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In this paper we present a new extension of the celebrated Serrin’s lower semicontinuity theorem. We
consider an integral of the calculus of variation

∫

Ω f (x, u,Du) dx and we prove its lower semicontinuity

in W 1,1
loc (Ω) with respect to the strong L1

loc norm topology, under the usual continuity and convexity
property of the integrand f(x, s, ξ), only assuming a mild (more precisely, local ) condition on the inde-
pendent variable x ∈ Rn, say local Lipschitz continuity, which - we show with a specific counterexample
- cannot be replaced, in general, by local Hölder continuity.
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1. Introduction

The aim of this paper is to determinate some new sufficient conditions for lower semicon-
tinuity with respect to the strong convergence in L1

loc for functionals of integral type

F (u,Ω) =

∫

Ω

f (x, u(x), Du(x)) dx , (1)

where Ω is an open set of Rn, u varies in the Sobolev class W 1,1
loc (Ω), Du denotes the

gradient of u, and the function f = f(x, s, ξ), for x ∈ Ω, s ∈ R, ξ ∈ Rn, satisfies the
conditions







f is continuous in Ω× R× Rn,
f is nonnegative in Ω× R× Rn,
f(x, s, ξ) is convex in ξ ∈ Rn for all (x, s) ∈ Ω× R.

(2)

The integral functional F is lower semicontinuous in W 1,1
loc (Ω) with respect to the strong

convergence in L1
loc if, for every uh, u ∈ W 1,1

loc (Ω) such that uh → u in L1
loc (Ω), then

lim inf
h→+∞

F (uh,Ω) ≥ F (u,Ω) .
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Since the example given in 1941 by Aronszajn (see Pauc [15]; in particular page 54), it
is known that condition (2) alone is not sufficient for strong lower semicontinuity of the
integral F in (1). Serrin published in 1961 an article [16] proposing, in addition to (2),
some sufficient conditions for strong lower semicontinuity. One of the most known and
celebrated Serrin’s theorem on this subject is the following one (see Theorem 12 in [16]).

Theorem 1.1 (Serrin). Let f satisfy, in addition to (2), one of the following conditions:

(a) f(x, s, ξ) → +∞ when |ξ| → +∞, for all (x, s) ∈ Ω× R;
(b) f(x, s, ξ) is strictly convex in ξ ∈ Rn for all (x, s) ∈ Ω× R;
(c) the derivatives fx(x, s, ξ), fξ(x, s, ξ) and fξx(x, s, ξ) exist and are continuous.

Then F (u,Ω) is lower semicontinuous in W 1,1
loc (Ω) with respect to the strong convergence

in L1
loc.

Many attempts have been made to weaken the assumptions on the integrand f . Serrin
himself gave in 1961 the following further result (see Theorem 11 in [16]).

Theorem 1.2 (Serrin). Let us assume that f satisfies (2) and the following (uniform)
continuity condition

|f(x1, s1, ξ)− f(x2, s2, ξ)| ≤ λ (|x1 − x2|+ |s1 − s2|) · {1 + f(x1, s1, ξ)} , (3)

for every (x1, s1), (x2, s2) ∈ Ω×R and for all ξ ∈ Rn, where λ is a modulus of continuity.
Then

lim inf
h→+∞

F (uh,Ω) ≥ F (u,Ω) ,

for every uh, u ∈ W 1,1
loc (Ω) such that uh → u in L1

loc (Ω), assuming in addition that u ∈
C0(Ω).

The aims of some further studies in the direction of Theorem 1.2 tempt to remove the
assumption of continuity of u and to weaken the uniform continuity condition (3) on f .
Dal Maso [3] in 1980 gave the following lower semicontinuity result, without continuity as-
sumptions on the limit function u (and in fact Dal Maso was able to extend his analysis to
u ∈ BV (Ω), the functional space of functions of class L1 (Ω) with bounded variation, also
considering more generally sequences of integral functionals which Γ-converge). However
Dal Maso had to introduce some coercivity and growth conditions, as follows.

Theorem 1.3 (Dal Maso). Let us assume that f satisfies (2), (3) and that there exist
functions m, q ∈ C0(Ω), with m(x) > 0 for every x ∈ Ω, and a positive constant M such
that

m(x) |ξ| ≤ f(x, s, ξ) ≤ M |ξ|+ q(x) ,

for every (x, s, ξ) ∈ Ω× R× Rn. Then F (u,Ω) is lower semicontinuous in W 1,1
loc (Ω) with

respect to the strong convergence in L1
loc.

Let us also mention that Dal Maso himself, revisiting the already quoted example by
Aronszajn [15], emphasized that the continuity of f with respect to (x, u) alone is not
sufficient for lower semicontinuity of F (u,Ω) in L1. See Section 4 of this paper for further
details.
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A recent extension of Theorem 1.2 is due to Fonseca and Leoni (see Theorem 1.1 in [10],
where the case u ∈ BV (Ω) is considered too; see also [11]).

Theorem 1.4 (Fonseca - Leoni). Let f(x, s, ξ) be a Borel function, convex with respect
to ξ ∈ Rn. Let us also assume that, for every (x0, s0) ∈ Ω× R and for every ε > 0, there
exists δ > 0 such that

f(x0, s0, ξ)− f(x, s, ξ) ≤ ε {1 + f(x, s, ξ)} , (4)

for every (x, s) ∈ Ω×R such that |x− x0|+ |s− s0| ≤ δ and for all ξ ∈ Rn. Then F (u,Ω)
is lower semicontinuous in W 1,1

loc (Ω) with respect to the strong convergence in L1
loc.

Notice that assumption (4) is a kind of lower semicontinuity of f with respect to (x, s) ∈
Ω × R, uniform with respect to ξ ∈ Rn. Lower semicontinuity of integrands of the
type f(x, ξ) with respect to x ∈ Ω has been pointed out by Fusco [12] in 1979, as a
necessary condition for lower semicontinuity of the respective (one-dimensional) integrals
with respect to the strong convergence in L1(Ω), on discussing the case of linear growth,
with f(x, ξ) = a(x) |ξ|.
As already said, Theorems 1.3 and 1.4 has been obtained, respectively by Dal Maso and
by Fonseca and Leoni, in the more general setting of BV (Ω), the subspace of L1 (Ω)
whose functions have bounded variation. We quoted above the particular case when
uh, u ∈ W 1,1

loc (Ω), for a better comparison with the other results presented in this paper.

Some researches, as in Theorem 1.4, had the aim to relax the assumptions on f(x, s, ξ)
related to the dependence on s, starting from a result in [7] by De Giorgi, Buttazzo and
Dal Maso in 1983.

Theorem 1.5 (De Giorgi - Buttazzo - Dal Maso). Let f = f(s, ξ) be a nonnegative
Borel function, convex with respect to ξ ∈ Rn, only measurable with respect to s ∈ R,
although lower semicontinuous with respect to s ∈ R at ξ = 0. If

lim sup
|ξ|→0

(f(s, 0)− f(s, ξ))+

|ξ|
∈ L1

loc(R) ,

then F (u,Ω) is lower semicontinuous in W 1,1
loc (Ω) with respect to the strong convergence

in L1
loc.

Theorem 1.5 has been generalized in 1987 by Ambrosio [2], and in 1990-91 by De Cicco
[4], [5] to the BV (Ω) setting. In [10] Fonseca and Leoni obtained the same conclusion of
Theorem 1.5 for integrands f(x, s, ξ), depending explicitly on the x variable too, under
the assumption of uniform continuity of f with respect to x ∈ Ω, similarly to (4).

From the above exposition it should be clear that the dependence of f on (x, s) must be
treated carefully in studying lower semicontinuity of the integral F (u,Ω) with respect to
the strong convergence in L1(Ω). Of course (x, s) dependence gives some difficulties in
the proofs, which are not only technical difficulties, since the existence of a counterex-
ample to lower semicontinuity under explicit (x, s) dependence of the integrand f . In
particular measurability of f(x, s, ξ) with respect to (x, s), or only with respect to x, is
not appropriate for strong lower semicontinuity. As already mentioned, Fusco [12] gave
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a one-dimensional example, related to the integrand f(x, ξ) = a(x) |ξ|, where lower semi-
continuity with respect to x was a necessary condition; in this context we refer also to
the example in [14], related to an integrand of the type f(x, ξ) = a(x) |ξ|2, which may
have a relaxed functional in the strong L1 norm topology identical equal to zero, although
the coefficient a(x) is a nonnegative function, not identical equal to zero (thus the cor-
responding integral F (u,Ω) is not lower semicontinuous). In Section 5 of this paper we
will give further details, as well as we will propose a coercivity condition also sufficient
for lower semicontinuity in L1

loc .

In this paper we consider specifically the dependence of f(x, s, ξ) with respect to x ∈ Ω.
In the previous results some qualified assumptions of uniform continuity, or of uniform
lower semicontinuity, of f(x, s, ξ) with respect to x have been made (in the sense made
more precise in the statements). On the contrary, in this paper we propose a new sim-
ple condition, in addition to (2), sufficient for lower semicontinuity. In fact we assume
that f(x, s, ξ) is Lipschitz continuous with respect to x, locally respect to (s, ξ) and not
necessarily globally. That is, we do not assume that the Lipschitz constant is uniform
for (s, ξ) ∈ R× Rn. This main difference allows us to obtain, as a corollary, an improve-
ment of Serrin’s Theorem 1.1(c); in fact we get the lower semicontinuity of F (u,Ω) under
the only assumption that the derivative fx(x, s, ξ) exists and is continuous, condition
which clearly implies Lipschitz continuity of f on compact subsets of Ω×R× Rn, but not
necessarily Lipschitz continuity of f on the full set Ω× R× Rn.

