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Let F : S(m) → R be a spectral function (i.e. S(m) is the space of m × m real symmetric matrices,
∀O ∈ O(m),∀X ∈ S(m), F (OXtO) = F (X), whereO(m) is the orthogonal group and tO is the transpose
of O). We associate to it the symmetric function sF : Rm → R by restricting it to the subspace of diagonal
matrices. In this work, on the one hand, we give a new, natural proof of the formula which binds the
Fréchet subgradients of a spectral function F and the Fréchet subgradients of the function sF (identical
formulas follow for the subgradients and the horizon subgradients); on the other hand we deduce from
the previous results and from convexity arguments that, in the general case, a similar formula holds for
the Clarke subgradients.
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dient, subgradient, nonsmooth analysis
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1. Introduction

This work is about some variational properties of functions defined on the space of (real)
symmetric matrices and which depend only of the eigenvalues of the matrix. They are
called here “spectral functionsÔ. More precisely, a function F is spectral if

F (OX tO) = F (X) for all X symmetric and O orthogonal. (1)

Our interest for these functions arises from their use in Optimization. One can consult
the survey [15]. The problem we are interested in can be subsumed as follow: using the
invariance property (1) satisfied by F , relate the variational properties of F with those of
its restriction to the subspace of diagonal matrices.

We complete the existing results in two ways. First, we use a new approach, based
on a certain “projection mapÔ, to recover some results of A. Lewis (see [14]) about the
subgradients of spectral functions. Note that this method can be and will be applied by
us to other problems about variational properties of spectral functions in future papers.

Secondly, we establish a new result about the Clarke subgradients of a spectral map in the
general case, which means that the function considered is not necessarily locally Lipschitz
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(the result is known in the locally Lipschitz case, see [14]). Our method is based on some
convexity arguments.

Let us introduce some definitions and notations in order to make precise our problem.

Let m ∈ N∗ and M(m) denotes the space of m × m real matrices. If M ∈ M(m), let
tM be the transpose of M . We denote by S(m) the subspace of m ×m real symmetric
matrices (i.e. S(m) = {M ∈ M(m)|tM = M}) and by O(m) the group of orthogonal
m ×m matrices (i.e. O(m) = {O ∈ M(m)|tOO = Im}, where Im is the m ×m identity
matrix).

We define a (left) action ? of O(m) on S(m) by

(O,X) ∈ O(m)× S(m) −→ O ?X = OX tO.

Definition 1.1 (Spectral function). Let S be a set . A function F : S(m) → S is a
spectral function if F is invariant under the action ?, i.e.

∀O ∈ O(m),∀X ∈ S(m), F (O ?X) = F (X). (2)

In other words, if we denote by OrbX the orbit of X ∈ S(m) relatively to the action ?, i.e.
OrbX = {O ?X,O ∈ O(m)}, spectral functions are functions which are constant on each
orbit (associated with the action ?). These functions are sometimes called orthogonally
invariant or eigenvalue functions.

Now let X ∈ S(m), µi, i = 1, ..., p, be the eigenvalues of X with µ1 > µ2 > ... > µp,
p ∈ N∗, and mi ∈ N∗, i = 1, ..., p, be the multiplicity of µi. We set

λ(X) = (µ1, ..., µ1
︸ ︷︷ ︸

m1 times

, µ2, ..., µ2
︸ ︷︷ ︸

m2 times

, ..., µp, ..., µp
︸ ︷︷ ︸

mp times

).

This defines a spectral map λ : S(m) −→ Rm. If f : Rm → R is a function, then

f ◦ λ : S(m) → R (3)

is clearly spectral. In fact all spectral functions F : S(m) → R have the form (3). Denote
by diag : Rm → S(m) the map which associates to (x1, ..., xm) the diagonal matrix
[xiδij]i,j=1,...,m (where δij = 1 if i = j and 0 if i 6= j). Set

sF = F ◦ diag : Rm → R,

then one has:
F = sF ◦ λ. (4)

The function sF is symmetric (i.e. invariant under coordinates permutations) and is the
unique symmetric function f : Rm → R satisfying F = f ◦ λ. Moreover, note that sF is
(almost) the restriction of F to the subspace of diagonal matrices.

