, .) ≤ g(.) on K.

The supremum is taken on ϕ : [0, T ] ×K → R that are continuous functions, ˜H is the
augmented hamiltonian given by (4), ϕε is obtained by convolution from ϕ̃ as described
above, where ϕ̃ is the continuous extension of ϕ to R× Rn as follows:

ϕ̃(t, y) :=

{

G(t, y) for all y ∈ K,
G(t, ỹ) for all y outside K.

(14)

Where ỹ is an intersection of the line segment [y0, y], (connecting y at an arbitrary fixed
element y0 ∈ intK), and the boundary of the set K, and where G is defined on R×K by:

G(t, .) :=







ϕ(0, .) for all t ≤ 0,
ϕ(t, .) for all 0 ≤ t ≤ T,
ϕ(T, .) + T − t for all t > T.

(15)

The parameter δε := inf
x∈K

(g(x)− gε(x)) where gε(y) :=

∫∫

R1+n

g(y + ξ)ρε(τ, ξ)dτdξ .

In the following theorem we establish a weak duality between (P) and (Dε).
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Theorem 3.3. For small values of ε, we have

α ≥ βε .

Proof. The proof of theorem uses the following lemma.

Lemma 3.4. If ϕ is admissible for (Dε) then

ϕε(T, y) ≤ gε(y), ∀y ∈ K.

Proof. The fact ϕ(T, .) ≤ g(.) on K implies, according to expressions (14) and (15), that

ϕ̃(T + τ, y) < g(y), ∀ τ > 0, ∀ y ∈ K.

We now prove that ψε(T + τ, y) ≤ g(y) on K, for small values of ε, where ψε is the
regularized function obtained from ϕ̃ by expression (10). Indeed,
let λ := g(y)− ϕ̃(T + τ, y) > 0.
The fact that ψε(T + τ, y) converges to ϕ̃(T + τ, y), says that there exists ε0 > 0 such
that, for all ε < ε0, we have

|ψε(T + τ, y)− ϕ̃(T + τ, y)| ≤ λ.

Since |ψε(T + τ, y)− ϕ̃(T + τ, y)| = ψε(T +τ, y)− ϕ̃(T +τ, y) and λ := g(y)− ϕ̃(T +τ, y),
we obtain

ψε(T + τ, y) ≤ g(y). (16)

Hence,

ϕε(T, y) :=

∫∫

Rn+1

ψε(T + τ, y + ξ)ρε(τ, ξ)dτdξ

≤
∫∫

Rn+1

g(y + ξ)ρε(τ, ξ)dτdξ.

By setting gε(y) :=

∫∫

Rn+1

g(y + ξ)ρε(τ, ξ)dτdξ, we obtain

ϕε(T, y) ≤ gε(y),∀y ∈ K,

as required

Turn now to the proof of the theorem.
First note that the function gε satisfies

gε(y) → g(y) as ε → 0, uniformly on K. (17)
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Let now x be a (P) admissible arc, we have

∫ T

0

e−δ tl(x(t),
.
x (t))dt+ g(x(T )) =

∫ T

0

e−δ tl(x(t),
.
x (t))dt+ g(x(T ))

+

∫ T

0

dϕε

dt
(t, x(t))dt−

∫ T

0

dϕε

dt
(t, x(t))dt

=

∫ T

0

e−δ tl(x(t),
.
x (t))dt+ g(x(T ))+

+

∫ T

0

[
∂ϕε

∂t
(t, x(t)) +

∂ϕε

∂x
(t, x(t)).

.
x (t) ]dt

− ϕε(T, x(T )) + ϕε(0, x0).

By adding and subtracting the term gε(x(T )) we obtain

∫ T

0

e−δ tl(x(t),
.
x (t))dt+ g(x(T )) =

∫ T

0

[
∂ϕε

∂t
(t, x(t)) +

∂ϕε

∂x
(t, x(t)).

.
x (t)

+ e−δ tl(x(t),
.
x (t)) ]dt+ g(x(T ))− gε(x(T ))

+ gε(x(T ))− ϕε(T, x(T )) + ϕε(0, x0).

But according to Lemma (3.4) we have

ϕε(T, x(T )) ≤ gε(x(T )).

Hence, by using this inequality and the facts

∂ϕε

∂x
(t, x(t)).

.
x (t) + e−δ tl(x(t),

.
x (t)) ≥ min

v ∈F (t,x(t))
{∂ϕε

∂x
(t, x(t)).v + e−δ tl(x(t), v)}

and g(x(T ))− gε(x(T )) ≥ inf
x∈K

(g(x)− gε(x)), we obtain

∫ T

0

e−δ tl(x(t),
.
x (t))dt+ g(x(T )) ≥

∫ T

0

[
∂ϕε

∂t
(t, x(t)) + min

v ∈F (t,x(t))
{∂ϕε

∂x
(t, x(t)).v

+ e−δ tl(x(t), v)} ]dt+ inf
x∈K

(g(x)− gε(x)) + ϕε(0, x0).

