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The optimization of convex quadratic forms on Banach spaces is considered. A suitable notion of condi-
tioning under linear perturbations leads to the distance theorem in the free case, thereby extending to
the optimization setting the classical Eckart-Young formula: the distance to ill-conditioning equals to the
reciprocal of the condition number. Partial results are presented for the linearly constrained case.
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1. Introduction

A suitable notion of conditioning of a matrix leads to the well-known distance theorem
of Eckart-Young [6] (generalized by Gastinel [7] to arbitrary norms): the distance of the
matrix to the set of all singular matrices is the reciprocal of its condition number. This
remarkable distance theorem, sometimes referred to as the condition number theorem, has
been extended to several problems: computation of eigenvalues and eigenvectors, of zeros
of polynomials, pole assignment in linear control systems, QR decomposition, trigonomet-
ric equations. Abstract versions of the theorem are also available. See [4], [3] and their
references.

Generally speaking, if a distance theorem is available for a given problem, then the closer
the problem is to ill-conditioning, the more difficult the problem will be to solve, so that
more precision, hence computation, is needed. For a problem far away to ill-conditioning,
an efficient algorithm is expected to perform well with less precise data. Thus a distance
theorem is important not only because it reveals the geometrical meaning of the (properly
defined) condition number, but also because it is intimately related to the computational
complexity analysis of the given problem.

Conditioning measures, similar to condition numbers, related to the reciprocal of the
distance to infeasibility have been introduced in [10] for linear inequality systems, and
related to the computational complexity of interior point methods in linear programming,
see also [11]. An extension of the distance theorem for convex processes is obtained in [9].

In this paper we obtain the distance theorem for free optimization problems involving
convex quadratic forms in Banach spaces. In Section 3 we apply the standard definition
of absolute condition number (recalled in Section 2) with respect to natural perturbations
acting on the variational problem, namely linear perturbations. The condition number is
then defined directly as a measure of how sensitive the minimizer is to slight data pertur-
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bations. Then we prove that the distance theorem holds: the distance to ill-conditioning
equals to the reciprocal of the condition number. Here the distance is measured through
the uniform operator norm of the gradient of the quadratic form.

In Section 4 we partially extend the results of Section 3 to optimization problems for
convex quadratic forms with linear constraints in Hilbert spaces. We adopt the classical
setting of the standard theory of variational inequalities. We compute the condition num-
ber and show that its reciprocal is a lower bound of the distance to ill-conditioning.

More complete results about the distance theorem and extensions to more general classes
of optimization problems are under investigation.

2. Basic Notions and Notations

The following is a standard definition of conditioning of a mathematical problem, see e.g.
[4]. Let X, Y be linear normed spaces and consider nonempty subset D ⊂ X,H ⊂ Y . D
is the set of data of the given problem, H is the set of solutions. Assume that the problem
has a unique solution m(p) ∈ H for each data p ∈ D. Fix p∗ ∈ D which defines the given
problem. Then the (absolute) condition number of the given problem is defined as

cond (p∗) = lim sup
p→p∗

‖m(p)−m(p∗)‖/‖p− p∗‖. (1)

Of course 0 ≤ cond (p∗) ≤ +∞.

In the following it will be useful to think of p as a parameter which defines a perturbation
of the fixed optimization problem corresponding to p∗. This problem is then called

well-conditioned iff cond (p∗) < +∞,

ill-conditioned iff cond (p∗) = +∞. The set of ill-conditioned problems will be
denoted by IC.

Throughout the paper E denotes a real Banach space. The pairing between the dual space
E∗ and E is denoted by < ·, · >. L(E,E∗) is the Banach space of all linear continuous
operators between E and E∗. Given x ∈ E∗, x ⊕ x denotes the linear bounded map
L : E → E∗ defined by

< Lu, v >=< x, u >< x, v >;u, v ∈ E.

S(E,E∗) denotes the set of those A ∈L(E,E∗) such that A is symmetric and nonnegative.
Thus for every u, v ∈ E we have

< Au, v >=< Av, u >,< Au, u >≥ 0.

For a set G, cl G denotes its closure.