One of the main results of this paper (an other is Example 4.2) is the following Theorem
1.6. It has as a direct consequence Corollary 1.7, which of course generalizes Serrin’s
Theorem 1.1(c).

Theorem 1.6. Assume that f(x, s, ξ) satisfies (2) and that, for every compact set K ⊂
Ω× R× Rn, there exists a constant L = L(K) such that

|f(x1, s, ξ)− f(x2, s, ξ)| ≤ L |x1 − x2| , (5)

for every (x1, s, ξ) , (x2, s, ξ) ∈ K. Then the integral F (u,Ω) in (1) is lower semicontinu-
ous in W 1,1

loc (Ω) with respect to the strong convergence in L1
loc(Ω).

The proof of Theorem 1.6 is divided in several steps. In one of these steps we use an
approximation procedure, due to De Giorgi [6], of the integrand f by a sequence fj, each
fj being the maximum of a finite number of functions g(x, s, ξ) = a0(x, s)+

∑n
i=1 ai(x, s)ξi,

linear with respect to ξ, with coefficients a0(x, s) and ai(x, s) (i = 1, 2, . . . , n) as in (18),
which can be reduced to have compact support in Ω × R. By this reason it is enough
to assume local Lipschitz continuity of f with respect to x as in (5), and not necessarily
global Lipschitz continuity.

Direct consequence of the Theorem 1.6 is the following result.

Corollary 1.7. Assume that f(x, s, ξ) satisfies (2) and that the derivative fx(x, s, ξ) ex-
ists and is continuous (or only locally bounded). Then F (u,Ω) is lower semicontinuous
in W 1,1

loc (Ω) with respect to the strong convergence in L1
loc(Ω).

In Sections 2 and 3 we will give the proof of Theorem 1.6. In Section 4 we will exhibit
some examples showing that assumptions made in Theorem 1.6 (and in Corollary 1.7) are
relevant for strong lower semicontinuity, in the sense that the only property of continuity
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of f(x, s, ξ) with respect to x ∈ Ω (of course, together with the other conditions in (2))
is not enough for strong lower semicontinuity of F (u,Ω) in L1

loc , although sufficient for
weak lower semicontinuity in W 1,1

loc (Ω).

More precisely, in Example 4.2 we will compare the assumptions of local Lipschitz con-
tinuity of f with respect to x with the assumption of local Hölder continuity of f (with
respect to x) with exponent α < 1. In fact we will show that, for every exponent
α ∈ (0, 1), there exists an n-dimensional integral F (u,Ω) (the dimension n depends on α,
precisely n > 4α/(1− α)) which is not lower semicontinuous in L1

loc and whose integrand
f(x, s, ξ) is Hölder continuous with respect to x (and of course nonnegative, continuous
for (x, s, ξ) ∈ Ω× R× Rn and convex with respect to ξ ∈ Rn).

In Section 5 we will show that lower semicontinuity results, corresponding to those of
Theorem 1.6 and Corollary 1.7, do not hold in the vector-valued case, for applications
u ∈ W 1,1

loc (Ω,R
m), i.e., u : Ω ⊂ Rn → Rm with m > 1, not just for quasiconvex integrands,

but under convexity conditions too. Finally, having in mind some relaxation formulas
due to Marcellini [14] and Fusco [12], we give in Proposition 5.6 a coercivity condition
sufficient for lower semicontinuity in L1

loc of the integral F (u,Ω) in (1).

Acknowledgements. This research, partially done while Michele Gori was carrying out his

degree thesis in Mathematics [13] at the Università di Firenze, has been supported by the

Italian Ministero dell’Università e della Ricerca Scientifica e Tecnologica (MURST).

2. A preliminary lemma

In this section we give some preliminary results that will be used in the proof of Theorem
1.6. The first lemma is a modification of an argument introduced by Serrin (see the proof
of Theorem 12 in [16]).

Lemma 2.1. Let us assume that f satisfies (2) and that the derivative fξ(x, s, ξ) exists
and is a continuous function in Ω× R× Rn. Let us also assume that, for every compact
set K ⊂ Ω× R× Rn, there exists a constant L = L (K) such that

|fξ(x1, s, ξ)− fξ(x2, s, ξ)| ≤ L |x1 − x2| , ∀ (x1, s, ξ) , (x2, s, ξ) ∈ K, (6)

and, for every compact set K1 ⊂ Ω× R, there exists a constant L1 = L1 (K1) such that







|fξ(x, s, ξ)| ≤ L1, ∀ (x, s) ∈ K1, ∀ ξ ∈ Rn,

|fξ(x, s, ξ1)− fξ(x, s, ξ2)| ≤ L1 |ξ1 − ξ2| , ∀ (x, s) ∈ K1, ∀ ξ1, ξ2 ∈ Rn.
(7)

Then F (u,Ω) is lower semicontinuous in W 1,1
loc (Ω) with respect to the strong convergence

in L1
loc.

Proof. Let us consider a sequence fi(x, s, ξ) = αi(x, s)f(x, s, ξ), i = 1, 2, . . ., where
{αi}i∈N is an increasing sequence of smooth functions with compact support in Ω × R,
converging pointwise to 1 in Ω × R. It is clear that, for all i ∈ N, fi still satisfies the
hypothesis of Lemma 2.1 and also vanishes if (x, s) vary outside a compact set of Ω×R.
Moreover fi is an increasing sequence of functions which pointwise converge to f . Thus,
by the monotone convergence theorem we can go to the limit as i → +∞ and, since the
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supremum of a family of lower semicontinuous functionals is lower semicontinuous, it is
sufficient to prove the stated lower semicontinuity for the integral functional associated
to a generic integrand αif . In other words, in the proof of Lemma 2.1, without loss of
generality, we can assume that the integrand f(x, s, ξ) vanishes if (x, s) vary outside a
compact set of Ω×R. For the same reason in the exposition below we will always assume
that (x, s) vary on a compact set of Ω×R and that f is equal to zero in the complement
of this compact set.

Let uh, u ∈ W 1,1
loc (Ω) such that uh → u in L1

loc (Ω). We will prove that

lim inf
h→+∞

F (uh,Ω) ≥ F (u,Ω) . (8)

Without loss of generality, we can assume that uh converges to u almost everywhere in Ω
and that

lim inf
h→+∞

F (uh,Ω) = lim
h→+∞

F (uh,Ω) .

Let Ω′ be an open set whose closure is contained in Ω, such that f(x, s, ξ) = 0 when
x ∈ Ω − Ω′; thus in particular F (uh,Ω) = F (uh,Ω

′) and F (u,Ω) = F (u,Ω′). Let us
denote by αρ a mollifier and by uρ = u ∗ αρ the mollified function of u with step ρ. Since
u ∈ W 1,1

loc (Ω), for every ε > 0 there exists ρ > 0 such that

∫

Ω′
|Du−Duρ| dx ≤ ε . (9)

By Fatou lemma we can choose ρ small enough such that uρ satisfies also the condition

∫

Ω′
f(x, u,Duρ) dx ≥

∫

Ω′
f(x, u,Du) dx − ε . (10)

We estimate the difference of the integrands in (8)

f(x, uh, Duh)− f(x, u,Du) = f(x, uh, Duh)− f(x, uh, Duρ) (11)

+f(x, uh, Duρ)− f(x, u,Duρ) + f(x, u,Duρ)− f(x, u,Du) .

From (11), by the convexity of f(x, s, ξ) with respect to ξ, we have

f(x, uh, Duh)− f(x, u,Du) ≥ (fξ(x, uh, Duρ), Duh −Duρ)

+ {f(x, uh, Duρ)− f(x, u,Duρ)}+ {f(x, u,Duρ)− f(x, u,Du)}

= (fξ(x, uh, Duρ), Duh)− (fξ(x, u,Duρ), Du)

+ (fξ(x, u,Duρ), Du−Duρ) + (fξ(x, u,Duρ)− fξ(x, uh, Duρ), Duρ)

+ {f(x, uh, Duρ)− f(x, u,Duρ)}+ {f(x, u,Duρ)− f(x, u,Du)} .

We observe that (x, s) → fξ(x, s,Duρ(x)) is a continuous function with compact support
in Ω× R and that, by (7), |fξ(x, s,Duρ(x))| ≤ L1 for every (x, s) ∈ Ω× R and for every
ρ. We obtain

f(x, uh, Duh)− f(x, u,Du) ≥ (fξ(x, uh, Duρ), Duh)− (fξ(x, u,Duρ), Du)



M. Gori, P. Marcellini /AnExtension of the Serrin’s Lower Semicontinuity Theorem 481

−L1 |Du−Duρ|+ (fξ(x, u,Duρ)− fξ(x, uh, Duρ), Duρ)

+ {f (x, uh, Duρ)− f (x, u,Duρ)}+ {f (x, u,Duρ)− f (x, u,Du)} .

We integrate both sides over Ω′. By (9) and (10) we have
∫

Ω′
{f(x, uh, Duh)− f(x, u,Du)} dx (12)

≥
∫

Ω′
{(fξ(x, uh, Duρ), Duh)− (fξ(x, u,Duρ), Du)} dx

+

∫

Ω′
(fξ(x, u,Duρ)− fξ(x, uh, Duρ), Duρ) dx

+

∫

Ω′
{f(x, uh, Duρ)− f(x, u,Duρ)} dx − (1 + L1) ε .

We can go to the limit as h → +∞. First we observe that, since (x, s) → f(x, s,Duρ(x))
and (x, s) → fξ(x, s,Duρ(x)) are bounded functions (in fact are continuous function with
compact support), by the Lebesgue’s dominated convergence theorem we obtain











lim
h→+∞

∫

Ω′ (fξ(x, u,Duρ)− fξ(x, uh, Duρ), Duρ) dx = 0 ,

lim
h→+∞

∫

Ω′ {f(x, uh, Duρ)− f(x, u,Duρ)} dx = 0 .