The main objective of our work is to relate the first order variational properties of F
with those of sF . More precisely, we compute several kinds of subgradients of F from the
corresponding ones of sF .

Let us make a brief tour of the existing results. Some variational properties (at the first,
the second or higher order) of the function λ (or its components) and related functions
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can be considered as classical theory. This covers the case t → λ(X(t)), t ∈ I, I interval
of R, with X analytic or differentiable or C1. This includes perturbations in fixed direc-
tions (t → λ(Z + tV )). One can consult the books of Rellich [19], Kato [7] or [6], and
Baumegärtel [1]. One can find alternative approaches and more results in the works of
Hiriart–Urruty and Ye [10], [11], Overton and Womersley [18], Hiriart–Urruty and Lewis
[8], Hiriart–Urruty and Torki [9] and Torki [23]. A study of the first and second order
epi-differentiability of the components of λ can be found in Torki’s paper [24].

Concerning spectral functions, the convex case has been investigated in the works of
Friedland [5], Mart́ınez–Legaz [17], Lewis [12], Seeger [22] and Torki [25] . Differentiability
properties have been studied in the works of Lewis [13], Lewis and Sendov [16]; analycity
in a paper of Tsing N.-K., Fan M.K.H. and Verriest E.I. [26]; nonsmooth variational
properties in papers of Lewis [13] and [14].

2. Preliminaries and notations

In all the sequel, an Euclidean space is a finite dimensional real Hilbert space. Let (E , 〈., .〉)
be an Euclidean space and let G be a subgroup of the group O(E) of linear isometries of
E . Let S be a set and h : E → S. We say that h is G–invariant if

∀g ∈ G, h ◦ g = h.

In other words, h is G–invariant if h is invariant under the action (g, x) → g(x) of G on E .
For example, if P(m) denotes the group of permutation matrices, a symmetric function
on Rm is exactly a P(m)–invariant function.

We endow M(m) with the following usual scalar product:

〈A,B〉 = Tr(AtB) =
∑

i,j=1,...,m

AijBij,

and Rm with its natural scalar product. We denote all the norms by ‖.‖ . If X ∈ S(m)
then ‖X‖ = ‖λ(X)‖.
The space S(m), endowed with the scalar product just defined, is an Euclidean space.
Let O ∈ O(m). Set Int(O) : S(m) → S(m) defined by: ∀X ∈ S(m), Int(O)(X) = O ?X.
Int : O(m) → O(S(m)) is a group homomorphism, and a spectral function is a Int(O(m))–
invariant function. If G is a subgroup of O(m), we say “G–invariantÔ instead of “Int(G)–
invariantÔ (for example, a spectral function is an O(m)–invariant function).

The function λ is Lipschitzian (see, for example, [2] III.6.15),

∀A,B ∈ S(m), ‖λ(A)− λ(B)‖ ≤ ‖A−B‖. (5)

This last property is equivalent to the following inequality ([2] III.6.14) which is of im-
portance for the sequel (see, for example, [14] Theorem 2 for an elegant geometric proof):

∀A,B ∈ S(m), Tr(AB) ≤ 〈λ(A), λ(B)〉. (6)

Let δ = (m1, ...,mp) with p ∈ N∗, mi ∈ N∗ for all i ∈ {1, ..., p}, m = m1+ · · ·+mp. Given
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Mi ∈ M(mi), i = 1, ..., p, we denote M1 ⊕M2 ⊕ · · · ⊕Mp the block diagonal matrix

M1 ⊕M2 ⊕ · · · ⊕Mp =











M1 0 . . . 0

0 M2
. . .

...
...

. . . . . . 0
0 . . . 0 Mp











.

We set S(δ) = S(m1)⊕S(m2)⊕· · ·⊕S(mp), O(δ) = O(m1)⊕O(m2)⊕· · ·⊕O(mp). The
group O(δ) acts on S(δ) (by ?) and one can generalize what has just been said.

We define the map λδ : S(δ) → Rm by

λδ(S1 ⊕ · · · ⊕ Sp) = (λ(S1), ..., λ(Sp)).

