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1. Introduction

An object of great interest in optimal control, calculus of variations, and the corresponding
Hamilton-Jacobi theory is the value function. For an initial cost function f : IRn 7→ IR
and a running cost L : IRn × IRn 7→ IR, also referred to as the Lagrangian, the value
function V : [0,+∞)× IRn 7→ IR is defined to be

V (τ, ξ) = inf

{

f(x(0)) +

∫ τ

0

L(x(t), Úx(t))dt
∣

∣

∣ x(τ) = ξ

}

, (1)

where the infimum is taken over all absolutely continuous arcs x : [0, τ ] 7→ IRn, subject
to the terminal constraint x(τ) = ξ. Translation of results from this setting to the one
often seen in control theory, where an initial constraint and a terminal cost function
are considered, involves a simple change of variables, as was noted by Rockafellar and
Wolenski [11].

The main issue addressed in this paper is whether the knowledge of the value function
V (τ , ·) at some time τ > 0 determines the initial cost function f . To be more precise,
suppose that for a given Lagrangian L, V1 and V2 are two value functions corresponding
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to initial costs f1 and f2. Can we say that the implication

V1(τ , ·) = V2(τ , ·) for some τ > 0 =⇒ f1 = f2 (2)

holds? We should not expect a positive answer to this question in general. However, in
the fully convex setting — where both f and L are convex functions — we show that the
implication holds, subject to a certain property of the generalized Hamiltonian system
associated with the given Lagrangian.

Motivation for our work comes from the simple case where the Lagrangian is independent
of the state, that is L(x, v) = g(v) for a proper, lsc, and convex function g. Recall that a
function is proper if it does not take on the value −∞ and is finite somewhere. Under an
additional assumption of coercivity of g — we call g coercive if lim|x|→∞

g(x)
|x| = ∞ — the

following formula, which can be traced back to Hopf [4] and Lax [5], holds:

V (τ, ξ) = inf
ξ′∈IRn

{

f(ξ′) + τg
(

τ−1(ξ − ξ′)
)

}

. (3)

For any two functions f : IRn 7→ IR and h : IRn 7→ IR, the function f h given by

(f g) (x) = inf
y+z=x

{

f(y) + h(z)
}

= inf
y∈IRn

{

f(y) + h(x− y)
}

(4)

is called the inf-convolution — or the epi-addition — of f and h. Thus, for any fixed
τ > 0, the value function V (τ, ·) is the inf-convolution f gτ , where gτ (v) = τg(τ−1v).
For the Lagrangian in question, implication (2) turns to

f1 gτ = f2 gτ for some τ > 0 =⇒ f1 = f2.

This is a special case of the “cancellation ruleÔ

f1 h = f2 h =⇒ f1 = f2,

which is known to hold when all f1, f2, and h are proper, lsc, convex and h is coercive;
see Rockafellar and Wets [10]. (The “cancellation ruleÔ is easy to deduce from the fact
that an operation conjugate to inf-convolution is the standard addition. Taking conjugates
translates f1 h = f2 h to f ∗

1 +h∗ = f ∗
2 +h∗, while coercivity of h is reflected in finiteness

of h∗. Thus f ∗
1 = f ∗

2 , and f1 = f2.) Coercivity of g translates to that of gτ (·) for all τ > 0.
Therefore, for any proper, lsc, convex functions f1, f2, and a Lagrangian L(x, v) = g(v)
for a proper, lsc, convex, and coercive g, implication (2) holds.

We generalize this result to the setting of general fully convex Lagrangians, where L(x, v)
depends on both x and v, and is jointly convex in these variables. Our work relies
on the Hamilton-Jacobi theory developed for such setting by Rockafellar and Wolenski
[11], [12], in particular on a lower envelope representation of the value function involving
a “dualizing kernelÔ. This representation allows us to view the initial cost function f
and the value function V (τ , ·) as functions conjugate to each other, in a framework of
“generalized conjugacyÔ. We present the necessary background in Section 2.