Let δε := inf
x∈K

(g(x)− gε(x)), it follows from the limit (17) that

δε → 0 as ε → 0,

So,
∫ T

0

e−δ tl(x(t),
.
x (t))dt+ g(x(T )) ≥

∫ T

0

inf
x∈K

˜H(t, x,
∂ϕε

∂t
(t, x),

∂ϕε

∂x
(t, x))dt+ δε

+ ϕε(0, x0).

this for all (P) admissible arc x and all (Dε) admissible function ϕ.
We conclude that

inf
x
{
∫ T

0

e−δ tl(x(t),
.
x (t))dt+ g(x(T ))} ≥ sup

ϕ
{
∫ T

0

inf
x∈K

˜H(t, x,
∂ϕε

∂t
(t, x),

∂ϕε

∂x
(t, x))dt

+ δε + ϕε(0, x0)}.
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On other word,

α ≥ βε,

for small values of ε, which complete the proof of theorem.

The result of the theorem can be interpreted as a first ε−error estimation of the α by
βε in the case where the functions ϕ involved in the regularized dual problems are not
required to be subsolutions of the HJB equation.

4. Viscosity Dual Problem

4.1. Weak Duality

The goal of this section is to establish a weak duality between the problem (P) and a dual
problem (D) involving the supremum of viscosity subsolutions of the HJB equation and
give some necessary and sufficient conditions for optimality by using this weak duality.
We will adopt the following definition of the viscosity subsolutions (see [9] and [17], [18]).
Let ϕ be a continuous function on [0, T ]×K. We say that ϕ is a viscosity subsolution of
the following HJB equation

˜H(t, x,
∂ϕ

∂t
(t, x),

∂ϕ

∂x
(t, x)) = 0 on [0, T ]×K,

if the following assertion is satisfied :
If, for (t0, x0) ∈ [0, T ] ×K, there exists a function φ ∈ C1(Rn+1) such that the function
ϕ− φ : [0, T ]×K → R, achieves a strict maximum at (t0, x0), then we have

˜H(t0, x0,
∂φ

∂t
(t0, x0),

∂φ

∂x
(t0, x0)) ≥ 0.

Consider now the dual problem (D)

(D)



















β = sup
ϕ
(ϕ(0, x0)),

the supremum is taken on ϕ ∈ C([0, T ]×K) which are
viscosity subsolutions of the HJB equation and satisfying

ϕ(T, .) ≤ g(.) on K.

The dual problem (D) involve the continuous viscosity subsolutions of HJB equation on
[0, T ] ×K, the existence of such subsolutions is assured under hypotheses H1 − H4, see
[[7], Chapter III].

Theorem 4.1. Under the hypotheses H1 −H5, we have

α ≥ β. (18)

We establish this weak duality without requiring, in the cost function of the primal prob-
lem, any hypothesis of convexity, which play a crucial role to establish a strong duality
as we will show later, in this case the duality gaps may occur.
Before proceeding to the proof of the theorem, let us show how this weak duality gives
some interesting results. Indeed, the weak duality provides a necessary and sufficient con-
ditions as we will show below. On the other hand, this weak duality allows to a second
estimate error of α by a (P) admissible arc, as follows.
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Corollary 4.2. For an arc x admissible for (P), we have

|α− J(x)| ≤ inf
ϕ
{J(x)− ϕ(0, x0)}. (19)

The infimum is over the functions ϕ admissible for the dual problem (D).

Proof. Since −α ≤ − sup
ϕ
{ϕ(0, x0)} = inf

ϕ
{−ϕ(0, x0)},

we have

|α− J(x)| = J(x)− α ≤ inf
ϕ
{J(x)− ϕ(0, x0)}.

To compute this error estimate, the idea is to subdivide the set [0, T ]×K in finite elements
and for a piecewise smooth arc Ýx constructed by respecting the nodes and vertices, we
construct ϕ by numerical methods. By taking the infimum in (19) on ϕ so constructed,
we obtain an error estimate of α by J(Ýx).
We pause now to show that this weak duality provides a necessary and sufficient conditions
of optimality for the problem (P).

4.2. Necessary and Sufficient Conditions

Theorem 4.3. Suppose that the hypotheses H1 −H5 are satisfied.