The function λδ is O(δ)–invariant, for all X ∈ S(δ), ‖X‖ = ‖λδ(X)‖ and from (5) and
(6), one deduces for all A,B ∈ S(δ):

‖λδ(A)− λδ(B)‖ ≤ ‖A−B‖, (7)

Tr(AB) ≤ 〈λδ(A), λδ(B)〉. (8)

Recall that P(m) is the subgroup (of O(m)) of all permutation matrices. We set P(δ) =
P(m1) ⊕ P(m2) ⊕ · · · ⊕ P(mp). If A is a P(δ)–invariant subset of Rm (i.e. ∀P ∈ P(δ),
PA ⊂ A), one has

λ−1
δ (A) = O(δ) ? diagA. (9)

In fact, if X ∈ λ−1
δ (A), there exists O ∈ O(δ) such that X = O ? diagλδ(X) and λδ(X) ∈

A so X ∈ O(δ) ? diagA. Now if X = O ? diagx, O ∈ O(δ), x ∈ A, then there exists
P ∈ P(δ) such that λδ(X) = Px ∈ A (x ∈ A and A is P(δ)–invariant). Finally, we denote
byD↓(m) the set ofm×m diagonal matrices with entries arranged in the decreasing order.

3. A “projectionÔ map

Due the invariance property (2) satisfied by a spectral function, knowing that each orbit
is a submanifold, it is very natural, in a first step, to relate the variational properties of
a spectral function F at a point with the variational properties of its restriction to the
“normalÔ space to the orbit (of this point) at this point.

Knowing some elements about the geometry of the orbits, we make the following con-
struction.

We denote by A(m) the subspace of skew-symmetric matrices of M(m) (A(m) = {A ∈
M(m)|tA = −A}). The Lie bracket of X, Y ∈ M(m) is [X, Y ] = XY − Y X. We set
ad(X) : Y → [X, Y ].

Now fix Z ∈ S(m). We consider the map ad(Z) as a map from A(m) to S(m). We set
T Z = Im ad(Z) = {[Z,A], A ∈ A(m)} and define N Z = T ⊥

Z (in S(m)). One has (see, for
example, [14] Theorem 1 for a proof):

N Z = {X ∈ S(m)|XZ = ZX}. (10)
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Note that Z ∈ N Z . We set

ad(Z)† =

(

ad(Z)
∣

∣

Im ad(Z)

[Ker ad(Z)]⊥

)−1

◦QZ ,

where QZ is the orthogonal projection on T Z . Now set

ψZ :

{

S(m) −→ S(m)

X −→ e− ad(Z)†X ? PZX
,

where PZ is the orthogonal projection on N Z .

The map ψZ is smooth (C∞) and ψZ(Z) = Z. Using, for example, the fact that, for all
A,B ∈ M(m), eABe−A = ead(A)(B), we also obtain:

ψZ(Z + V ) =
+∞
∑

n=0

1

n!
ad(− ad(Z)†V )n(Z + PZV ),

because ad(Z)†Z = 0 (Z ∈ N Z). So

ψZ(Z + V ) = Z + PZV + [Z, ad(Z)†V ] + o(V ).

But [Z, ad(Z)†V ] = ad(Z) ◦ ad(Z)†(V ) = QZV , so

ψZ(Z + V ) = Z + V + o(V ). (11)

According to (11), we deduce from the local inversion Theorem that there exist an open
neighbourhood U of the origin in T Z and an open neighbourhood V of Z in N Z such
that W = ψZ(U + V) is an open neighbourhood of Z in S(m) and ψZ : U + V → W is a
smooth diffeomorphism.

We now define πZ : W → V, our “projection mapÔ, by

πZ = PZ ◦ ψ−1
Z .

The map πZ is smooth, πZ(Z) = Z and π′
Z(Z) = PZ . Moreover,

∀X ∈ W, πZ(X) ∈ OrbX . (12)

In fact, we can define OZ : W → O(m) by

OZ(X) = e− ad(Z)†ψ−1
Z (X),

and we obtain, from the definition of ψZ ,

∀X ∈ W, X = OZ(X) ? πZ(X),

which demonstrates (12). It is property (12) which makes us say that πZ “respects the
orbitsÔ.