An affirmative answer to our main question, subject to persistence of trajectories of the
generalized Hamiltonian system associated with the given Lagrangian, is stated in Section
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3. This motivates the global analysis of Hamiltonian systems carried out in Section 4.
We explore the special structure of the Hamiltonian to describe when the trajectories
persist, and characterize such cases in terms of the Lagrangian. As a side benefit, we
obtain conditions on the Lagrangian and the Hamiltonian which guarantee that the control
problem in question can be studied in the setting of duality, as in Rockafellar and Wolenski
[11]. Partial results in these subjects were obtained by Goebel [3].

Let us mention that the lack of regularity assumptions on the Lagrangian allows our format
to express a wide range of optimal control problems, including those with control and
mixed constraints. Consider a control problem with linear dynamics Úx(t) = Ax(t)+Bu(t),
with the control u(t) constrained to some nonempty, closed, and convex set U ∈ IRk, and
where the cost expression is given by

f(x(0)) +

∫ τ

0

L0(x(t), u(t))dt (5)

for some proper, lsc, and convex functions f and L0 : IR
n× IRk 7→ IR. Again, we can con-

sider the value function, as the optimal value in the above control problem, parameterized
by (τ, ξ) in the terminal condition x(τ) = ξ. Such a value function can be expressed as
(1) by defining

L(x, v) = inf
u∈U

{L0(x, u) | v = Ax+Bu} . (6)

Partial answer to the question of which control problems yield a Lagrangian satisfying
our assumptions will be given in Section 4; we also refer the reader to Rockafellar [8], [9],
Goebel [3], and Rockafellar and Wolenski [12].

2. Dualizing kernel and generalized conjugacy

The following assumptions on f and L are in place throughout this Section as well as
Section 3.

Assumption 2.1 (basic assumptions).

(A0) The function f(·) is convex, proper, and lsc on IRn.

(A1) The function L(·, ·) is convex, proper, and lsc on Rn ×Rn.

(A2) The set F (x) = {v | L(x, v) < ∞} is nonempty for all x, and there is a constant ρ
such that dist(0, F (x)) ≤ ρ(1 + |x|) for all x.

(A3) There are constants α and β and a coercive, proper, nondecreasing function θ(·) on
[0,∞) such that L(x, v) ≥ θ(max{0, |v| − α|x|})− β|x| for all x and v.

These were exactly the assumptions used by Rockafellar and Wolenski [11], [12] in devel-
oping the Hamilton-Jacobi theory for convex problems of Bolza. Assumption 2.1 guaran-
tees, among other things, that the value function is a well-defined proper, lsc, and convex
function. Results of [12] which will be used in this paper are summarized in the next
theorem.

Theorem 2.2 (envelope representation of the value function). The dualizing ker-
nel K : [0,+∞)× IRn × IRn 7→ IR, defined as

K(τ, ξ, η) = inf

{

〈x(0), η〉+
∫ τ

0

L(x(t), Úx(t))dt | x(τ) = ξ

}

,
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is an everywhere finite function, convex in ξ and concave in η. The value function (1)
can be represented as

V (τ, ξ) = sup
η

{K(τ, ξ, η)− f ∗(η)} , (7)

where f ∗ is the function conjugate to the initial cost f .

Note that for a fixed η, K(·, ·, η) is the value function corresponding to an affine initial
cost function 〈η, ·〉. If a formula reciprocal to (7) was in place, that is if

f ∗(η) = sup
ξ

{K(τ, ξ, η)− V (τ, ξ)} , (8)

then a recovery of the initial cost f from V (τ, ·) would indeed be possible.

Formulas (7) and (8) can be viewed as a generalized conjugacy relation between the value
function V (τ, ·) and the dual initial cost f ∗ with respect to the function K(τ, ·, ·). The
potential validity of (8) can therefore be approached in the framework of generalized
conjugacy, which we now briefly describe.