3. The Distance Theorem for Quadratic Forms

Let A ∈ S(E,E∗) be given. Then the function f : E → R defined by

f(x) =
1

2
< Ax, x >, x ∈ E (2)
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is the convex quadratic form associated to A. By standard properties, A is uniquely
determined by f . Denote by T the set of all quadratic forms f given by (2) as A ∈
S(E,E∗). For each p ∈ E∗ and f ∈ T consider

fp(x) =
1

2
< Ax, x > − < p, x >, x ∈ E. (3)

We are interested in characterizing well-conditioning of the problem, to minimize f on E,
when the data are the linear continuous perturbations of f corresponding to p ∈ E∗ via
(3). Thus, according to the previous setting, we have D = E∗, p∗ = 0.

The problem of minimizing f ∈ T on E is then called well-conditioned iff

for every p ∈ E∗, fp has a unique global minimizer m(p); (4)

lim sup
p→0

‖m(p)‖/‖p‖ < +∞, (5)

since m(0) = 0. For short we simply say that f is well-conditioned and write

cond (f) = lim sup
p→0

‖m(p)‖/‖p‖, (6)

the condition number of f with respect to the perturbations defined by fp, p ∈ E∗ (ac-
cording to (1)).

Proposition 3.1. Let f ∈ T be with corresponding operator A. The following are equiv-
alent:

f is well-conditioned ; (7)

there exists α > 0 such that < Ax, x >≥ α‖x‖2, x ∈ E. (8)

Proof. Let (7) hold. Then for every p ∈ E∗ the unique minimizer u = m(p) of fp is
characterized by ∇fp(u) = 0, hence Au = p, whence A is onto. By (6), u = 0 is the
unique minimizer of f(x) = 1

2
< Ax, x >, hence < Ax, x > is positive for each x 6= 0.

It follows that Ax = 0 implies x = 0, thus A is one-to-one. By a known property (see
[1, Lemma 4.123 p. 365]) (8) follows. Conversely, (8) implies (4) and m(p) = A−1p, hence

lim sup
p→0

‖A−1(p)‖/‖p‖ ≤ ‖A−1‖, (9)

yielding (7).

Proposition 3.2. Let f ∈ T with corresponding operator A be well-conditioned. Then

cond f = ‖A−1‖. (10)

Proof. Let yn ∈ E∗ be such that

‖yn‖ = 1, ‖A−1yn‖ → ‖A−1‖

then xn = yn/n → 0 and

‖A−1xn‖/‖xn‖ = ‖A−1yn‖ → ‖A−1‖,

hence (10).
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Given f, g in T with corresponding operators A,B we define the distance between the two
forms f, g by the operator norm

dist (f, g) = ‖A−B‖. (11)

We denote by IC the set of those forms in T which are ill-conditioned.

The main result of this section is the following

Theorem 3.3. Let f ∈ T be well-conditioned. Then

dist (f, IC) = 1/ cond (f). (12)

Proof. By Proposition 3.1, f corresponds to A ∈ S(E,E∗) which fulfils (8). Let B ∈
S(E,E∗) be such that

‖A−B‖ < 1/‖A−1‖.

Then by a standard result B is an isomorphism. By a known property (see [1, Lemma
4.123 p. 365]), it follows that B fulfils the coercivity condition (8). Consider

g(x) =
1

2
< Bx, x >, x ∈ E

then g is well-conditioned by Proposition 1 and

dist (f, g) < 1/ cond (f)

by Proposition 3.2, hence
dist (f, IC) ≥ 1/ cond (f). (13)

To show the opposite inequality, we shall exhibit a sequence Bn ∈ S(E,E∗) such that if

fn(x) =
1

2
< Bnx, x >, x ∈ E,

then each fn ∈ IC and
‖A−Bn‖ → 1/‖A−1‖.

It suffices to find Dn ∈L(E,E∗) such that for each n

A−Dn ∈ S(E,E∗); (14)

A−Dn fails to be one-to-one ; (15)

‖Dn‖ → 1/‖A−1‖; (16)

then Bn = A−Dn will do. As it is well known

‖A−1‖ = sup {< x,A−1x >: x ∈ E∗, ‖x‖ = 1},

then let xn ∈ E∗ be such that

‖xn‖ = 1, < xn, A
−1xn >→ ‖A−1‖ (17)

and put
Dn = αnxn ⊕ xn, (18)
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αn > 0 to be chosen later. By (18), A −Dn ∈L(E,E∗), moreover A −Dn is symmetric.
For every u ∈ E

< (A−Dn)A
−1xn, u >=< xn, u > −αn < xn ⊕ xnA

−1xn, u >=

=< xn, u > (1− αn < xn, A
−1xn >) = 0 (19)

provided
αn = 1/ < xn, A

−1xn >

which makes sense for all sufficiently large n, since then < xn, A
−1xn > is positive by (17).