Let x̂ be a (P) admissible arc

- Necessary and sufficient conditions: x̂ is a minimum for (P) iff

there exist a sequence (ϕn)n of a continuous viscosity subsolutions of the HJB equation
on [0, T ]×K, satisfying

ϕn(T, .) ≤ g(.) on K, (20)

and

lim
n→+∞

|J(x̂)− ϕn(0, x0)| ≤ |J(x)− ϕ(0, x0)| ,∀ϕ ∈ adm(D)

∀x ∈ adm(P ).
(21)

Where adm(S) := {ϕ admissible for (S)}.

Proof.
- Necessary conditions: Assume that x̂ is a minimum for (P).
Let (ϕn)n be a maximizing sequence for (D), then we have

lim
n→+∞

ϕn(0, x0) = supϕ(0, x0),

the supremum is taken on ϕ admissible for (D).
According to the Theorem (4.1) we have

supϕ(0, x0) ≤ α = J(x̂).
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Since (ϕn)n is a maximizing sequence then the functions ϕn are continuous viscosity
subsolutions of the HJB equation on [0, T ] × K and the condition (20) is satisfied, it
remains to prove the condition (21). We have

J(x̂) ≤ J(x), ∀x admissible for (P).

Moreover

lim
n→+∞

ϕn(0, x0) = supϕ(0, x0) ≥ ϕ(0, x0), ∀ ϕ ∈ adm(D).

This implies that

J(x̂)− lim
n→+∞

ϕn(0, x0) ≤ J(x)− ϕ(0, x0).

Since J(x̂) ≥ ϕn(0, x0) ∀n and J(x) ≥ ϕ(0, x0), we have

lim
n→+∞

|J(x̂)− ϕn(0, x0)| ≤ |J(x)− ϕ(0, x0)|.

- Sufficient conditions: Suppose that the conditions (20 - 21) are satisfied.
Then the condition (21) implies that

J(x̂)− lim
n→+∞

ϕn(0, x0) ≤ J(x)− ϕ(0, x0), ∀ x ∈ adm(P ),

∀ ϕ ∈ adm(D).

So,

J(x̂) ≤ J(x)− ϕ(0, x0) + lim
n→+∞

ϕn(0, x0)

≤ J(x)− sup
ϕ

ϕ(0, x0) + lim
n→+∞

ϕn(0, x0).

But, lim
n→+∞

ϕn(0, x0) ≤ sup
ϕ

ϕ(0, x0), therefore

J(x̂) ≤ J(x),

this for all x admissible for (P).
We conclude that x̂ is a minimum of (P), as required.

Moreover, with the above theorem, we recover Vinter’s sufficient conditions for optimality
[26], so that,

Corollary 4.4. Let x̂ be a (P) admissible arc.
If there exists a sequence of continuous functions (ϕn)n viscosity subsolutions of HJB
equation on [0, T ]×K and satisfying

ϕn(T, .) ≤ g(.) on K, (22)

lim
n→+∞

ϕn(0, x0) = J(x̂), (23)

then x̂ is a minimum for (P)

Proof. The proof is evident since the relation (23) implies the relation (21).
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4.3. Proof of Theorem 4.1

Let ϕ be admissible for the dual problem (D). Extend ϕ on R×Rn to ϕ̃ as given in (14)
and (15). We construct locally lipschitz functions ψε from ϕ̃ by convolution as given by
(10). Our goal is to prove that ψε is a viscosity subsolution of a perturbed HJB equation
on Oε ×Kε, where

Oε := (Mε2, T −Mε2) and Kε := {x ∈ K : B(x,Me
h
2 T ε) ⊂ K}.

(h and M are given by the relations (10) and (11)).
Before proceeding to proof, let us prove the following lemma which we will use later.

Lemma 4.5. The families (Oε)ε and (Kε)ε satisfies the following assertions:

1. We have, for ε1 ≤ ε2
Oε2 ⊂ Oε1 and Kε2 ⊂ Kε1 .

2. We have
⋃

ε>0

Oε = (0, T ) and
⋃

ε>0

Kε = intK.

3. For d > 0 arbitrary chosen and a open neighborhood U(∂K, d) of boundary ∂K of
K, with diameter d, there exist (εi)1≤i≤n such that

(0, T ) ⊂
n
⋃

i=1

Oεi ∪ ]0, d[∪ ]T − d, T [ ,

and

intK ⊂
n
⋃

i=1

Kεi ∪ (U(∂K, d) ∩ intK).

Proof. The first assertion is obvious. For the second assertion, we only prove that
⋃

ε>0

Kε = intK.

It’s easy to see that

Kε ⊂ intK.

Then,
⋃

ε>0

Kε ⊂ intK.

Conversely, for all x ∈ intK, there exist r(x) > 0 such that B(x, r(x)) ⊂ K which implies
that

x ∈ Kε .

where ε =
r(x)

Me
hT
2

.