Given any function Φ : IRn × IRn 7→ IR we define the Φ-conjugate of h as

hΦ(y) = sup
x

{Φ(x, y)− h(x)} , (9)

and the Φ-biconjugate of h(·) as

hΦΦ(x) = sup
y

{

Φ(x, y)− hΦ(y)
}

. (10)

The standard notion of conjugacy between convex functions is obtained by considering
Φ(x, y) = 〈x, y〉. The generalized setting was first studied by Moreau [6]; for a detailed
discussion see Rockafellar and Wets [10], Section 11L.

Directly from the definitions we can obtain that h ≥ hΦΦ. Indeed, (10) implies that for
all x and y, hΦ(y) ≥ Φ(x, y)−h(x), which is equivalent to h(x) ≥ Φ(x, y)−hΦ(y). Taking
the supremum with respect to y yields h ≥ hΦΦ.

In the standard case of Φ(x, y) = 〈x, y〉, we have h = hΦΦ for any proper, lsc, and convex
h. Thus Φ-conjugacy gives a one-to-one correspondence between the family of all proper,
lsc, convex functions and itself.

We now propose a general condition on Φ sufficient to guarantee such one-to-one cor-
respondence. Here, and in the sequel, the subdifferential of any convex function φ is
denoted by ∂φ and should be understood in the standard convex analysis sense. The
subdifferential of any concave function ψ, denoted ∂̃ψ, is defined as −∂ (−ψ).

Proposition 2.3. Let Φ(x, y) be a finite function, concave in x. Assume that for every
x and every z there exists y such that z ∈ ∂̃xΦ(x, y). Then, for every proper, lsc, and
convex function h we have hΦΦ = h.

Proof. First, note that it is sufficient to show that for every affine function k, we have
kΦΦ(·) = k(·). Indeed, suppose that this is true. Pick any proper, lsc and convex function
f . Let k be an affine function majorized by f . We have f ≥ k, and through duality



R. Goebel, R. T. Rockafellar / Generalized Conjugacy in Hamilton-Jacobi Theory 467

relationships (9), (10) we get fΦ ≤ kΦ and fΦΦ ≥ kΦΦ. By our supposition, the last
inequality becomes fΦΦ ≥ k. This implies that fΦΦ ≥ f , since f , being a proper, lsc and
convex function, is the supremum of all affine functions it majorizes. But f ≥ fΦΦ is
always true, and therefore, fΦΦ = f .

We now show that kΦΦ = k for any affine function k. Let k(x) = 〈z, x〉+b. By (a), for every
x there exists y such that z ∈ ∂̃xΦ(x, y), which is equivalent to 0 ∈ ∂̃x (Φ(x, y)− k(x)).
This is a necessary and sufficient condition for x to be the maximizer in the expression (9)
for kΦ(y). Thus, we have that for any x there exists y such that k(x) + kΦ(y) = Φ(x, y).
Then

kΦΦ(x) = sup
y

{

Φ(x, y)− kΦ(y)
}

≥ k(x).

Thus kΦΦ = k.

It can now be expected that for (8) to hold, a condition similar to the one in Proposition
2.3 will be needed for the subgradients of K(τ, ·, ·). These turn out to be closely related
to the trajectories of the Hamiltonian system associated with the given Lagrangian.

3. Cost recovery via Hamiltonian trajectories

With every Lagrangian — and every problem of calculus of variations — we can associate
a Hamiltonian function, defined as

H(x, y) = sup
v∈IRn

{〈y, v〉 − L(x, v)} . (11)

That is, for every fixed x, the convex function H(x, ·) is the function conjugate to L(x, ·).
Under our assumptions, H(x, y) is always finite, concave in x, and, as mentioned, convex
in y. For a Lagrangian coming from a control problem (5), the corresponding Hamiltonian
function is

H(x, y) = sup
u∈U

{〈y, Ax+Bu〉 − L0(x, u)} = 〈y, Ax〉+H0(x,B
∗y),

where H0(x, ·) is the convex conjugate of L0(x, ·)+δU(·). Here, δU is the indicator function
of the set U .