Since ε in (12) can be arbitrarily small, to obtain the conclusion (8) it remains to prove
that

lim
h→+∞

∫

Ω′
{(fξ(x, uh, Duρ), Duh)− (fξ(x, u,Duρ), Du)} dx = 0 . (13)

With the aim to prove (13), similarly to Tonelli [17], we denote by g(x, s) the continuous
vector-valued function with compact support (g : Ω × R → Rn) defined by g(x, s) =
fξ(x, s,Duρ(x)), i.e., more precisely,

g(x, s) =
(

g(i)(x, s)
)n

i=1
= (fξi(x, s,Duρ(x)))

n
i=1 .

Let us first prove that g is Lipschitz continuous with respect to x ∈ Ω′. Recall that (x, s)
vary on a compact set of Ω×R (and out of this compact set f is equal to zero; in particular
f(x, s, ξ) = 0 when x ∈ Ω− Ω′); also recall that ξ = Duρ is bounded. For all x1, x2 ∈ Ω′

and s ∈ R, by using the assumptions (6) and (7), we have

|g(x1, s)− g(x2, s)| = |fξ(x1, s,Duρ(x1))− fξ(x2, s,Duρ(x2))|

≤ |fξ(x1, s,Duρ(x1))− fξ(x2, s,Duρ(x1))|
+ |fξ(x2, s,Duρ(x1))− fξ(x2, s,Duρ(x2))|

≤ L |x1 − x2|+ L1 |Duρ(x1)−Duρ(x2)| ≤ L2 |x1 − x2| ,

where L2 = max
{

L;L1 ‖Duρ‖W 1,∞(Ω′)

}

. As before, let us denote by ασ a mollifier with

parameter σ → 0+ (ασ ∈ C∞
c (Rn), with ασ ≥ 0 and

∫

Rn ασ(η) dη = 1); then we pose

gσ(x, s) =

∫

Rn

ασ(y) g(x− y, s) dy =

(∫

Rn

ασ(y) g
(i)(x− y, s) dy

)n

i=1

.
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Let us observe that, if σ is sufficiently small, then gσ ∈ C0
c (Ω

′×R), because g ∈ C0
c (Ω

′×R)
too. Moreover, for every x1, x2 ∈ Ω′ and for every s ∈ R, we obtain

|gσ(x1, s)− gσ(x2, s)| =
∣

∣

∣

∣

∫

Rn

ασ(y) [g(x1 − y, s)− g(x2 − y, s)] dy

∣

∣

∣

∣

≤
∫

Rn

ασ(y) |g(x1 − y, s)− g(x2 − y, s)| dy ≤ L2 |x1 − x2| .

Therefore we also have
∣

∣

∣

∣

∣

∂g
(i)
σ

∂xj

(x, s)

∣

∣

∣

∣

∣

≤ L2 , ∀ i, j = 1, 2, . . . n, ∀ (x, s) ∈ Ω′ × R. (14)

For every σ > 0 we denote by Gσ,h(x) =
(

G
(i)
σ,h(x)

)n

i=1
the sequence of vector-valued

functions defined by

Gσ,h(x) =

∫ uh(x)

u(x)

gσ(x, s) ds .

By the chain rule we can compute the trace of the n× n matrix DGh ; we have

traceDGσ,h(x) =
n

∑

i=1

∂G
(i)
σ,h

∂xi

= (gσ (x, uh(x)) , Duh(x)) (15)

− (gσ (x, u(x)) , Du(x)) +
n

∑

i=1

∫ uh(x)

u(x)

∂g
(i)
σ

∂xi

(x, s) ds .

Since also Gσ,h(x) vanishes outside Ω′, it results

∫

Ω′
DGσ,h(x) dx = 0 , ∀h ∈ N . (16)

From (15), (16) and (14) we deduce that

∣

∣

∣

∣

∫

Ω′
{(gσ (x, uh(x)) , Duh(x))− (gσ (x, u(x)) , Du(x))} dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−
∫

Ω′

{

n
∑

i=1

∫ uh(x)

u(x)

∂g
(i)
σ

∂xi

(x, s) ds

}

dx

∣

∣

∣

∣

∣

≤ nL2

∫

Ω′
|uh(x)− u(x)| dx .

We go first to the limit as σ → 0+ (and h fixed). We obtain the same inequality when in
the left hand side gσ is replaced by g. Thus we also have

∣

∣

∣

∣

∫

Ω′
{(fξ(x, uh, Duρ), Duh)− (fξ(x, u,Duρ), Du)} dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω′
{(g (x, uh(x)) , Duh(x))− (g (x, u(x)) , Du(x))} dx

∣

∣

∣

∣
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≤ nL2

∫

Ω′
|uh(x)− u(x)| dx ,

which goes to zero as h → +∞, since, by assumption, uh → u in L1
loc (Ω). Therefore (13)

holds and the proof of Lemma 2.1 is complete.

The following approximation result has been given by De Giorgi (see [6]).

Lemma 2.2. If f = f(x, s, ξ) satisfies (2) and vanishes outside a compact set of Ω× R,
there exists an increasing sequence of functions {fj(x, s, ξ)}j∈N that converges to f(x, s, ξ)
uniformly on the compact sets of Ω×R×Rn and such that, for all j ∈ N, fj satisfies (2)
and

|fj(x, s, ξ1)− fj(x, s, ξ2)| ≤ Lj |ξ1 − ξ2| , (17)

for some constant Lj and for every (x, s, ξ1), (x, s, ξ2) ∈ Ω× R× Rn.

Proof. We do not give all the details and we refer to the original proof by De Giorgi [6].
By using the support tangent hyperplanes to the graph of f(x, s, ξ), up to a regularization
procedure, De Giorgi shows that, for every j ∈ N, fj can be defined as the maximum
between the zero function and a finite number of (affine with respect to ξ ∈ Rn) functions
of the type

g(x, s, ξ) = a0(x, s) +
n

∑

i=1

ai(x, s)ξi .

For the use that we will make in the next section, we recall that the coefficients ai
(i = 0, 1, 2, . . . , n) are given by







ai(x, s) = −
∫

Rn f(x, s, η)Diα(η) dη , ∀ i = 1, 2, . . . , n,

a0(x, s) =
∫

Rn f(x, s, η) {(n+ 1)α(η) +
∑n

i=1 ηiDiα(η)} dη ,
(18)

for some mollifier α ∈ C∞
c (Rn), with α ≥ 0 and

∫

Rn α(η) dη = 1.

3. Proof of Theorem 1.6

In this section we will prove Theorem 1.6. With the same argument used at the beginning
of the proof of Lemma 2.1, without loss of generality, we can assume that f(x, s, ξ) vanishes
outside a compact set of Ω×R. Therefore we can also assume that Ω is a set with finite
measure (we will use this remark in the definition (20) of the integral Fj(u,Ω)).

Let {fj(x, s, ξ)}j∈N be the increasing sequence that pointwise converges to f(x, s, ξ), as in
Lemma 2.2. Let us denote by ϕρ a mollifier (ϕρ ∈ C∞

c (Rn), ϕρ ≥ 0, ϕρ(η) = 0 if |η| ≥ ρ,
∫

Rn ϕρ(η) dη = 1) and, for all j ∈ N, by fj,ρ = fj ∗ ϕρ the mollified function of fj , with
respect to the variable ξ ∈ Rn, with step ρ. That is, for every j ∈ N and ρ > 0, the
function fj,ρ : Ω× R× Rn → R is defined by

fj,ρ(x, s, ξ) =

∫

Rn

fj(x, s, ξ − η)ϕρ(η) dη .
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By the Lipschitz continuity (17) of fj with respect to ξ ∈ Rn, we have

|fj,ρ(x, s, ξ)− fj(x, s, ξ)| ≤
∫

Rn

|fj(x, s, ξ − η)− fj(x, s, ξ)|ϕρ(η) dη

≤
∫

suppϕρ

Lj |η|ϕρ(η) dη ≤ Ljρ .

Thus we can choose ρ = ρj =: 1/ (jLj) → 0 so that

fj(x, s, ξ)−
2

j
≤ fj,ρj(x, s, ξ)−

1

j
≤ fj(x, s, ξ) ≤ f(x, s, ξ) , (19)

for every (x, s, ξ) ∈ Ω× R× Rn. By the monotone convergence theorem we have

lim
j→+∞

∫

Ω

fj (x, u(x), Du(x)) dx =

∫

Ω

f (x, u(x), Du(x)) dx .

Thus, if we consider the sequence of integrals

Fj(u,Ω) =

∫

Ω

{

fj,ρj (x, u(x), Du(x))− 1

j

}

dx , (20)

by (19) we obtain that Fj(u,Ω) converges, as j → +∞, to the main integral F (u,Ω) =
∫

Ω
f (x, u(x), Du(x)) dx , and at the same time Fj(u,Ω) ≤ F (u,Ω) for every j ∈ N.

Therefore F (u,Ω), being the supremum of the family of functionals {Fj(u,Ω)}j∈N , will
be lower semicontinuous if every of such Fj(u,Ω) is lower semicontinuous.

Thus we must prove that, for every fixed j ∈ N, the integral functional Fj in (20) is lower
semicontinuous in W 1,1

loc (Ω) with respect to the strong convergence in L1
loc. To this aim

we apply Lemma 2.1. Of course fj,ρj(x, s, ξ) satisfies (2) and (17); thus it satisfies also
the bound for the derivative in (7). It remains to verify that fj,ρj(x, s, ξ) also satisfies the
second assumption in (7) and (6). We first compute the n partial derivatives of fj,ρj with
respect to the gradient variable ξ, i.e., we compute the vector field ∂fj,ρj/∂ξ :

∂fj,ρj
∂ξ

(x, s, ξ) =

∫

Rn

fj(x, s, ξ − η)
∂ϕρj

∂ξ
(η) dη .