It follows that

intK ⊂
⋃

ε>0

Kε.
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Hence,
⋃

ε>0

Kε = intK,

as required.
Turn now to assertion three. Since [0, T ] = (0, T )∪{0}∪ {T} and K = intK ∪ ∂K, then,
for d arbitrary chosen, we have, according to second assertion of this lemma, that

[0, T ] ⊂
⋃

ε>0

Oε ∪ ]− d, d[∪ ]T − d, T + d[ ,

and
K ⊂

⋃

ε>0

Kε ∪ U(∂K, d) ,

where U(∂K, d) denotes a open neighborhood of the boundary of K, ∂K, with diameter
d.
Hence, we have covering [0, T ] and K by a families of open sets. But K and [0, T ] are
compact sets, then we can extract from these coverings a finites coverings such that

[0, T ] ⊂
n
⋃

i=1

Oεi ∪ ]− d, d[ ,∪ ]T − d, T + d[ ,

and

K ⊂
n
⋃

i=1

Kεi ∪ U(∂K, d) .

Observe that we have use the same value n in both inclusions. To see this, it suffices to
choose n := sup(n1, n2), if the first inclusion is true with n1 and the second is true with
n2, then both inclusions are true for n.
We deduce that

(0, T ) ⊂
n
⋃

i=1

Oεi ∪ ]0, d[∪ ]T − d, T [ ,

and

intK ⊂
n
⋃

i=1

Kεi ∪ (U(∂K, d) ∩ intK) .

Which complete the proof of the lemma.

Return now to proof of the theorem. Let ε0 := inf{εi : i := 1, .., n}. For ε ≤ ε0, let
φ ∈ C1(Rn+1) be such that (t, x) ∈ Oε ×Kε is a strict maximum of ψε − φ on Oε ×Kε

and let (s, y) be the point where the supremum of the function ψε(t, x) is achieved.
So,

ψε(t, x) = ϕ̃(s, y)− e−ht‖x− y‖2

ε2
−

∣

∣t− s
∣

∣

2

ε4
.

But according to (11) it follows that
∣

∣t− s
∣

∣ ≤ Mε2, so, according to fact that t ∈ Oε we
have

0 ≤ s ≤ T.
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Similarly it follows from (11) that ‖x− y‖ ≤ Me
h
2 T ε, so, from the fact that x ∈ Kε we

have

y ∈ K.

Then

ψε(t, x) = ϕ(s, y)− e−ht‖x− y‖2

ε2
−

∣

∣t− s
∣

∣

2

ε4
.

Consider the following function θ:

θ : (t, x, s, y) → ϕ(s, y)− e−ht‖x− y‖2

ε2
− |t− s|2

ε4
− φ(t, x).

The function θ achieves a strict maximum on Oε ×Kε × [0, T ]×K at (t, x, s, y).
Let (t, x) := (t, x) and consider the function θ(t, x, s, y), we have

θ(t, x, s, y) = ϕ(s, y)− [ e−ht‖x− y‖2

ε2
+

∣

∣t− s
∣

∣

2

ε4
+ φ(t, x) ].

The function (s, y) 7→ e−ht‖x− y‖2

ε2
+

∣

∣t− s
∣

∣

2

ε4
+ φ(t, x) is C1(Rn+1) and θ(t, x, ., .) :

[0, T ]×K 7→ R achieves a strict maximum at (s, y) ∈ [0, T ]×K. Then according to the
fact that ϕ is a viscosity subsolution to the HJB equation, we conclude from above that

(s, y) → e−ht‖x− y‖2

ε2
+

∣

∣t− s
∣

∣

2

ε4
+ φ(t, x),

satisfies the HJB inequality at (s, y), i.e.

−2(t− s)

ε4
+H(s, y,−2e−htx− y

ε2
) ≥ 0. (24)

On the other hand the function θ(t, x, s, y) achieves a strict maximum at (t, x), therefore,
the t and x partial derivatives vanish at t and x respectively, i.e.

−∂φ

∂t
(t, x)− 2(t− s)

ε4
+ he−ht‖x− y‖2

ε2
= 0,

and

−∂φ

∂x
(t, x)− 2e−htx− y

ε2
= 0. (25)

It follows according to relation (24) that

∂φ

∂t
(t, x) +H(s, y,

∂φ

∂x
(t, x)) ≥ he−ht‖x− y‖2

ε2
. (26)

Now, according to inequality (7) in Proposition 2.1, it follows that

H(s, y,
∂φ

∂x
(t, x))−H(t, y,

∂φ

∂x
(t, x)) ≤ [ cT (

∥

∥

∥

∥

∂φ

∂x
(t, x)