The Hamiltonian function itself plays an important role in the Hamilton-Jacobi theory,
where it characterizes the value function as a solution, often in some generalized sense, to
the Hamilton-Jacobi equation. A uniqueness result, describing the value function as the
unique solution to the generalized Hamilton-Jacobi equation, applicable to the general
setting described in Assumption 2.1, was given by Galbraith [2].

By a Hamiltonian trajectory on interval [a, b] we will understand a pair of absolutely
continuous arcs x, y : [a, b] 7→ IRn such that

− Úy(t) ∈ ∂̃xH (x(t), y(t)) , Úx(t) ∈ ∂yH (x(t), y(t)) , (12)

for almost all t ∈ [a, b]. Above, ∂yH(x, y) is the subdifferential of the convex function
H(x, ·) while ∂̃yH(x, y) is the subdifferential (in the concave sense) of the concave func-
tion H(·, y). Hamiltonian trajectories are involved in optimality conditions and can be
used to describe the evolution of the subdifferential of the value function ∂ξV (τ, ·) from
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the subdifferential of the initial costs f — we mention the corresponding result of Rock-
afellar and Wolenski [11] as Theorem 3.5. The trajectories are also closely related to the
subgradients of the dualizing kernel K(τ, ·, ·), as was shown in [12]:

Theorem 3.1 (subgradients of the dualizing kernel). The following are equivalent:

(a) η′ ∈ ∂ξK(τ, ξ, η) and ξ′ ∈ ∂̃ηK(τ, ξ, η);

(b) there is a Hamiltonian trajectory on [0, τ ] from (ξ′, η) to (ξ, η′).

Equipped with such a characterization of subgradients of K(τ, ·, ·), we can apply Propo-
sition 2.3 to the setting of generalized conjugacy between the initial cost f and the value
function V (τ, ·).
Theorem 3.2 (recovery of the initial cost). Assume that there are no Hamiltonian
trajectories escaping to infinity on [0, τ ]. Then formula (8) holds.

Proof. In light of the generalized conjugacy relations (9), (10), and Proposition 2.3, we
need to show that for any ξ′ and η, there exists ξ so that ξ′ ∈ ∂̃ηK(τ, ξ, η). The set-valued
mapping (x, y) → ∂yH(x, y) × −∂̃xH(x, y) has nonempty, compact, and convex values
and is outer-semicontinuous. Thus Hamiltonian trajectories exist for every initial point,
see Aubin and Cellina [1]. This, and our assumption guarantee that for any point (ξ′, η),
there exists a Hamiltonian trajectory originating at (ξ′, η), with the endpoint at some
(ξ, η′). By Theorem 3.1, ξ′ ∈ ∂̃ηK(τ, ξ, η). This finishes the proof.

Under the assumption of Theorem 3.2, thanks to (7) and (8), the correspondence between
the value function V (τ, ·) for initial cost f and the dual initial cost f ∗ is one-to-one. By
the standard duality, this yields a one-to-one correspondence between value functions and
initial costs. These facts are summarized in the following corollaries.

Corollary 3.3. Consider a Lagrangian L and an associated Hamiltonian H. Assume that
there are no Hamiltonian trajectories escaping to infinity in finite time. Then, for any
τ > 0, K(τ, ·, ·)-conjugacy defines a one-to-one correspondence between the family of all
proper, lsc and convex functions and the family of all value functions V (τ, ·) corresponding
to L, with the initial costs ranging over all proper, lsc, and convex initial costs.

For a given Lagrangian, knowing the initial cost (equal to V (0, ·)) determines V on [0,∞)×
IRn. Theorem 3.2 shows that knowing V (τ, ·) at any time τ ≥ 0 actually describes the
whole V .