Then from (17) we deduce that
∣

∣

∣

∣

∂fj,ρj
∂ξ

(x, s, ξ1)−
∂fj,ρj
∂ξ

(x, s, ξ2)

∣

∣

∣

∣

≤ MjLj |ξ1 − ξ2| ,

for every (x, s, ξ1), (x, s, ξ2) ∈ Ω× R× Rn, where

Mj =

∫

Rn

∣

∣

∣

∣

∂ϕρj

∂ξ
(η)

∣

∣

∣

∣

dη . (21)

Therefore the second assumption in (7) is satisfied. To prove (6), we recall that fj(x, s, ξ)
is the maximum between the zero function and a finite number of affine functions, with
respect to ξ ∈ Rn, of the type

g(x, s, ξ) = a0(x, s) +
n

∑

i=1

ai(x, s)ξi , (22)
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where the coefficients ai(x, s) (i = 0, 1, 2, . . . , n) are given in (18). From assumption (5),
of local Lipschitz continuity of f with respect to x, for every compact set K ⊂ Ω×R× Rn

and for every (x1, s, ξ) , (x2, s, ξ) ∈ K we have

|f(x1, s, ξ)− f(x2, s, ξ)| ≤ L |x1 − x2| ,

for some constant L = L(K). Then the coefficients ai (i = 0, 1, 2, . . . , n) in (18) are locally
Lipschitz continuous with respect to x too; in fact, for example, for every i = 1, 2, . . . , n,

|ai(x1, s)− ai(x2, s)| =
∣

∣

∣

∣

∫

Rn

{f(x1, s, η)− f(x2, s, η)}Diα(η) dη

∣

∣

∣

∣

≤ miL (K) |x1 − x2| ,

for every (x1, s), (x2, s) which vary on a compact set K0 of Ω× R (in fact the two points
(x1, s, η), (x2, s, η) vary in the compact set K = K0 × suppα) and mi is given by

mi =

∫

Rn

∣

∣

∣

∣

∂α

∂ξi
(η)

∣

∣

∣

∣

dη .

Therefore the affine functions g(x, s, ξ) in (22), since ξ vary on a bounded set, are local
Lipschitz continuous with respect to x, for (x, s, ξ) ∈ K. Finally fj(x, s, ξ), being the
maximum between the zero function and a finite number of affine functions of the type
of g(x, s, ξ) in (22), is local Lipschitz continuous with respect to x, i.e., for every compact
set K ⊂ Ω× R× Rn, there exists a constant L′

j = L′
j(K) such that

|fj(x1, s, ξ)− fj(x2, s, ξ)| ≤ L′
j(K) |x1 − x2| ,

for every (x1, s, ξ) , (x2, s, ξ) ∈ K. For the same values of (xi, s, ξ), i = 1, 2, we deduce
that

∣

∣

∣

∣

∂fj,ρj
∂ξ

(x1, s, ξ)−
∂fj,ρj
∂ξ

(x2, s, ξ)

∣

∣

∣

∣

≤
∫

Rn

|fj(x1, s, ξ − η)− fj(x2, s, ξ − η)| ·
∣

∣Dϕρj(η)
∣

∣ dη

≤ MjL
′
j(K

′) |x1 − x2| ,

where Mj is the constant in (21) and K ′ is a suitable compact subset of Ω × R× Rn

containing K. Therefore also the assumption (6) is satisfied and the proof of Theorem
1.6 is complete.

4. Aronszajn-Dal Maso’s example revisited

In this section, and in the next one, we collect some examples, partially known, partially
new or revisited, modified and adapted to a more general context, with the aim to intro-
duce some parameters which will allow us to test more carefully the assumptions. More
precisely, we will show that the assumption of continuity alone of f(x, s, ξ) with respect
to x ∈ Ω (together with (2)) is not sufficient for the lower semicontinuity of the inte-
gral functional F (u,Ω) with respect to the strong convergence in L1

loc(Ω) (see Example
4.1). Then, with a more precise analysis of some parameters and with the study of the
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n-dimensional context, we compare in Example 4.2 assumptions of Lipschitz continuity
of f with respect to x with the weaker assumption of Hölder continuity.

The first example that we propose in this section has been inspired by an old example by
Aronszajn in 1941 (see Pauc [15], starting from page 54), more recently exploited by Dal
Maso (see Section 4 in [3]). In the new version proposed here we consider, in particular,
a simplified sequence uh ; as already said, this simplification will allow us to compare
Lipschitz continuity versus Hölder continuity of f with respect to x. Notice also that the
original example by Aronszajn is related to a multiple integral, i.e., with n = 2, although
Aronszajn’s integrand f(x, ξ) does not explicitly depends on s. A one-dimensional version
of Aronszajn’s example was known to Dal Maso, who gave us some handwritten notes on
the subject.

In this and in the following section we propose several examples; for completeness we also
mention the case considered by Acerbi, Buttazzo and Fusco [1], with the main difference
that their example is posed in the vector-valued setting of polyconvex integrands, but
similar to the next two examples, at least for two aspects: the fact that the integrand
f(x, s, ξ) = |a(x, s) ξ − 1| has not minimum at ξ = 0 and the L∞ convergence of the
sequence uh. Other similarities seem to exist, and we hope to come back to the vectorial
setting in the future.

Example 4.1. Let Ω be the open interval (0, 2π). Let uh be the sequence (converging to
u ≡ 0 in L∞(Ω), but not in the weak topology of W 1,1(Ω)) defined by

uh(x) =
1

2h

(

1− 1

4
cos

(

4hx
)

)

.

Then there exists a function a(x, s), bounded and uniformly continuous for (x, s) ∈ Ω×R,
such that, if we define

f(x, s, ξ) = |a(x, s) ξ − 1| , x ∈ Ω ⊂ R, s ∈ R, ξ ∈ R,

then

lim
h→+∞

F (uh,Ω) = lim
h→+∞

∫

Ω

f (x, uh, u
′
h) dx = 0 ,

while of course

F (u,Ω) =

∫

Ω

f (x, 0, 0) dx = 2π .

Thus in this case the integral F is not lower semicontinuous with respect to the strong
convergence in L∞(Ω), although f(x, s, ξ) is a continuous nonnegative function, convex
with respect to ξ, i.e., f satisfies (2).

Proof. Let us observe that, for every h ∈ N,

min {uh(x) : x ∈ [0, 2π]} =
1

2h

(

1− 1

4

)

>
1

2h+1

(

1 +
1

4

)

= max {uh+1(x) : x ∈ [0, 2π]} ;
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thus the graph Gh = {(x, s) ∈ Ω× R : s = uh(x)} of uh is disjoint from the graph of uh+1 ,
more precisely, they have positive distance each other. We will first define the function
a(x, s) on a subset of the union

⋃

h∈N Gh .

With the aim to define this subset, we notice that, for periodicity reasons, for every posi-
tive λ the measure of the set {x ∈ [0, 2π] : |sin(mx)| < λ} does not depend on the integer
m. Moreover, since for x > 0 sufficiently small sinx > x/2, then for the same x values (i.e.,
for λ > 0 sufficiently small) the following inclusion holds {x : sinx < λ} ⊂ {x : x/2 < λ}.
This implies that the measure of the set {x > 0 close to zero such that sinx < λ} is less
than 2λ. Taking into account the three zeroes x = 0, π, 2π of the sinus function in the
interval [0, 2π], finally we have

meas {x ∈ [0, 2π] : |sin(mx)| < λ} < 8λ, ∀ m ∈ N. (23)

Let us denote by Eh the open subset of [0, 2π] given by

Eh =
{

x ∈ [0, 2π] :
∣

∣sin
(

4hx
)∣

∣ < h2−h
}

.

By (23) we have meas (Eh) < h2−h+3. For every h ∈ N we compute the derivative
u′
h(x) = 2h−2 sin

(

4hx
)

. We define the function a(x, s) on the following subset of the
union {Gh}h∈N : if x ∈ [0, 2π]− Eh and s = uh(x), then

a(x, s) =
1

u′
h(x)

=
1

2h−2 sin (4hx)
.

Since h by h the graphsGh are disjoint sets of Ω×R, then the above definition is consistent.
Here we use the relevant fact that the derivative u′

h of uh, as h → +∞, diverges (in absolute
value) for x ∈ [0, 2π]−Eh (otherwise we should expect lower semicontinuity of the integral
F ); in fact 2h−2

∣

∣sin
(

4hx
)∣

∣ ≥ h/4 for every x ∈ [0, 2π]−Eh. Therefore 1/u
′
h(x) converges

to zero as h → +∞ and we can also define by continuity

a(x, s) = 0, if x ∈ [0, 2π] and s = 0.

At this stage the function a(x, s) has been defined as a continuous function on a compact
subset of Ω×R. Then it can be extended to the full Ω×R remaining uniformly continuous
(and bounded) on Ω× R.

By definition, for every h ∈ N and for x ∈ [0, 2π]− Eh , we have

f (x, uh(x), u
′
h(x)) = |a(x, uh(x))u

′
h(x)− 1| = 0 .