∥

∥

∥

∥

+ k) + q ]
∣

∣t− s
∣

∣,

and from inequality (8) it follows that
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H(t, y,
∂φ

∂x
(t, x))−H(t, x,

∂φ

∂x
(t, x)) ≤ [ ca

∥

∥

∥

∥

∂φ

∂x
(t, x)

∥

∥

∥

∥

+ k(1 + ca) ] ‖x− y‖,

where a is such that ‖x− y‖ ≤ a.
We obtain

H(s, y,
∂φ

∂x
(t, x))−H(t, x,

∂φ

∂x
(t, x)) ≤ [ cT (

∥

∥

∥

∥

∂φ

∂x
(t, x)

∥

∥

∥

∥

+ k) + q ]
∣

∣t− s
∣

∣

+ [ ca

∥

∥

∥

∥

∂φ

∂x
(t, x)

∥

∥

∥

∥

+ k(1 + ca) ] ‖x− y‖ .

By adding the term
∂φ

∂t
(t, x) we obtain

∂φ

∂t
(t, x) +H(t, x,

∂φ

∂x
(t, x)) ≥ ∂φ

∂t
(t, x) +H(s, y,

∂φ

∂x
(t, x))− [ cT (

∥

∥

∥

∥

∂φ

∂x
(t, x)

∥

∥

∥

∥

+ k)

+ q ]
∣

∣t− s
∣

∣− [ ca

∥

∥

∥

∥

∂φ

∂x
(t, x)

∥

∥

∥

∥

+ k(1 + ca) ] ‖x− y‖ .

Since

∥

∥

∥

∥

∂φ

∂x
(t, x)

∥

∥

∥

∥

= 2e−ht‖x− y‖
ε2

according to (25), it follows from this fact and inequality

(26), that

∂φ

∂t
(t, x) +H(t, x,

∂φ

∂x
(t, x)) ≥ he−ht‖x− y‖2

ε2
− [ cT (2e

−ht‖x− y‖
ε2

+ k) + q ]
∣

∣t− s
∣

∣

− [ ca2e
−ht‖x− y‖

ε2
+ k(1 + ca) ] ‖x− y‖ .

But we have from (11) that e−ht‖x− y‖
ε2

≤ M

ε
e−

h
2 .t and

∣

∣t− s
∣

∣ ≤ Mε2, therefore we

obtain

∂φ

∂t
(t, x) +H(t, x,

∂φ

∂x
(t, x)) ≥ (h− 2ca)e

−ht‖x− y‖2

ε2
− [2

M

ε
e−

h
2 tcT + kcT + q]Mε2

− k(1 + ca)Mεe
h
2 t.

It suffices to choose h, which is arbitrary, such that h ≥ 2ca to have

∂φ

∂t
(t, x) +H(t, x,

∂φ

∂x
(t, x)) ≥ −2M2e−

h
2 tcT ε− (kcT + q)Mε2 − k(1 + ca)Me

h
2 tε

≥ −2M2εcT − (kcT + q)Mε2 − k(1 + ca)Me
h
2 T ε.

In other words

∂φ

∂t
(t, x) +H(t, x,

∂φ

∂x
(t, x)) ≥ −µε,

where µε := 2M2εcT + (kcT + q)Mε2 + k(1 + ca)Me
h
2 T ε, and where µε converge to 0 as

ε → 0.
We deduce that ψε is a viscosity subsolution of the following HJB equation

∂φ

∂t
(t, x) +Hε(t, x,

∂φ

∂x
(t, x)) ≥ 0, on Oε ×Kε. (27)
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Where Hε(t, x, p) = H(t, x, p) + µε.
Since ε ≤ εi for all i = 1, .., n, we have, according to first assertion of previous lemma,
that, for all 1 ≤ i ≤ n

Oεi ⊂ Oε and Kεi ⊂ Kε.

It follows that
n
⋃

i=1

Oεi ⊂ Oε and
n
⋃

i=1

Kεi ⊂ Kε.

Then, according to assertion three of previous lemma, we have that

(0, T ) ⊂ Oε ∪ (]0, d[∪ ]T − d, T [) and intK ⊂ Kε ∪ (intK ∩ U(∂K, d)).

In other word,

(0, T ) \ (]0, d[∪ ]T − d, T [) ⊂ Oε and intK \ (intK ∩ U(∂K, d)) ⊂ Kε.