Corollary 3.4. Let V1, V2 be the value functions corresponding to initial costs f1, f2 and
a Lagrangian L. Assume that no Hamiltonian trajectories escape to infinity in finite time,
for H associated with L by (11). The following are equivalent:

(a) f1(x) = f2(x) for all x ∈ IRn.

(b) V1(τ, ξ) = V2(τ, ξ) for all (τ, ξ) ∈ [0,+∞)× IRn.

(c) There exists τ ≥ 0 such that V1(τ , ξ) = V2(τ , ξ) for all ξ ∈ IRn.

We now present an example where the Hamiltonian trajectories do escape to infinity in
finite time, and where the conclusions of Corollary 3.4 fail. We will show that a whole
range of initial costs can yield the same value function at some positive time τ , thus in
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particular formula (8) must fail. The argument will take advantage of the following result
of Rockafellar and Wolenski [11]:

Theorem 3.5 (Hamiltonian evolution of subgradients). A point (xt, yt) is in the
graph of ∂ξV (t, ·) if and only if for some (x0, y0) ∈ gph ∂f , there is a Hamiltonian trajec-
tory (x(·), y(·)) on [0, t] with (x(0), y(0)) = (x0, y0), (x(t), y(t)) = (xt, yt).

Example 3.6 (Hamiltonian trajectories with finite escape time). Consider the

one-dimensional problem where L : IR × IR 7→ IR is given by L(x, v) = 1
8
x4 + 3

4
2

1
3v

4
3 .

The corresponding Hamiltonian is H(x, y) = 1
8
(−x4 + y4). Hamiltonian trajectories are

the solutions of the system:

Úy(t) =
1

2
x3(t), Úx(t) =

1

2
y3(t).

The trajectory (x(·), y(·)) originating at (1, 1) is

(x(t), y(t)) =
(

(1− t)−
1
2 , (1− t)−

1
2

)

.

This trajectory escapes to infinity in t = 1. Without direct calculation, we can show
that any other trajectory (x′(·), y′(·)) originating at (x′, y′) with x′ ≥ 1, y′ ≥ 1 must also
escape to infinity in time t ≤ 1. A result of Rockafellar [7] states that the function

m(t) = 〈x′(t)− x(t), y′(t)− y(t)〉

is nondecreasing. A slight refinement of this result shows that in case of a strictly con-
cave, strictly convex Hamiltonian, m(t) is actually increasing whenever (x(t), y(t)) 6=
(x′(t), y′(t)). Thus, if (x′, y′) 6= (1, 1), we must have 〈x′(t)− x(t), y′(t)− y(t)〉 > 0. Com-
bining this with the continuity of the trajectories in question, we obtain x′(t) > x(t),
y′(t) > y(t) for t > 0. This implies that (x′(·), y′(·)) escapes to infinity in time at most
1. By symmetry, any trajectory originating at (x′, y′) with x′ ≤ −1, y ≤ −1 must also
escape to infinity in time t ≤ 1.

Now take any two different nonnegative convex functions f1 and f2 such that fi(0) = 0,
1 ∈ ∂fi(1), −1 ∈ ∂fi(−1), for i = 1, 2. An example of such a function is 1

2
x2 or |x|.

Additionally, request that f1(x) = f2(x) holds for x ∈ [−1, 1]. For example, we can
consider f1(x) =

1
2
x2 and f2(x) =

1
2
x2+ δ[−1,1](x), where δ[−1,1] is the indicator function of

[−1, 1]. By the argument about trajectories escaping to infinity, the graph of ∂Vi(1, ·) is
the image of the graph ∂fi(·) restricted to [−1, 1]×[−1, 1] under the Hamiltonian flow. Our
assumptions on f1 and f2 guarantee that gph ∂f1 and gph ∂f2 agree on [−1, 1] × [−1, 1].
Therefore ∂V1(1, ·) = ∂V2(1, ·). To claim that V1(1, ·) = V2(1, ·) it suffices now to show that
the two functions agree at some point. The Lagrangian satisfies L ≥ 0 and L(0, 0) = 0.
Thus both value functions are nonnegative, and must equal 0 at x = 0.