We subsume some properties of πZ :
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Proposition 3.1. The map πZ : W → V is smooth, surjective and πZ(Z) = Z, π′
Z(Z) =

PZ. Moreover it satisfies

∀X ∈ W, X = OZ(X) ? πZ(X). (13)

Therefore, for every spectral function F : S(m) → R,

F |W = FZ ◦ πZ , (14)

where FZ denotes the restriction of the spectral function F to N Z and F |W the restriction
of F to W.

4. Fréchet subgradients, subgradients and horizon subgradients of a spectral
function

In this section, we recover, by a new and natural way, some results due to A.S. Lewis (see
[14]) and which will be needed in the sequel. Note that we don’t use any result about the
generalized differentiability of λ. We compute the Fréchet subgradients of F at Z from
the Fréchet subgradients of sF at λ(Z). Similar formulas follow for the subgradients and
the horizon subgradients. We follow, essentially, the definitions and notations of [21].

Definition 4.1 (Fréchet subgradients). Let (E , 〈., .〉) be an Euclidean space, h : O →
R be a function, where O is an open subset of E . Let z ∈ O with h(z) ∈ R. An element
x∗ of E is called a Fréchet subgradient of h at z, if

h(x) ≥ h(z) + 〈x∗, x− z〉+ o(x− z). (15)

One can consult [21] 8.B for more details. We denote by ̂∂ h(z) the set of all Fréchet
subgradients of h at z.

Definition 4.2 (Subgradients and horizon subgradients). An element x∗ of E is
called a subgradient of h at z if there are sequences (x∗

n) and (xn) such that x∗
n → x∗,

xn → z, h(xn) → h(z) and ∀n ∈ N, x∗
n ∈ ̂∂h(xn). We denote by ∂h(z) the set of all

subgradients of h at z.

An element x∗ of E is called an horizon subgradient of h at z if there are sequences (x∗
n),

(xn) and (εn) such that εn ↓ 0, εnx
∗
n → x∗, xn → z, h(xn) → h(z) and ∀n ∈ N, x∗

n ∈ ̂∂h(xn).
We denote by ∂∞h(z) the set of all subgradients of h at z.

In the last definition, εn ↓ 0 means that ∀n ∈ N, εn ∈]0,+∞[ and εn → 0 When two
functions are equal in a neighbourhood of a point then their sets of Fréchet subgradients
are equal. The same is true for the subgradients and the horizon subgradients. We will
need the following property:

Proposition 4.3 ([21], 10.7). Let H : O → F be a C1-map, where F is an Euclidean
space and O is an open subset of the Euclidean space E. Let z ∈ O and h : F → R be a
function with h(H(z)) ∈ R. Then

H ′(z)∗ ̂∂ h(H(z)) ⊂ ̂∂(h ◦H)(z), (16)

where H ′(z)∗ is the transpose of H ′(z). Moreover, if H ′(z) is surjective, then equality
holds in (16).
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Due to Proposition 4.3, if H is a linear surjective from E to F then (16) becomes:

̂∂(h ◦H)(z) = H∗
̂∂ h(H(z)). (17)

Now suppose that for a certain subgroup G of linear isometries of E , h : E → R is
G-invariant. Then, using (17), we deduce that:

∀G ∈ G, ̂∂ h(G(z)) = G ̂∂ h(z). (18)

In particular, if ∀G ∈ G, G(z) = z, then

∀G ∈ G, ̂∂ h(z) = G ̂∂ h(z). (19)

Let us return now to spectral functions. Let F : S(m) → R be a spectral map, Z ∈ S(m)
with F (Z) ∈ R. Due to the invariance property satisfied by the spectral map F , it is
very natural to “reduce the problemÔ to N Z . Recall that FZ is the restriction of F to the
subspace N Z .

From Proposition 4.3, from (14), from the fact that π′
Z(Z) = PZ is surjective and P ∗

Z is
the canonical injection from N Z to S(m), one obtains:

Lemma 4.4.
̂∂ F (Z) = ̂∂ FZ(Z).