Hence ψε is a viscosity subsolution of the HJB equation (27) on (0, T )\(]0, d[∪]T−d, T [)×
intK \ (intK ∩ U(∂K, d)). But d is arbitrary chosen, then by tending d towards 0, we
deduce that ψε is a viscosity subsolution of the HJB equation (27) on (0, T )× intK.
On the other hand, ψε is locally lipschitz, therefore it’s almost everywhere differentiable
Hence, we have

∂ψε

∂t
(t, x) +H(t, x,

∂ψε

∂x
(t, x)) ≥ −µε a.e.(t, x) ∈ [0, T ]× intK. (28)

Lemma 4.6. We have

∂ϕε

∂t
(t, x) +H(t, x,

∂ϕε

∂x
(t, x)) ≥ −σε, ∀(t, x) ∈ [0, T ]× intK,

where ϕε is defined by relation (12) and σε → 0 as ε → 0.

Proof. According to relation (28) we have
∂ψε

∂t
(t, x) +

∂ψε

∂x
(t, x).v + e−δ tl(x, v) ≥ −µε

a.e. (t, x) ∈ [0, T ]× intK, ∀ v ∈ F (t, x).
By convoluting both sides of the inequality we obtain

∂ϕε

∂t
(t, x) +

∂ϕε

∂x
(t, x).v +

∫∫

Rn+1

e−δ (t+τ)l(x+ ξ, v)ρε(τ, ξ)dτdξ ≥ −µε,

a.e.(t, x) ∈ [0, T ]× intK, (29)

where ϕε is defined by relation (12). The convolution is taken on variables (t, x).
Consider

lε(t, x, v) :=

∫∫

Rn+1

e−δ (t+τ)l(x+ ξ, v)ρε(τ, ξ)dτdξ.

Then, we have
lε(t, x, v) →ε→ 0 e

−δ tl(x, v),

uniformly with respect to (t, x) on [0, T ]×K for fixed v.



642 N. Räıssi, M. Serhani / Nonconvex Duality and Viscosity Solutions ...

Therefore inequality (29) becomes

∂ϕε

∂t
(t, x) +

∂ϕε

∂x
(t, x).v + lε(t, x, v) ≥ −µε a.e. (t, x) ∈ [0, T ]× intK, ∀ v ∈ F (t, x).

By adding and subtracting the term e−δ tl(x, v) we have

∂ϕε

∂t
(t, x) +

∂ϕε

∂x
(t, x).v + e−δ tl(x, v) + lε(t, x, v)− e−δ tl(x, v) ≥ −µε,

a.e. (t, x) ∈ [0, T ]× intK, ∀ v ∈ F (t, x).
It follows that

∂ϕε

∂t
(t, x) +

∂ϕε

∂x
(t, x).v+ e−δ tl(x, v) + sup

(t,x)∈[0,T ]×K

{ sup
v∈F (t,x)

(lε(t, x, v)− e−δ tl(x, v))} ≥ −µε,

a.e. (t, x) ∈ [0, T ]× intK, ∀ v ∈ F (t, x).
Then we have

∂ϕε

∂t
(t, x) +

∂ϕε

∂x
(t, x).v + e−δ tl(x, v) ≥ −µε − γε,

a.e. (t, x) ∈ [0, T ]× intK, ∀ v ∈ F (t, x),

where γε := sup
(t,x)∈[0,T ]×K

{ sup
v∈F (t,x)

(lε(t, x, v) − e−δ tl(x, v))}. The sequence γε → 0 as ε → 0

because the supremum on v is achieved since lε and l are continuous with respect v and
F (t, x) is compact, and because lε(., ., v) → e−δ.l(., v) as ε → 0 uniformly on compact
sets.
We deduce that

∂ϕε

∂t
(t, x) +

∂ϕε

∂x
(t, x).v + e−δ tl(x, v) ≥ −σε a.e. (t, x) ∈ [0, T ]× intK, ∀ v ∈ F (t, x),

where σε = µε + γε and σε → 0 as ε → 0.
This can be written as

∂ϕε

∂t
(t, x) +H(t, x,

∂ϕε

∂x
(t, x)) ≥ −σε a.e. (t, x) ∈ [0, T ]× intK.

On other hand, since the Hamiltonian H is locally lipschitz and ϕε is continuously differ-
entiable, the above inequality remains true for all elements of [0, T ]× intK.
This completes the proof of the lemma.

We turn now to the proof of Theorem 4.1.
According to Theorem (3.3) we have

α = inf(P ) ≥ βε =

∫ T

0

inf
x∈K

˜H(t, x,
∂ϕε

∂t
(t, x),

∂ϕε

∂t
(t, x))dt+ δε + ϕε(0, x0).
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But according to Lemma (4.6) we have

˜H(t, x,
∂ϕε

∂t
(t, x),

∂ϕε

∂t
(t, x)) :=

∂ϕε

∂t
(t, x) +H(t, x,

∂ϕε

∂x
(t, x)) ≥ −σε,

∀ (t, x) ∈ [0, T ]× intK.