Thus, setting for such n
Dn = xn ⊕ xn/ < xn, A

−1xn >,

we have that (15) is true by (19). For any u ∈ E

< (A−Dn)u, u >=< Au, u > − < xn, u >2 / < xn, A
−1xn >≥ 0

since by a well-known inequality

< Au, u >< x,A−1x >≥< x, u >2

for all x ∈ E∗ and u ∈ E. Then (14) is proved. To end the proof we check (16). We have

‖Dn‖ = αn‖xn ⊕ xn‖ = ‖xn‖2/ < xn, A
−1xn >

hence (16) by (17).

Even in the finite dimensional setting, Theorem 3.3 is not a particular case of the Eckart-
Young Theorem [6], since here we deal with a proper subset of the space of all singular
matrices (possibly increasing distances).

4. Variational (In)equalities

In this section we present some partial result dealing with variational inequalities with
linear constraints in Hilbert spaces.

Firstly we characterize well-conditioning and compute the condition number of a varia-
tional inequality with respect to suitable linear perturbations. Then we obtain a lower
bound of the distance to ill-conditioning , namely the reciprocal of the condition number,
thereby partially extending the results of Section 3.

Throughout this section, E denotes a real Hilbert space with scalar product < ·, · >. K
is a fixed closed linear subspace of E. We consider E∗ as identified with E and write
L(E) =L(E,E∗), S(E) = S(E,E∗). Given A ∈ S(E), we consider f : E → R defined by
(2) and the set T of all quadratic convex forms f as above. For each p ∈ E and f ∈ T
we consider fp defined by (3). Let p∗ = 0. The problem (K, f), of minimizing f on K, is
well-conditioned iff (4),(5) hold. The condition number of f is again defined by (6) and
denoted by cond (f).

We want to emphasize that all quadratic forms involved are restrictions to the constraint
K of forms originally defined on the whole space E, in order to deal with conditioning of
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a given form (2) over possibly varying subspaces K. Moreover, only the elements p ∈ E
define the perturbations fp acting on f , i.e. the whole space K∗ of linear perturbations is
not used, according to the standard setting of the classical theory of variational inequal-
ities, see e.g. [2, Section V.3]. This precludes using directly the results of the previous
section.

We need the following

Lemma 4.1. Let B ∈ S(E) be given with B(K) closed and B : K → B(K) an isomor-
phism. Then there exists ω > 0 such that

< Bu, u >≥ ω‖u‖2, u ∈ K.

Proof. Let Z ∈ S(E) be the square root of B , see [8, Theorem 3.35 p. 281]. Then Z is
one-to-one on K since B is. The conclusion will then follow by closedness of Z(K) due
to [5, Lemma 1 p. 487], since then for every u ∈ K and some constant ω > 0

< Bu, u >=< Z2u, u >= ‖Zu‖2 ≥ ω‖u‖2.

So let y ∈ D = cl Z(K), un ∈ K and yn = Zun → y. Then

Zyn = Bun → Zy ∈ B(K)

since B(K) is closed. Thus there exists u ∈ K such that Zy = Bu, hence

Z(y − Zu) = 0, y − Zu ∈ D,

whence y = Zu because Z is one-to-one onD, as we check now. If v ∈ D and Zv = 0, there
exists vn ∈ Z(K), vn → v, then vn = Zwn with wn ∈ K. It follows that Zvn = Bwn → 0,
whence wn → 0 because B is an isomorphism. We conclude that Zwn → 0, whence v = 0,
ending the proof.

The following is an extension of Proposition 3.1.