Thus, since |u′
h(x)| = 2h−2

∣

∣sin
(

4hx
)∣

∣ ≤ 2h−2h2−h = h/4 for x ∈ Eh, and meas (Eh) <

h2−h+3, if we denote by M > 0 a bound for a(x, s) in Ω× R, we obtain
∫

Ω

f (x, uh, u
′
h) dx =

∫

Eh

f (x, uh, u
′
h) dx

=

∫

Eh

|a(x, uh(x))u
′
h(x)− 1| dx

≤
∫

Eh

{M |u′
h(x)|+ 1} dx ≤

(

Mh

4
+ 1

)

h2−h+3,

which converges to zero as h → +∞.
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Let us go back to the main Theorem 1.6, in particular to the assumption that f(x, s, ξ) is
Lipschitz continuous with respect to x, locally respect to (x, s, ξ), i.e., for every compact
set K ⊂ Ω× R× Rn, there exists a constant L = L(K) such that

|f(x1, s, ξ)− f(x2, s, ξ)| ≤ L |x1 − x2| ,

for every (x1, s, ξ) , (x2, s, ξ) ∈ K. We may ask if we can assume a less restrictive local
continuity assumption of f with respect to x. For example, we may ask if Theorem 1.6
holds under the only assumption that f(x, s, ξ) satisfies (2) and is Hölder continuous with
respect to x, locally respect to (x, s, ξ), i.e., there exists a real number α ∈ (0, 1) with the
property that, for every compact set K ⊂ Ω×R× Rn, there exists a constant L = L(K)
such that

|f(x1, s, ξ)− f(x2, s, ξ)| ≤ L |x1 − x2|α , (24)

for every (x1, s, ξ) , (x2, s, ξ) ∈ K.

By the next example we give an answer to this question; in fact we will prove that,
for every exponent α ∈ (0, 1), it is possible to find a nonnegative continuous integrand
f = fα(x, s, ξ) (depending on α too), convex with respect to ξ ∈ Rn, satisfying the Hölder
continuity property (24), but whose corresponding integral is not lower semicontinuous,
even in C∞(Ω), with respect to the strong L∞(Ω) convergence.

We emphasize that, in the next example, we do not consider an arbitrary independent
dimension n ≥ 1, but we impose the constraint

n >
4α

1− α
(25)

on the dimension, or equivalently the constraint

α <
n

n+ 4
(26)

on the Hölder exponent α. The less restrictive constraint α < 1/3 is assumed when n = 1.
Thus it remains open the interesting question to know if, for every n ∈ N, there exists a
critical exponent α(n) such that the integral (1) is lower semicontinuous with respect to
the strong convergence in L1

loc under the usual condition (2) and the Hölder continuity
property (24) for some exponent α such that α(n) ≤ α < 1. In particular we may ask if,
for example, the integral (1) is lower semicontinuous in the one-dimensional case n = 1,
when the integrand f is Hölder continuous with exponent α ≥ 1/3.

Example 4.2. We use notations similar to the previous Example 4.1, with some pa-
rameters. Thus let Ω be the open hyper-rectangle (0, 2π)n ⊂ Rn. For h ∈ N let
uh(x) = uh(x1, x2, . . . , xn) be defined by

uh(x) =
n

∑

i=1

1

ah

(

1− 1

4
cos (bhxi)

)

, (27)

with {ah}, {bh} sequences of positive real numbers diverging to +∞ as h → +∞. Thus
uh converges to u ≡ 0 in L∞(Ω). Then, for every α ∈ (0, 1), if

n >
4α

1− α
, (28)
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there exist {ah}, {bh} and a vector-valued function aα : Ω× R ⊂ Rn × R → Rn with the
properties:

(i) aα(x, s) is bounded and uniformly continuous for (x, s) ∈ Ω× R;
(ii) for every s ∈ R, aα(x, s) is Hölder continuous (of exponent α) with respect to

x ∈ Ω; more precisely, there exists a constant L such that

|aα(x1, s)− aα(x2, s)| ≤ L |x1 − x2|α , ∀x1, x2 ∈ Ω ⊂ Rn, ∀ s ∈ R;

(iii) if we denote by (·, ·) the scalar product in Rn and we define

fα(x, s, ξ) = |(aα(x, s), ξ)− 1| , x ∈ Ω, s ∈ R, ξ ∈ Rn,

then fα(x, s, ξ) satisfies (2), the Hölder continuity property (24) and

lim inf
h→+∞

∫

Ω

fα (x, uh, Duh) dx = 0 ;

∫

Ω

fα (x, 0, 0) dx = (2π)n . (29)

The same construction for the one-dimensional case n = 1 has all the stated properties,
under the less restrictive assumption (instead of (28)) that α < 1/3.

Proof.
Step 1 (definition of aα): passing to a subsequence if necessary (this is the reason to
have in (29) the limit inferior, instead of the limit, that, however, can be easily reduced
to became a limit), we can assume that the graphs of the functions uh are disjoint; more
precisely that

min {uh(x) : x ∈ [0, 2π]n} =
3n

4ah
>

5n

4ah+1
= max {uh+1(x) : x ∈ [0, 2π]n}

for every h ∈ N. With similar notations as in the previous example we define

Ei
h = {xi ∈ [0, 2π] : |sin (bhxi)| < λh} , i = 1, 2, . . . , n,

Eh =

{

x = (x1, x2, . . . , xn) ∈ [0, 2π]n :
n

∑

i=1

sin2 (bhxi) < λ2
h

}

,

where {λh} is a sequence of positive real numbers converging to 0 as h → +∞. We have

meas
(

Ei
h

)

< 8λh , ∀h ∈ N, ∀ i = 1, 2, . . . , n, (30)

and, since Eh ⊂ E1
h × E2

h × . . .× En
h ,

meas (Eh) < 8n (λh)
n , ∀h ∈ N. (31)

The partial derivatives of uh(x) are equal to

∂uh

∂xi

=
bh
4ah

sin (bhxi) , i = 1, 2, . . . , n,

and, for x ∈ [0, 2π]n − Eh, we have

|Duh(x)| =
bh
4ah

{

n
∑

i=1

sin2 (bhxi)

}1/2

≥ bh
4ah

λh . (32)
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Similarly to the previous example, we define the vector-valued function aα(x, s) on a part
of the graphs of the functions uh . Precisely, for every h ∈ N and for x ∈ [0, 2π]n − Eh

and s = uh(x), we define

aα(x, s) =
Duh

|Duh|2
, (33)

i.e., with the notation aα(x, s) = (aiα(x, s))
n
i=1 , we define

aiα(x, s) =
∂uh

∂xi

· 1

|Duh|2
=

4ah sin (bhxi)

bh
∑n

j=1 sin
2 (bhxj)

.

We have

|aα(x, s)| =
4ah

bh

{

∑n
j=1 sin

2 (bhxj)
}1/2

. (34)

We also define aα(x, 0) by continuity

aα(x, s) = 0, if x ∈ [0, 2π]n and s = 0;

to this aim, since uh(x) → 0 as h → +∞, we impose the condition

max {|aα(x, s)| : x ∈ [0, 2π]n − Eh , s = uh(x)} =
4ah
bhλh

→ 0 , as h → +∞. (35)

At this stage the vector-valued function aα(x, s) has been defined as a continuous function
on a closed subset of Ω× R. In Step 2 we will extend it to the full Ω× R.

Step 2 (extension of aα to Ω × R): fixed h ∈ N, the vector-valued function aα(x, s)
has been defined in Step 1 at the points (x, s) ∈ Ω × R related by the conditions x ∈
[0, 2π]n−Eh and s = uh(x) (the function aα(x, s) has been also defined for s = 0 with the
zero value). In fact, for every fixed h ∈ N, aα(x, s) has been defined at the points (x, s)
of the set Rh ⊂ Ω× R (a subset of the graph of uh) given by

Rh = {(x, s) : x ∈ [0, 2π]n − Eh, s = uh(x)} .

Recalling the analytic expression of uh in (27), the set Rh is contained in the hyper-
rectangle

{

(x, s) : x ∈ [0, 2π]n ,
3

4
· n

ah
< s <

5

4
· n

ah

}

.

We will extend aα(x, s) to the larger hyper-rectangle R′
h ⊂ Ω× R, given by

R′
h =

{

(x, s) : x ∈ [0, 2π]n ,
1

2
· n

ah
≤ s ≤ 3

2
· n

ah

}

.

First we define aα(x, s) = 0 when s = n
2ah

and s = 3n
2ah

, so that aα will be continuously
defined passing from an hyper-rectangle to an other; in fact we extend aα also equal to
zero out of the union ∪hR

′
h. Note that, passing possibly to a subsequence, we can assume

that R′
h ∩R′

k = ∅ if h 6= k.
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In order to estimate the oscillation |aα(x1, s1)− aα(x2, s2)| when (x1, s1), (x2, s2) vary in
R′

h, we first consider (x1, s1), (x2, s2) ∈ Rh and we prove the following Lipschitz estimate
(with constant depending on h)

|aα(x1, s1)− aα(x2, s2)| ≤
16n · ah

λ4
h

· |x1 − x2| . (36)

In fact, under the conditions x1, x2 ∈ [0, 2π]n−Eh, s1 = uh(x1), s2 = uh(x2) and with the
notations aα(x, s) = (aiα(x, s))

n
i=1 , x1 = (xi

1)
n
i=1, x2 = (xi

2)
n
i=1 , for every i = 1, 2, . . . , n we

have
∣

∣aiα(x1, s1)− aiα(x2, s2)
∣

∣ =
4ah
bh

∣

∣

∣

∣

∣

sin (bhx
i
1)

∑n
j=1 sin

2
(

bhx
j
1

) − sin (bhx
i
2)

∑n
j=1 sin

2
(

bhx
j
2

)

∣

∣

∣

∣

∣

≤ 4ah

bh ·
∑n

j=1 sin
2
(

bhx
j
1

)

∣

∣sin
(

bhx
i
1

)

− sin
(

bhx
i
2

)∣

∣

+
4ah · |sin (bhxi

2)|
bh

∑n
j=1 sin

2
(

bhx
j
1

)

·
∑n

j=1 sin
2
(

bhx
j
2

)

∣

∣

∣

∣

∣

n
∑

j=1

{

sin2
(

bhx
j
1

)

− sin2
(

bhx
j
2

)}

∣

∣

∣

∣

∣

.