Now, we have to compute ̂∂ FZ(Z) from ̂∂ sF (λ(Z)). From (18), and the fact that F ◦
Int(O) = F , we deduce, for X ∈ S(m),

̂∂ F (O ?X) = O ? ̂∂ F (X). (20)

This property allows us to suppose that Z ∈ D↓(m), i.e. Z = diagλ(Z), which simplifies
the study. We denote by δ(Z) the multi-index (m1,m2, ...,mp) ∈ Np such that

λ(Z) = (µ1, ..., µ1
︸ ︷︷ ︸

m1 times

, µ2, ..., µ2
︸ ︷︷ ︸

m2 times

, ..., µp, ..., µp
︸ ︷︷ ︸

mp times

).

and µ1 > µ2 > · · · > µp. We have N Z = S(δ(Z)) and for all O ∈ O(δ(Z)), O ?Z = Z.

Lemma 4.5. For Z ∈ D↓(m), one has:

̂∂ FZ(Z) = O(δ(Z)) ? diag ̂∂ sF (λ(Z)) = λ−1
δ(Z)(

̂∂ sF (λ(Z))). (21)

Proof. The second equality is due to (9) using the fact that ̂∂ sF (λ(Z)) is a P(δ(Z))–
invariant subset (this is due to (19), knowing that sF is P(m)–invariant and ∀P ∈
P(δ(Z)), Pλ(Z) = λ(Z)).

Let X∗ ∈ ̂∂ FZ(Z). There exists O ∈ O(δ(Z)) such that O ?X∗ = diagλδ(Z)(X
∗). Due to

the fact that FZ is O(δ(Z))-invariant, O ?Z = Z and the property (19), diagλδ(Z)(X
∗) ∈

̂∂ FZ(Z). Then, due to (16), seeing diag as a map from Rm to S(δ(Z)),

diag∗(diagλδ(Z)(X
∗)) ∈ ̂∂(FZ ◦ diag)(λ(Z)),
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but diag∗ ◦ diag is the identity of Rm and FZ ◦ diag = sF so λδ(Z)(X
∗) ∈ ̂∂ sF (λ(Z)).

This shows that ̂∂ FZ(Z) ⊂ λ−1
δ(Z)(

̂∂ sF (λ(Z))).

Let X∗ ∈ S(δ(Z)) such that λδ(Z)(X
∗) ∈ ̂∂ sF (λ(Z)). There exists ε : Rm → R such that

limx→0 ε(x) = 0 and

∀x ∈ Rm, sF (λ(Z) + x) ≥ sF (λ(Z)) + 〈λδ(Z)(X
∗), x〉+ ‖x‖ε(x).

Let X ∈ S(δ(Z)). There exists O ∈ O(δ(Z)) such that X = O ? diagλδ(Z)(X). We have

F (Z + diagλδ(Z)(X)) ≥ F (Z) + 〈λδ(Z)(X
∗), λδ(Z)(X)〉+ ‖λδ(Z)(X)‖ε(λδ(Z)(X)),

but ‖λδ(Z)(X)‖ = ‖X‖, limX→0 λδ(Z)(X) = 0 and

F (Z + diagλδ(Z)(X)) = F (O ?(Z + diagλδ(Z)(X))) = F (Z +X),

so, due to the property (7),

F (Z +X) ≥ F (Z) + 〈X∗, X〉+ o(X),

and X∗ ∈ ̂∂ FZ(Z). Finally λ−1
δ(Z)(

̂∂ sF (λ(Z))) ⊂ ̂∂ FZ(Z).

We can now deduce the main theorem of this section, which is Theorem 6 of [14]:

Theorem 4.6. Let F : S(m) → R be a spectral function and Z ∈ S(m), with F (Z) ∈ R.
Then

̂∂F (Z) = TransZ ? diag ̂∂sF (λ(Z)), (22)

where TransZ = {O ∈ O(m)|Z = O ? diagλ(Z)}. Similar formulas hold for the subgradi-
ents and the horizon subgradients.