Proposition 4.2. Let A ∈ S(E) and f ∈ T be the corresponding quadratic form. Then
the following are equivalent:

problem (K, f) is well-conditioned ; (20)

there exists α > 0 such that < Au, u >≥ α‖u‖2, u ∈ K. (21)

Proof. Assume (20). If x ∈ K and Ax = 0 then f(x) = 0 hence x = 0 by well-
conditioning. If y ∈ cl A(K) then Axn = pn → y for some sequence xn ∈ K. It follows
that xn minimizes fpn on K since obviously

< Axn, x− xn >=< pn, x− xn >, x ∈ K

and by (20)
‖xn‖ ≤ (const.) ‖pn‖ ≤ const.

For a subsequence, xn ⇀ x ∈ K hence Axn ⇀ Ax = y whence y ∈ A(K). This proves
that A(K) is closed. It follows that the restriction of A to K is an isomorphism. Then
(21) follows by Lemma 4.1. Conversely, (21) yields (20) by well-known results, see [2,
chapter V].
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Given an isomorphism A ∈ S(E), let us consider the scalar product on E defined by

(x, y) =< Ax, y > . (22)

We shall need the best approximation operator

Q : E → K

with respect to the scalar product (22), i.e. for every x ∈ E,Qx is the unique closest
point in K to x with respect to the (equivalent) norm < Ay, y >1/2 on E.

Proposition 4.3. Let A ∈ S(E) be an isomorphism and f ∈ T be the corresponding
quadratic form. Then

cond (f) = ‖QA−1‖. (23)

Proof. Q ∈L(E) since K is a linear closed subspace of E equipped with the inner produt
(22). For any p ∈ E consider fp given by (3). Its unique minimizer u = m(p) on K fulfils

< Au− p, x− u >= 0, x ∈ K

(see [2, corollaire V.4 p. 80]), hence by (22)

(u− A−1p, x− u) = 0, x ∈ K.

Then m(p) = QA−1p by the projection theorem ([2, corollaire V.4 p. 80]). The conclusion
follows by (6).

As in the free case of Section 3, the distance between f, g ∈ T with corresponding operators
A,B ∈ S(E) is defined by the operator norm in L(E),

dist (f, g) = ‖A−B‖.

Theorem 4.4. If A ∈ S(E) is an isomorphism and f ∈ T is the corresponding quadratic
form, then

dist (f, IC) ≥ 1/ cond (f).

Proof. For a given operator U ∈ L(E) write

‖U‖K = sup {‖U(x)‖ : x ∈ K, ‖x‖ ≤ 1}.

Let B ∈ S(E) be such that
‖A−B‖ < 1/‖QA−1‖.

Then
‖A−B‖K ≤ ‖A−B‖ < 1/‖QA−1‖. (24)

Let L denote the restriction of A to K. Then L : K → A(K) is an isomorphism. We have

‖L−1‖ = sup {‖L−1y‖ : y ∈ A(K), ‖y‖ ≤ 1} = sup {‖QL−1y‖ : y ∈ A(K), ‖y‖ ≤ 1} ≤

≤ sup {‖QA−1y‖ : y ∈ E, ‖y‖ ≤ 1} = ‖QA−1‖,
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hence by (24)
‖A−B‖K < 1/‖L−1‖. (25)

By a standard result it follows that B : K → B(K) is an isomorphism provided we show
that B(K) is closed. To this aim, denote by C the restriction of B to K and by P the
orthogonal projection of E onto the closed linear subspace A(K). Consider

W = CL−1 : A(K) → B(K)

and the identity operator I : A(K) → A(K). Then PW ∈L[A(K)] and taking operator
norms in L[A(K)] we get

‖I − PW‖ = ‖PLL−1 − PCL−1‖ ≤ ‖P‖‖L− C‖‖L−1‖ ≤ ‖L− C‖‖L−1‖ < 1

by (25). Then, again by a standard result, PW : A(K) → A(K) is an isomorphism. Now
let un ∈ K be such that Bun → y. Then

PWAun = PCun = PBun → Py

hence
Aun → (PW )−1Py

whence un → u ∈ K say. Therefore y = Bu ∈ B(K) which is closed. It follows that, by
Lemma 4.1, B is coercive on K and, by Proposition 4.2, the corresponding quadratic form
defines a well-conditioned problem. Summarizing, the ball of radius 1/‖QA−1‖ around f
is contained in the set of well-conditioned problems, and this by Proposition 4.3 ends the
proof.
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