4. Persistence of Hamiltonian Trajectories

Duality theory can be employed to restate the assumptions on the Lagrangian in terms
of the Hamiltonian. Rockafellar and Wolenski [11] showed that (A1), (A2) and (A3) from
Assumption 2.1 are equivalent to the following:
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Assumption 4.1 (Hamiltonian assumptions). The functionH(x, y) is everywhere fi-
nite, concave in x, convex in y, and such that

(H1) There are constants α and β and a finite, convex function φ such that

H(x, y) ≤ φ(y) + (α|y|+ β)|x|.

(H2) There are constants α′ and β′ and a finite, convex function φ′ such that

H(x, y) ≥ −φ′(x)− (α′|x|+ β′)|y|.

Any function which can be expressed as a sum of a finite concave function of x and a
finite convex function of y satisfies the above assumptions. In fact, any Hamiltonian of
the form

H(x, y) = 〈y, Ax〉 − f(x) + g(y) (13)

with f and g as described satisfies them. This covers the case of a finite Hamiltonian
depending on either just x or just y, and Hamiltonians coming from control problems
with linear dynamics and cost functionals (5), for which L0(x, u) = f(x) + g∗(u) for a
coercive g∗. To see that (13) satisfies (H1), note that f(x) ≥ f(0) + 〈v, x〉 ≥ f(0)− |v||x|
for some chosen v ∈ ∂f(0) implies

H(x, y) = 〈y, Ax〉 − f(x) + g(B∗y) ≤ (‖A‖|y|+ |v|) |x|+ g(B∗y)− f(0).

Thus H(x, y) satisfies (H1), with φ(y) = g(B∗y)− f(0). Argument for (H2) is symmet-
rical.

Another family for which Assumption 4.1 always holds is the family of finite, concave-
convex functions which are piecewise linear-quadratic. We recall that a function f is
called piecewise linear-quadratic if dom f = {x | f(x) < +∞} can be represented as a
union of finitely many polyhedral sets, relative to each of which f is given by a (possibly
degenerate) quadratic function. For a detailed discussion see Rockafellar and Wets [10].
The piecewise linear-quadratic family includes all the Hamiltonians which arise in the
setting of extended linear-quadratic control, as introduced in Rockafellar [8].

Proposition 4.2 (piecewise linear-quadratic Hamiltonians). Any finite function
H(x, y) concave in x, convex in y, and piecewise linear-quadratic satisfies Assumption
4.1.

Proof. By definition of a piecewise linear-quadratic function, there exist polyhedral sets
S1, S2, ...Sm with

⋃m
i=1 Si = IRn × IRn and such that, on each Si the function H is given

by

H(z) =
1

2
z · Aiz + ai · z + αi,

where z = (x, y)∗. We can write express each Ai and ai as Ai =

[

−Bi Ci

Di Ei

]

, ai = (bi, ci)
∗

for some matrices Bi, Ci, Di and Ei and vectors bi and ci. Since H is a concave-convex
function, we must have Bi and Ei positive semidefinite. Let M = sup{1

2
y · Eiy | i =

1, 2, ...m, |y| = 1}. Then, for every i = 1, 2, ...m, h(x, y) − M |y|2 ≤ 1
2
x · (Ci + D∗

i )y +
bi · x + ci · y + αi ≤ |x|N |y| + b|x| + c|y| + α where N is defined in similar fashion to
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M with the matrices Ci + D∗
i , b = supi |bi|, c = supi |ci| and α = supi |αi|. Taking

φ(y) = M |y|2 + c|y|+ α we get that

H(x, y) ≤ φ(y) + (N |y|+ b)|x|,

and this is exactly condition (H1). Symmetrical argument shows (H2).