Since x1, x2 /∈ Eh , we also have
∑n

j=1 sin
2(bhx

j
1) ≥ λ2

h and
∑n

j=1 sin
2(bhx

j
2) ≥ λ2

h; therefore,
by the Lipschitz continuity of the sinus function, we obtain

∣

∣aiα(x1, s1)− aiα(x2, s2)
∣

∣ ≤ 4ah
bhλ2

h

· bh
∣

∣xi
1 − xi

2

∣

∣+
4ah
bhλ4

h

· 2bh
n

∑

j=1

∣

∣xj
1 − xj

2

∣

∣ .

Since this estimate holds for every i = 1, 2, . . . , n, for the modulus of the vector field
aα(x1, s)− aα(x2, s) we obtain

|aα(x1, s1)− aα(x2, s2)| ≤
4ah
λ2
h

(

1 +
2n

λ2
h

)

|x1 − x2| .

The sequence λh converges to zero as h → +∞; therefore, as h is sufficiently large, we
get the proof of (36). Of course (36) also gives

|aα(x1, s1)− aα(x2, s2)| ≤
16n · ah

λ4
h

· (|x1 − x2|+ |s1 − s2|) , (37)

for every h ∈ N and for every (x1, s1), (x2, s2) ∈ Rh with s1 = uh(x1), s2 = uh(x2).

Recalling (34), we have the bound

max {|aα(x, s)| : (x, s) ∈ Rh} =
4ah
bhλh

;

therefore, if (x1, s1) ∈ Rh and (x2, s2) ∈ R′
h with either s = n

2ah
or s = 3n

2ah
, we deduce

that

|aα(x1, s1)− aα(x2, s2)| = |aα(x1, s1)| ≤
4ah
bhλh
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and, since |s1 − s2| ≥ 1
4
· n

ah
,

|aα(x1, s1)− aα(x2, s2)| ≤
16 a2h
nbhλh

· |s1 − s2| ≤
16 a2h
nbhλh

· (|x1 − x2|+ |s1 − s2|) .

By (35) we have ah
bhλh

→ 0 as h → +∞; therefore ah
bh
λ3
h → 0 too, which implies

a2h
nbhλh

≤ n · ah
λ4
h

for every h sufficiently large. This proves that the Lipschitz estimate (37) (with constant
depending on h) holds at every (x1, s1), (x2, s2) ∈ R′

h where aα(x, s) has been already
defined.

By using Kirszbraun theorem (see Theorem 2.10.43 in Federer [9]) for the vector-valued
function aα, or in a simpler way by applying Mac Shane lemma to each component
of aα(x, s) = (aiα(x, s))

n
i=1 , we can extend it to the hyper-rectangle R′

h with the same
Lipschitz constant as in (37), or, in case of extension of every component separately, with
the same Lipschitz constant times

√
n. That is we have

|aα(x1, s1)− aα(x2, s2)| ≤
16n

√
n ah

λ4
h

· (|x1 − x2|+ |s1 − s2|) , (38)

for every h ∈ N and for every (x1, s1), (x2, s2) ∈ R′
h. Moreover, by truncating each

component aiα, we can assume that the following bound holds

max {|aα(x, s)| : (x, s) ∈ R′
h} =

4
√
n ah

bhλh

, (39)

for every h ∈ N and for every (x, s) ∈ R′
h .

Step 3 (Hölder continuity of aα): now the parameter α enters. To test Hölder
continuity of aα(x, s) with respect to x we fix h ∈ N and n

2ah
≤ s ≤ 3n

2ah
and we estimate

sup

{

|aα(x1, s)− aα(x2, s)|
|x1 − x2|α

: (x1, s), (x2, s) ∈ R′
h

}

. (40)

Let t > 0 be a new real parameter that we will choose later. We estimate the supremum
in (40) separately for |x1 − x2| ≥ t and for |x1 − x2| ≤ t.

Under the further condition |x1 − x2| ≥ t, the supremum in (40) can be estimate by
computing separately the maximum value of the numerator and the minimum value of
the denominator. By (39) we have

max {|aα(x1, s)− aα(x2, s)| : (x1, s), (x2, s) ∈ R′
h}

≤ 2max {|aα(x, s)| : (x, s) ∈ R′
h} =

8
√
n ah

bhλh

.

For the same s-values, since |x1 − x2| ≥ t, we obtain

sup

{

|aα(x1, s)− aα(x2, s)|
|x1 − x2|α

: (x1, s), (x2, s) ∈ R′
h |x1 − x2| ≥ t

}

≤ 8
√
n ah

bhλh tα
. (41)
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While, if |x1 − x2| ≤ t, we use the Lipschitz estimate (38) (with constant depending on
h) with s1 = s2 ≡ s

|aα(x1, s)− aα(x2, s)| ≤
16n

√
n ah

λ4
h

· |x1 − x2|

and we obtain

sup

{

|aα(x1, s)− aα(x2, s)|
|x1 − x2|α

: (x1, s), (x2, s) ∈ R′
h |x1 − x2| ≤ t

}

≤ 16n
√
n ah

λ4
h

· t1−α . (42)

From (41) and (42) we deduce that

sup

{

|aα(x1, s)− aα(x2, s)|
|x1 − x2|α

: (x1, s), (x2, s) ∈ R′
h

}

≤ 16n
√
n ah

λh

·max

{

1

bh tα
;
t1−α

λ3
h

}

. (43)

The above inequality is valid for every t > 0. We consider the minimum of the right hand

side with respect to t > 0, which is assumed when 1
bh tα

= t1−α

λ3
h

, i.e., when t =
λ3
h

bh
.We

obtain that the Hölder quotient in the left hand side of (43) is less than or equal to

16n
√
n ah

λhbh tα
=

16n
√
n ah

(bh)
1−α (λh)

1+3α . (44)

Previously we estimated the Hölder continuity with respect to x of aα(x, s) in R′
h, for

every fixed h ∈ N. Thus, to obtain the Hölder continuity of aα(x, s) with respect to x,
with (x, s) ∈ Ω × R, we impose the further condition that the sequence in (44) remains
bounded, i.e., that there exists L > 0 such that

ah

(bh)
1−α (λh)

1+3α ≤ L , ∀h ∈ N. (45)

Step 4 (lower semicontinuity test): let us prove that

lim
h→+∞

∫

Ω

f (x, uh, Duh) dx = 0 . (46)

By the definition fα(x, s, ξ) = |(aα(x, s), ξ)− 1| and by (33), for every h ∈ N we obtain

f (x, uh, Duh) = |(aα(x, uh), Duh)− 1| = 0 , ∀ x ∈ [0, 2π]n − Eh .

Thus, since |Duh| < bhλh

4ah
for x ∈ Eh (see (32)) and meas (Eh) < 8n (λh)

n (see (31)), we

obtain (46); in fact, if we denote by M > 0 a bound for aα(x, s) in Ω× R, we have

∫

Ω

f (x, uh, Duh) dx =

∫

Eh

f (x, uh, Duh) dx
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≤
∫

Eh

{M |Duh|+ 1} dx ≤
{

M

4

bhλh

ah
+ 1

}

8n (λh)
n , (47)

which converges to zero as h → +∞, if we assume that bh
ah

(λh)
n+1 → 0 as h → +∞.

Step 5 (compatibility conditions; i.e., necessary conditions): looking above, we
required the following limit relations (see in particular (35), (45) and (47))











ah → +∞ , bh → +∞ , λh → 0 ,
ah

bhλh
→ 0 , bh

ah
(λh)

n+1 → 0 ,
ah

(bh)
1−α(λh)

1+3α ≤ L , ∀h ∈ N ,

which, since
ah

(bh)
1−α (λh)

1+3α =
ah
bhλh

· (bh)α · (λh)
−3α ,

can be reduced to










ah → +∞ , bh → +∞ , λh → 0 ,
bh
ah

(λh)
n+1 → 0 ,

ah
(bh)

1−α(λh)
1+3α ≤ L , ∀h ∈ N .

(48)

Then, from the identity

ah

(bh)
1−α (λh)

1+3α =

{

bh
ah

(λh)
n+1

}α−1

· (ah)α (λh)
n(1−α)−4α ,

we find out the following compatibility condition











{

bh
ah

(λh)
n+1

}α−1

→ +∞
(ah)

α → +∞
ah

(bh)
1−α(λh)

1+3α ≤ L

=⇒ (λh)
n(1−α)−4α → 0 ,

and, since λh → 0, we must have that n(1−α)−4α > 0, i.e., (28) is a necessary condition
to let this construction work.

Step 6 (sufficient conditions): it remains to exhibit sequences of real parameters which
satisfy the limit relations (48). Fixed α ∈ (0, 1) we consider n > 4α

1−α
so that α < n

n+4
.

Then there exists β ∈ N (β > 1) large enough so that

α <
n(β − 1)

(n+ 4)β − 3
. (49)

By a simple computation we can see that inequality (49) is equivalent to

β − 1

n+ 1
<

β (1− α)− 1

1 + 3α
. (50)

We are ready to choose
ah = 2h, bh = 2βh, λh = 2−γh,
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with β−1
n+1

< γ ≤ β(1−α)−1
1+3α

, a possibility that we can take since (50) holds. Then we can
verify that all the conditions in (48) are satisfied. In fact ah, bh → +∞, λh → 0, and

bh
ah

(λh)
n+1 = 2h[β−1−γ(n+1)] → 0 ,

since γ > β−1
n+1

. Finally

ah

(bh)
1−α (λh)

1+3α = 2h[1−β(1−α)+γ(1+3α)] ≤ 1, ∀h ∈ N ,

since γ ≤ β(1−α)−1
1+3α

.