On other hand, since the compact set K is such that K = cl(int(K)) and ˜H is locally
lipschitz and ϕε is continuously differentiable we have

inf
x∈ intK

˜H(t, x,
∂ϕε

∂t
(t, x),

∂ϕε

∂t
(t, x)) = inf

x∈K

˜H(t, x,
∂ϕε

∂t
(t, x),

∂ϕε

∂t
(t, x)).

Hence,

α = inf(P ) ≥
∫ T

0

−σεdt+ δε + ϕε(0, x0).

So,
α ≥ −Tσε + δε + ϕε(0, x0).

By letting ε tend towards 0, we obtain

α ≥ ϕ(0, x0),

this for all ϕ viscosity subsolution of the HJB equation and satisfying

ϕ(T, .) ≤ g(.) on K.

Therefore
α ≥ sup

ϕ
ϕ(0, x0),

where ϕ is any function admissible for the dual problem (D).
This completes the proof of the theorem.

4.4. Strong Duality

Assume that the following additional hypothesis is satisfied.
H6− The restriction of l(x, .) on F (t, x) is convex for all (t, x) fixed.
Under this additional hypothesis the primal problem (P) has a minimizer. Indeed ;

Proposition 4.7. Under the hypotheses H1 − H6 the infimum of the problem (P) is
achieved and the value function V is l.s.c.

The proof is based on a classic arguments, see [13] (see also [4] and [6]).
We now prove that under the additional hypothesis H6, no duality gaps occur.

Theorem 4.8. Under the hypotheses H1 −H6, we have

α = β. (30)

Proof. The Theorem (4.1) gives the first inequality α ≥ β.
Conversely to prove the inverse inequality it suffices to prove that the hypotheses of
Vinter’s theorem [Th. 2.1, [26]] are satisfied, in this case we have that

α = supψ(0, x0) (31)
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where the supremum is taken over the functions ψ ∈ C1(Rn+1) which are smooth subso-
lutions of HJB equation. But each ψ ∈ C1(Rn+1) which is smooth subsolution of HJB
equation is in particular a viscosity subsolution on [0, T ]×K.
Then

β = supϕ(0, x0) ≥ supψ(0, x0)

where the supremum on the left is taken over the functions ϕ ∈ C([0, T ]×K) which are
viscosity subsolutions of HJB equation and the supremum on the right is taken over the
functions ψ ∈ C1(Rn+1) which are smooth subsolutions of HJB equation.
So, it follows from the relation (31) that

β ≥ α.

Then, we conclude that

β = α.

Let us now verify the hypotheses of Vinter’s theorem.
To be in the context of Vinter [26], it suffices to have H1 −H3, H5 and H6 and we must
prove that the set
A := {(v, (t, x)) ∈ Rn × ([0, T ]× Rn) : v ∈ F (t, x), (t, x) ∈ [0, T ]×K}
is compact which is the consequence of the hypotheses H3 −H4, indeed;
Let (v, (t, x)) ∈ A, we have

‖(v, (t, x))‖ ≤ ‖v‖+ T + ‖x‖.

But it follows from the hypothesis H3 that

‖v‖ ≤ γ‖x‖+ c.

So,

‖(v, (t, x))‖ ≤ (γ + 1) sup
K

‖x‖+ c+ T .

It follows that ‖(v, (t, x))‖ is bounded.
On the other hand, the set A is closed since graphF is closed (because F is locally
lipschitz, hypothesis H4, with compact values, see [4]) and K is compact.

Obviously the necessary and sufficient conditions of the theorem 4.3 remain true. We now
prove that,with the strong duality, the sufficient conditions of the Corollary 4.4 become
necessary and sufficient conditions which extend the Vinter’s theorem [Th. 2.2, [26]] of
necessary and sufficient conditions.

Theorem 4.9. Under the hypotheses H1 −H6 .
Let x̂ be an admissible arc for (P), then
x̂ is a minimum for (P) iff there exists a sequence of continuous functions (ϕn)n viscosity
subsolutions of HJB equation on [0, T ]×K and satisfying

ϕn(T, .) ≤ g(.) on K, (32)
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lim
n→+∞

ϕn(0, x0) = J(x̂). (33)

Proof. The Corollary (4.4) guarantees that the conditions of the theorem are sufficient.
We now prove that these conditions are necessary.
Suppose that x̂ is a minimum for (P).
Then it follows from the Theorem (4.3) that there exist a sequence of continuous functions
{ϕn}n viscosity subsolutions of HJB equation on [0, T ]×K satisfying (32) as well as the
following inequality

lim
n→+∞

|J(x̂)− ϕn(0, x0)| ≤ |J(x)− ϕ(0, x0)| , ∀ϕ ∈ adm(D),

∀x ∈ adm(P ).