Proposition 4.3 (linear growth of subdifferential). For a proper, lsc, convex func-
tion h : IRn 7→ IRn, the following are equivalent:

(a) supv∈∂h(x) |v| ≤ a|x|+ b for some constants a, b > 0.

(b) h(x) ≤ c|x|2 + d for some constants c, d > 0.

Proof. Assume (a). As h is proper, there exists x̄ with h(x̄) finite. By the mean value
theorem, see for example Rockafellar and Wets [10], there exist 0 < λ < 1 and v ∈ ∂h(xλ)
where xλ = (1 − λ)x + λx̄, such that h(x) − h(x̄) = 〈v, x − x̄〉. Then h(x) ≤ |h(x̄)| +
|v|(|x|+ |x̄|). Using the linear growth assumption and the fact that |xλ| ≤ |x|+ |x̄| we get
h(x) ≤ |h(x̄)|+[a(|x|+ |x̄|) + b] (|x|+ |x̄|). Elementary analysis shows that the expression
on the right can be bounded by c|x|2 + d for some constants c, d > 0.

Now assume (b), and suppose that (a) fails. For every n, we can then find xn, with
|xn| > n, so that for some vn ∈ ∂h(xn), |vn| > n|xn|. Such a conclusion follows from
the fact that, under (b), h is finite-valued and thus ∂h is locally bounded. Fix some
w ∈ ∂h(0). For any λ > 0 we get

h(xn+λvn) ≥ h(xn)+〈vn, xn+λvn−xn〉 ≥ h(0)+〈w, xn〉+λ|vn|2 ≥ h(0)− 1

n
|w||vn|+λ|vn|2.

We can estimate the norm of xn + λvn:

|xn+λvn|2 ≤ |xn|2+2λ|xn||vn|+λ2|vn|2 <
1

n2
|vn|2+2λ

1

n
|vn|2+λ2|vn|2 = |vn|2

(

λ+
1

n

)2

.

Combining the above estimates and the bound in (b), we obtain

c|vn|2
(

λ+
1

n

)2

+ d > h(0)− 1

n
|w||vn|+ λ|vn|2,

which, in the limit, yields cλ2 > λ. Picking λ < 1
c
yields a contradiction.

Theorem 4.4 (persistence of trajectories). Any of the following conditions guaran-
tees that no Hamiltonian trajectories escape to infinity in finite time:

(a) H(x, y) = −f(x) for some finite convex function f , or H(x, y) = g(y) for some
finite convex function g.

(b) H(x, y) = −f(x)+g(y) for some finite convex functions f and g, where either rge ∂f
or rge ∂g is bounded.

(c) H(x, y) = 〈y, Ax〉 − f(x) + g(y) for some matrix A, and some proper lsc convex
functions f and g, both of which are majorized by c|x|2 + d, for some constants
c, d > 0 (so in particular f and g are finite).

(d) The Hamiltonian is piecewise linear-quadratic.
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(e) The subdifferential of the Hamiltonian is of linear growth – for some constants a, b
we have

sup
{

(v, z) | v ∈ ∂̃xH(x, y), z ∈ ∂yH(x, y)
}

≤ a|(x, y)|+ b.

Proof. Note that (a) is a special case of (b), with either f or g equal trivially to 0. We
show (b), assuming that rge ∂f is bounded. Suppose rge ∂f ∈ KIB, fix T > 0 and a point
(x0, y0). Hamiltonian system has the form

Úy(t) ∈ ∂f(x(t)), Úx(t) ∈ ∂g(y(t)).