Step 7 (the case n = 1): in the one-dimensional case we can go faster. In fact to obtain
Hölder continuity of aα(x, s) with respect to x we can estimate the Hölder quotient and
we can compute separately the maximum value of the numerator and the minimum value
of the denominator, as follows:

max {|aα(x1, s)− aα(x2, s)| : x1, x2 ∈ [0, 2π]− Eh , s = uh(x1) = uh(x2)}

≤ 2max {|aα(x, s)| : x ∈ [0, 2π]− Eh , s = uh(x)} =
8ah
bhλh

.

The minimum value of |x1 − x2| is equal to the measure of E1
h divided by the number of

connected components of E1
h, i.e., |x1 − x2| = meas (E1

h) /(2bh) . By (30) we obtain

min {|x1 − x2| : x1, x2 ∈ [0, 2π]− Eh , s = uh(x1) = uh(x2)}

=
meas (E1

h)

2bh
<

4λh

bh
.

Therefore, when n = 1, we have

sup

{

|aα(x1, s)− aα(x2, s)|
|x1 − x2|α

: x1, x2 ∈ [0, 2π]− Eh , s = uh(x1) = uh(x2)

}

≤ 8ah
bhλh

·
(

4λh

bh

)−α

=
23−2αah

(bh)
1−α (λh)

1+α .

In order to obtain the Hölder continuity of aα(x, s) with respect to x, we impose the
further condition that there exists L > 0 such that

ah

(bh)
1−α (λh)

1+α ≤ L , ∀h ∈ N.

Following this estimate, with similar computations as in the step 2 above, we can extend
the function aα(x, s) to Ω × R (or, in a simpler way, we could extend it linearly). As in
Step 5, we obtain the compatibility conditions











ah → +∞ , bh → +∞ , λh → 0 ,
ah

bhλh
→ 0 , bh

ah
(λh)

2 → 0 ,
ah

(bh)
1−α(λh)

1+α ≤ L , ∀h ∈ N ,

(note the exponent in (λh)
1+α instead of (λh)

1+3α), which gives, as in Steps 5 and 6, the
constraint α < 1

3
for n = 1.
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5. Some other examples

In this section first we show in Example 5.1 that the local Lipschitz continuity of f(x, s, ξ)
with respect to x ∈ Ω, although sufficient for the lower semicontinuity of F (u,Ω) in L1

loc in
the scalar case, as proved by our Theorem 1.6, it is not sufficient in the vector-valued case,
i.e., for applications u : Ω ⊂ Rn → Rm, when m > 1. With Example 5.2 we show that also
Lemma 2.1 cannot be extended to the vectorial setting. By Example 5.5 we emphasize
the role of lower semicontinuity of f with respect to x ∈ Ω in the case of linear growth of
f(x, s, ξ) as |ξ| → +∞, while in Example 5.3 we show that, however, neither continuity,
nor even lower semicontinuity, of f(x, s, ξ) with respect to x ∈ Ω are necessary in the case
of superlinear growth, also if the usual coercivity condition f(x, s, ξ) ≥ const |ξ|p, for some
p > 1, is not satisfied. We will start from this example to formulate (see Proposition 5.6)
at the end of this section a sufficient condition for lower semicontinuity of F (u,Ω) in L1

loc .

We can give all the examples below in the one dimensional case n = 1.

Eisen [8] showed with an example that Theorem 1.1(c) is false in the vectorial case. The
same example shows that also Theorem 1.6 and Corollary 1.7 do not hold in the vectorial
case. We recall this example, related to an integrand f independent of the variable x.

Example 5.1. Let Ω be the open interval (0, 1). Let us consider the function f :
Ω × R2×R2→ R defined by f(x, s1, s2, ξ1, ξ2) = (s1ξ2)

2; thus, and for all u = (u1, u2) ∈
W 1,1 (Ω,R2), the functional F is given by

F (u,Ω) =

∫

Ω

(u1 · u′
2)

2
dx .

Then there exists a sequence uh = (u1,h, u2,h) : Ω → R2 which converges to a function
u ∈ W 1,1 (Ω,R2) in the strong topology of L1 (Ω,R2), such that

F (uh,Ω) = 0, ∀h ∈ N; F (u,Ω) = 1.

Proof. Let uh : Ω → R2 be the sequence defined by

u1,h(x) =















0 if x ∈
(

m
h
, m
h
+ 2−h

]

2h+2
(

x− m
h
− 2−h

)

if x ∈
(

m
h
+ 2−h, m

h
+ 2−h + 2−h−2

]

1 if x ∈
(

m
h
+ 2−h + 2−h−2, m+1

h
− 2−h−2

]

1− 2h+2
(

x− m+1
h

+ 2−h−2
)

if x ∈
(

m+1
h

− 2−h−2, m+1
h

]

,

u2,h(x) =

{

m
h
+ 2h

h

(

x− m
h

)

if x ∈
(

m
h
, m
h
+ 2−h

]

m+1
h

if x ∈
(

m
h
+ 2−h, m+1

h

] ,

where m = 0, . . . , (h− 1). Then uh is Lipschitz continuous in (0, 1) for all h ∈ N. With a
simple calculation we get

u′
2,h(x) =

{

2h

h
if x ∈

(

m
h
, m
h
+ 2−h

)

0 if x ∈
(

m
h
+ 2−h, m+1

h

) ,

thus u1,h(x) ·u′
2,h(x) = 0 for almost every x ∈ (0, 1). If we denote by u1(x) = 1, u2(x) = x,

we have uh → u = (1, x) in L1 ((0, 1),R2); in fact

∫ 1

0

|u1,h(x)− 1| dx =
h− 1

2h−2
→ 0 , sup

x∈(0,1)
{|x− u2,h(x)|} ≤ 1

h
− 1

2h
→ 0 .
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Finally the lower semicontinuity of F does not hold, since F (uh,Ω) = 0 for every h ∈ N,
while F (u,Ω) = 1.

With a similar computation as in the previous example, following Eisen [8], we can show
that also Lemma 2.1 cannot be extended to the vector-valued setting.

Example 5.2. Let Ω be the open interval (0, 1). Let us consider the function f : Ω ×
R2×R2→ R defined by

f(x, s1, s2, ξ1, ξ2) = a(x) · b
(
√

s21 + s22

)

s21 · c(ξ2) ,

where a(x) is a Lipschitz continuous function with compact support in (0, 1), not identi-
cally equal to zero and such that 0 ≤ a(x) ≤ 1; b : R → [0, 1] is a Lipschitz continuous
function with compact support and such that b(t) = 1 for every t ∈ [1, 2]; finally c : R → R
is defined by

c(t) =

{

1
2
t2 if |t| ≤ 1

|t| − 1
2

if |t| > 1
.

Then, the function f satisfies the assumption of Lemma 2.1 while, on the same sequence
uh : Ω → R2 of the previous example, the integral

∫

Ω
f(x, u1, u2, u

′
1, u

′
2) dx is not lower

semicontinuous.

If there exists p > 1 such that f(x, s, ξ) ≥ const |ξ|p, for some positive constant (i.e.,
a coercivity condition holds for f), then it is clear that the lower semicontinuity inW 1,p

loc (Ω)
of the integral functional F (u,Ω) =

∫

Ω
f (x, u,Du) dx with respect to the strong con-

vergence in L1
loc(Ω) is equivalent to the weak-W 1,p

loc (Ω) lower semicontinuity of F (u,Ω).
Therefore, in this case the lower semicontinuity in L1

loc(Ω) holds under the only assump-
tion that f(x, s, ξ) is a Carathéodory function, i.e., f is measurable with respect to x ∈ Ω
and continuous in (s, ξ) ∈ R×Rn, and of course f is also convex with respect to ξ ∈ Rn.
By the next examples 5.3 and 5.4, following [14], we will show that neither continuity nor
even lower semicontinuity of f(x, s, ξ) with respect to x ∈ Ω are necessary in the case of
superlinear growth p > 1; this fact may happen also if the usual coercivity condition is
not satisfied.

Example 5.3. Let Ω be the open interval (0, 1). Let f(x, ξ) = a(x) |ξ|p for some p > 1,
where a(x) is a bounded measurable function in (0, 1), with a(x) ≥ 0 for almost every
x ∈ (0, 1). Then the maximum lower semicontinuous (in the strong norm topology of
L1
loc(Ω)) functional F p (u,Ω), less than or equal to F (u,Ω) =

∫

Ω
a(x) |u′|p dx, is given by

F p (u,Ω) =

∫

Ω

bp(x) |u′|p dx , (51)

for every u ∈ W 1,p
loc (Ω), where bp is the bounded measurable function defined in (0, 1) by

bp(x) = lim inf
ε→0+

{

1

2ε

∫ x+ε

x−ε

a(t)−
1

p−1 dt

}−(p−1)

. (52)

Moreover, for every p > 1, bp satisfies the estimates

0 ≤ a(x) ≤ bp(x) ≤ a(x), a.e.x ∈ Ω, (53)
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where a is the maximum lower semicontinuous function less than or equal to a in Ω. Thus
in particular two sufficient conditions so that the integral

F (u,Ω) =

∫

Ω

a(x) |u′|p dx

is lower semicontinuous in W 1,p
loc (Ω) with respect to the strong norm topology of L1

loc(Ω),
are: (i) the coefficient a(x) is lower semicontinuous in Ω; (ii) a−1/(p−1) ∈ L1

loc(Ω).