It implies that
lim

n→+∞
ϕn(0, x0) ≥ ϕ(0, x0),∀ϕ ∈ adm(D).

Then
lim

n→+∞
ϕn(0, x0) ≥ sup

ϕ∈ adm(D)

ϕ(0, x0) = β.

But α = β, then
lim

n→+∞
ϕn(0, x0) ≥ α.

On the other hand, we have ∀ n ϕn(0, x0) ≤ α, then

lim
n→+∞

ϕn(0, x0) ≤ α ≤ lim
n→+∞

ϕn(0, x0).

Hence
lim

n→+∞
ϕn(0, x0) = α = J(x̂).

This completes the proof.

4.5. Example

Consider the following problem

(Pe)



















inf
x

√

|x(2)|,
.
x (t) ∈ [−x(t), x(t)] t ∈ [0, 2],

x(0) = 0,
−1 ≤ x(t) ≤ 1 .

g(x) =
√

|x| , l ≡ 0, The multifunction F is autonomous and given by F (x) = [−x, x].
It’s easy to prove that x̂(t) ≡ 0 is an optimal solution, but our object here is to show that
the duality may in some cases confirm the optimality of a suspected arc.
The function g is quasiconvex. We will use the results of Barron [10] to prove that the
continuous viscosity solution of the following HJB equation

{

∂ϕ

∂t
(t, x) +H(

∂ϕ

∂x
(t, x)) = 0,

ϕ(T, .) = g(.) on [−1, 1],
(34)
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where
H(p) := min

−1≤x≤ 1
< x, p >, (35)

H(p) = − |p| ,
is given by

ϕ(t, x) = inf{γ ∈ R : sup
p∈R

{px−g](γ, p)+(2−t)H(p)} ≤ 0}, ∀(t, x) ∈ [0, 2]×[−1, 1], (36)

where g] denote the quasiconvex conjugate function of g defined by

g](γ, p) := sup{p.y : y ∈ Rn and g(y) ≤ γ}.

First, we note that H given by (35) satisfies the following hypotheses of Barron [10].

Lemma 4.10. We have

(i) H(λp) = λH(p) for all λ ≥ 0.

(ii) |H(p)−H(p′)| ≤ kH |p− p′|.

Proof. The proof is obvious.
Hence, according to Barron [10] we prove that ϕ given by the relation (36) is a continuous
viscosity solution of the equation (34).
Let us now compute ϕ(t, x) :
We have

g](γ, p) =

{

|p| γ2 if γ ≥ 0,
−∞ otherwise.

Therefore

ϕ(t, x) = inf{γ ∈ R : sup
p∈R

{px− g](γ, p) + (2− t)H(p)} ≤ 0}

= inf{γ ≥ 0 : sup
p∈R

{px− |p| γ2 + (2− t)H(p)} ≤ 0}.

By using the expression of H we obtain the expression

sup
p∈R

{px− |p| γ2 + (2− t)H(p)} =

{

0 if γ2 ≥ x− (2− t),
+∞ if γ2 ≤ x− (2− t).

So,

ϕ(t, x) = inf{γ ≥ 0 : γ2 ≥ x− (2− t)}, ∀ (t, x) ∈ [0, 2]× [−1, 1]

=

{ √

x− (2− t) if x ≥ (2− t),
0 if x ≤ (2− t).

For t = 0 and x = 0, we have

ϕ(0, 0) = 0.

According to Corollary 4.2 we have

|α− J(x̂)| = |α| ≤ 0− ϕ(0, 0) = 0.

We deduce that x̂(t) = 0 is an optimal trajectory.
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5. Conclusion

In this work our attention was focused on nonconvex duality and we have established a
weak duality without convexity assumptions in the cost function, together with necessary
and sufficient conditions for optimality and an error estimate for α. On the other hand
we established strong duality under mild additional convexity assumption.
Our next work will be devoted to studying the numerical aspects and computing the
error estimate, and we hope apply our study to certain problems arising in economic
applications.
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[11] H. Brezis: Analyse Fonctionnelle Théorie et Applications, Masson, Paris (1983).

[12] C. W. Clark, G. R. Munro: The economics of fishing and modern capital theory: a simplified
approach, Essays in the Economics of Renewable Resources, Contrib. Econ. Anal. 143 (1982)
31–54.

[13] F. H. Clarke: Optimization and Nonsmooth Analysis, SIAM, Philadelphia (1983).

[14] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski: Nonsmooth Analysis and Control
Theory, Graduate Texts in Mathematics 178, Springer-Verlag (1998).

[15] F. H. Clarke, R. Vinter: Local optimality conditions and Lipschitzian solutions to the
Hamilton-Jacobi equation, SIAM J. Control Optimization 21 (1983) 856–870.
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