Thus any Hamiltonian trajectory originating at (x0, y0) satisfies y(t) ∈ y0 +KTIB for all
those t ∈ [0, T ] for which the trajectory exists. The function g is finite, and thus the local
boundedness of ∂g implies that Úx(t) ∈ ∂g (y0 +KTIB) is bounded. That shows that any
Hamiltonian trajectory originating at (x0, y0) can not escape to infinity in any time less
or equal T . By freedom of choice of T and (x0, y0), the proof is finished. The case of
rge ∂g bounded is symmetrical.

In (c), the subdifferential of the Hamiltonian is

∂̃xH(x, y) = A∗y − ∂f(x), ∂yH(x, y) = Ax+ ∂g(y).

By Lemma 4.3, right-hand sides of the above equations have linear growth, so this is a
special case of (e).

Similarly for (d): it can be shown that for such a Hamiltonian, the mapping (x, y) →
∂̃xH(x, y) × ∂yH(x, y) is piecewise polyhedral (its graph is a union of finite number of
polyhedral sets). Combined with local boundedness of the mapping in question, this
yields linear growth. A different approach is as follows: Rockafellar and Wolenski [11]
showed that

∂̃xH(x, y)× ∂yH(x, y) = con {(w, v) | ∃(xn, yn) → (x, y) with ∇H(xn, yn) → (w, v)} .

By the structure of a piecewise linear-quadratic function, H(x, y) is differentiable al-
most everywhere, and relative to points of differentiability ∇H(x, y) is linearly bounded.
Combining this with the above formula yields the needed linear growth of ∂̃xH(x, y) ×
∂yH(x, y).

Hamiltonian systems in (c), (d) and (e) can be rewritten as Úz(t) ∈ F (z(t)), for some outer
semicontinuous, compact-valued mapping F of linear growth. Thus z satisfies | Úz(t)| ≤
m|z(t)| + n for some constants m,n > 0, and it is well-known that no such z can escape
to infinity in finite time.

The property used in (b) of Theorem 4.4 — rge ∂f being bounded — can be equivalently
expressed in terms of the conjugate function. As ∂f and ∂f ∗ are mappings inverse to each
other, rge ∂f = dom ∂f ∗ where the latter set represents the points where ∂f ∗ is nonempty.
Also, since the relative interior of dom f ∗ is a subset of dom ∂f , dom ∂f ∗ is bounded if
and only if dom f ∗ is. Thus, rge ∂f is bounded if and only if dom f ∗ is.

The property in (c) — f being majorized by c|x|2+d — also has an equivalent version, in
terms of f ∗. A direct calculation yields f(x) ≤ c|x|2 + d if and only if f ∗(x) ≥ 1

4c
|x|2 + d′

for some constant d′.
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We now combine the comments made in this section with the results of Theorem 4.4.
Recall that L(x, v) stands for the Lagrangian, while L0(x, u) is the function involved in the
cost expression (5) for control problems. Conditions (a), (b) and (c) are direct translations
of corresponding ones in Theorem 4.4, made possible by the remarks made above, and by
Proposition 4.3. Both (d) and (e) lead to piecewise linear-quadratic Hamiltonians.

Corollary 4.5. Conclusions of Corollary 3.4 hold under any of the following conditions:

(a) L(x, v) = g(v) for some proper lsc convex and coercive function g.

(b) L(x, v) = f(x) + g(v) for some proper lsc convex functions f and g, with dom g
bounded.

(c) L0(x, u) = f(x) + g(u) for some proper lsc convex functions f and g, with f(x) ≤
c|x|2 + d, g(u) + δU(u) ≥ c|u|2 + d for some constants c, d > 0.

(d) L0(x, u) is any function fitting the format of extended linear-quadratic optimal con-
trol, as described by Rockafellar [8].

(e) L(x, v) satisfies A1, A2, A3 and is piecewise linear-quadratic.

In particular, any of the above conditions guarantees that the Lagrangian satisfies A1, A2,
A3 of Assumption 2.1. Conditions (c) and (d) apply to a control problem with cost (5),
for which the Lagrangian is given by (6).
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