Proof. The representation formulas (51), (52) have been established by Marcellini in [14],
in the case p = 2. The proof for general p ∈ (1,+∞) is similar.

Let us prove (53). Since F p (u,Ω) ≤ F (u,Ω) for every u ∈ W 1,p
loc (Ω), then bp(x) ≤ a(x)

for almost every x ∈ Ω. If c(x) is a lower semicontinuous function less than or equal to a
in Ω, then, for every x ∈ Ω and every µ > 0 there exists δ > 0 such that

c(x) ≤ c(t) + µ ≤ a(t) + µ , a.e. t ∈ Ω ∩ (x− ε, x+ ε) , ∀ ε ≤ δ.

Again, for 0 < ε ≤ δ, we deduce that

∫ x+ε

x−ε

a(t)−
1

p−1 dt ≤ 2ε (c(x)− µ)−
1

p−1

and, from the definition (52) of bp ,

bp(x) = lim inf
ε→0+

{

1

2ε

∫ x+ε

x−ε

a(t)−
1

p−1 dt

}−(p−1)

≥ c(x)− µ .

Thus bp(x) ≥ c(x) and also bp(x) ≥ a(x) for almost every x ∈ Ω.

From the estimates in (53) we obtain the conclusion (i), i.e., that the integral F (u,Ω) =
∫

Ω
a(x) |u′|p dx, being equal to F p (u,Ω), is lower semicontinuous in L1

loc if the coefficient

a is lower semicontinuous. Finally, if a−
1

p−1 ∈ L1
loc(Ω), then, by using the Lebesgue points

of this function, we have b(x) = a(x) for almost every x ∈ (0, 1); thus again F = F p,
which proves (ii).

As in [14], we give below an explicit application of Example 5.3. In particular, given p > 1
and the integral F (u,Ω) =

∫

Ω
ap,s(x) |u′|p dx, where the nonnegative measurable function

ap,s is defined below in (54), we show that there exist some values of the real parameter
s such that F (u,Ω) is not lower semicontinuous in the strong norm topology of L1

loc(Ω).

Example 5.4. Let Ω be the open interval (0, 1). Let us denote by {xi}i∈N the set of
rational numbers in (0, 1) ordered in a sequence and let s be a real parameter. Let
f(x, ξ) = ap,s(x) |ξ|p for some p > 1, where ap,s(x) is the bounded measurable nonnegative
function in (0, 1) defined by

ap,s(x) =
1

(

1 +
∑∞

i=1 2
−i |x− xi|−s)p−1 , x ∈ (0, 1) (54)

if the denominator is finite, otherwise we pose ap,s(x) = 0. Then, for every s ∈ R,
the measurable function ap,s(x) is not identically equal to zero (more precisely, the set



M. Gori, P. Marcellini /AnExtension of the Serrin’s Lower Semicontinuity Theorem 499

{x ∈ Ω : ap,s(x) 6= 0} has positive measure), while the integral F (u,Ω) =
∫

Ω
ap,s(x) |u′|p dx

is lower semicontinuous in W 1,p
loc (Ω) with respect to the strong norm topology of L1

loc(Ω)
if and only if s < 1.

Proof. With reference to the representation formulas (51), (52), we will prove that

bp,s(x) = lim inf
ε→0+

{

1

2ε

∫ x+ε

x−ε

ap,s(t)
− 1

p−1 dt

}−(p−1)

=







ap,s(x) if s < 1

0 if s ≥ 1
.

In fact (for simplicity of notations we integrate over the whole interval (0, 1))

∫ 1

0

ap,s(x)
− 1

p−1 dx =

∫ 1

0

{

1 +
∞
∑

i=1

2−i |x− xi|−s

}

dx

= 1 +
∞
∑

i=1

2−i

∫ 1

0

|x− xi|−s dx ≤ 1 +
1

1− s
< +∞

if s < 1 (and, in this case bp,s(x) = ap,s(x) for almost every x in (0, 1)), otherwise the
integral is equal to +∞, when computed on any subinterval (x0 − ε, x0 + ε) too (and, in
this case bp,s(x) = 0 for almost every x in (0, 1)).

It remains to show that the set {x ∈ Ω : ap,s(x) 6= 0} has positive measure. To this aim
we observe that, if s < 1, by the above condition

∫ 1

0

ap,s(x)
− 1

p−1 dx < +∞

we deduce that ap,s(x)
− 1

p−1 is finite almost everywhere in Ω; therefore ap,s(x) is different
from zero almost everywhere in Ω. Otherwise, if s ≥ 1, we compute similarly

∫ 1

0

ap,s(x)
− 1

2s(p−1) dx =

∫ 1

0

{

1 +
∞
∑

i=1

2−i |x− xi|−s

} 1
2s

dx

≤
∫ 1

0

{

1 +
∞
∑

i=1

(

2−i |x− xi|−s)
1
2s

}

dx ≤ 1 +
∞
∑

i=1

2
−i
2s

∫ 1

0

|x− xi|−
1
2 dx < +∞ ;

thus again ap,s(x)
− 1

2s(p−1) is finite almost everywhere and ap,s(x) is different from zero
almost everywhere in Ω.

In the next example we consider the limit case p = 1. Example 5.5 is due to Fusco [12].
We emphasize here that Example 5.5 can be considered as a passage to the limit from the
case p > 1 in the formulas of Example 5.3. In fact, analogously to the well known limit
relation limr→+∞ ‖v‖Lr(Ω) = ‖v‖L∞(Ω) , when we replace v by 1/v , as well known we also
have

lim
r→+∞

∥

∥v−1
∥

∥

−1

Lr(Ω)
= inf {|v(x)| : x ∈ Ω} .
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Therefore, from (52), we obtain the following representation formula for the maximum
lower semicontinuous function a less than or equal to a in Ω

a(x) = lim
ε→0+

inf {a(t) : t ∈ (x− ε, x+ ε)} (55)

= lim
ε→0+

lim
p→1+

{∫ x+ε

x−ε

a(t)−
1

p−1 dt

}−(p−1)

= lim
ε→0+

lim
p→1+

{

1

2ε

∫ x+ε

x−ε

a(t)−
1

p−1 dt

}−(p−1)

.

As already said, the proof of the statement of the following Example 5.5 can be found in
Fusco [12].

Example 5.5. Let Ω be the open interval (0, 1). Let f(x, ξ) = a(x) |ξ|, where a(x) is a
bounded measurable function in (0, 1), with a(x) ≥ 0 for almost every x ∈ (0, 1). Then
the maximum lower semicontinuous (in L1

loc) functional F 1 (u,Ω), less than or equal to
F (u,Ω) =

∫

Ω
a(x) |u′| dx, is given by

F 1 (u,Ω) =

∫

Ω

a(x) |u′| dx , (56)

for every u ∈ W 1,1
loc (Ω), where a is the maximum lower semicontinuous function less than

or equal to a in Ω. Thus in particular the integral F (u,Ω) =
∫

Ω
a(x) |u′| dx is lower

semicontinuous in L1
loc(Ω) if and only if the coefficient a is lower semicontinuous in Ω

(that is, if the measurable function a is almost everywhere equal to a lower semicontinuous
function in Ω).

Having in mind Examples 5.3 and 5.4, we give the following sufficient condition for lower
semicontinuity of F (u,Ω) in L1

loc . Here we go back to the general n-dimensional case,
under the assumption that f(x, s, ξ) is a Carathéodory function, i.e., that f is measurable
with respect to x ∈ Ω ⊂ Rn and continuous with respect to (s, ξ) ∈ R×Rn. We mention
explicitly that the following result holds in the vector-valued setting too.

We thank Giovanni Leoni, who pointed out to us an improvement of a previous version
of the following Proposition 5.6.

Proposition 5.6. Assume that f(x, s, ξ) is a Carathéodory function, convex with respect
to ξ, which satisfies the coercivity condition

f(x, s, ξ) ≥ a(x) |ξ|p , a.e. x ∈ Ω, ∀ (s, ξ) ∈ R× Rn, (57)

for some p > 1, where a(x) is a measurable function in an open set Ω ⊂ Rn, a(x) ≥ 0 for
almost every x ∈ Ω, and such that

a−
1

p−1 ∈ L1
loc(Ω). (58)

Then the integral F (u,Ω) =
∫

Ω
f (x, u,Du) dx is lower semicontinuous in W 1,1

loc (Ω) with
respect to the strong convergence in L1

loc(Ω).
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Proof. By Hölder inequality and by the coercivity assumption (57), for every open set
Ω′ compactly contained in Ω, we have

∫

Ω′
|Du| dx =

∫

Ω′
a(x)1/p |Du| · a(x)−1/p dx

≤
{∫

Ω′
a(x) |Du|p dx

}1/p

·
{∫

Ω′
a(x)−

1
p
· p
p−1 dx

}(p−1)/p

≤
{∫

Ω′
f (x, u,Du) dx

}1/p

·
{∫

Ω′
a(x)−

1
p−1 dx

}(p−1)/p

.

Let uh, u ∈ W 1,1
loc (Ω) such that uh → u in L1

loc (Ω). Let us also assume that

lim inf
h→+∞

F (uh,Ω) = lim
h→+∞

F (uh,Ω) = C < +∞ .

Under such conditions Duh is a sequence locally equi-integrable in Ω and so uh weakly
converges to u in W 1,1

loc (Ω); in fact a satisfies (58) and we have

∫

Ω′
|Duh| dx ≤ C1/p ·

{∫

Ω′
a(x)−

1
p−1 dx

}(p−1)/p

.

Therefore we can apply the original lower semicontinuity theorem by De Giorgi [6].
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