Proof. If Z ∈ D↓(m), then the result follows immediately from Lemmas 4.4 and 4.5,
knowing that, in this case, TransZ = O(δ(Z)).

In the general case, let O ∈ TransZ . Then, using property (20), one has

̂∂ F (Z) = O ? ̂∂ F (diagλ(Z)) = O ?[O(δ(Z)) ? diag ̂∂ sF (λ(Z))].

We conclude, using the fact that OO(δ(Z)) = TransZ .

For the case of subgradients and horizon subgradients, one can follow the method of Lewis
[14].

5. The Clarke subgradients of a spectral function

Now, we are going to establish a formula similar to (22) for the Clarke subgradients. The
case when F is locally Lipschitz has been considered in [13] and [14]. Let us first recall
some definitions about Clarke subgradients (see [4] 2.4 and [21] for more details).

Let C ⊂ E , where (E , 〈., .〉) is an Euclidean space, and z ∈ C.
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The Clarke tangent cone (or regular tangent cone) to C at z, ̂TC(z), is the closed convex
cone defined by

̂TC(z) = {v ∈ E | ∀xn
C→ z,∀tn ↓ 0,∃vn → v,∀n ∈ N, xn + tnvn ∈ C}.

where xn
C→ z means that xn → z and ∀n ∈ N, xn ∈ C, and tn ↓ 0 means that ∀n ∈

N, tn ∈]0,+∞[ and tn → 0. The Clarke normal cone of C at z is

NC(z) = ̂TC(z)
∗ = {x∗ ∈ E | ∀v ∈ ̂TC(z), 〈x∗, v〉 ≤ 0}.

It is a closed convex cone. Using this notion of normal cone, one can define the Clarke
subgradients of a function. Recall that the epigraph of h : E → R is the set

epih = {(x, r) ∈ E × R |h(x) ≤ r}.

Definition 5.1 (Clarke subgradients). Let h : E → R, z ∈ E such that h(z) ∈ R.
The set of Clarke subgradients of h at z is defined as

∂ h(z) = {x∗ ∈ E | (x∗,−1) ∈ N epih(z, h(z))}.

When two functions are equal in a neighbourhood of a point then their sets of Clarke
subgradients at this point are equal.

We will use in the sequel that properties similar to (18) and (19) can be established, for
example from 10.7 [21], for the subgradients, the horizon subgradients and the Clarke
subgradients.

We will say that h : E → R is lower semicontinuous (lsc in the sequel) if epih is closed.

We are going to deduce our result about Clarke subgradients of spectral functions from a
relation between the subgradients, horizon subgradients and the Clarke subgradients.

Theorem 5.2 ([20]). Let h : E → R be a lsc function and z with h(z) ∈ R then:

∂ h(z) = co
[

∂h(z) + ∂∞h(z)], (23)

where co denotes the operation of taking the closed convex hull of a set.

The formula (23) can also be deduced from [21] 6(19), 8(32) and 8.9.

In all the sequel, F : S(m) → R is a lsc spectral function and Z ∈ S(m) with F (Z) ∈ R.
Due to the relations F = sF ◦ λ, sF = F ◦ diag and the continuity of diag and λ, one has
that F is lsc if and only if sF is lsc.

Due to the invariance property satisfied by F , one has, if X ∈ S(m),

∀O ∈ O(m), ∂ F (O ?X) = O ?∂ F (X).

So, if O ∈ TransZ ,
∂ F (Z) = O ?∂ F (diagλ(Z)). (24)

This allows us to reduce to the case Z ∈ D↓(m).
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We will use a particular preorder on Rm. If (x1, ..., xm) ∈ Rm, we denote by x↓ the vector
obtained by rearranging the coordinates of x in the decreasing order. If x, y ∈ Rm, we
say that x is majorised by y, in symbols x ≺ y, if

k
∑

j=1

x↓
j ≤

k
∑

j=1

y↓j , ∀k ∈ {1, ...m},

and
m
∑

j=1

x↓
j =

m
∑

j=1

y↓j .

The relation ≺ is a preorder on Rm, in the sense that it is a reflexive, transitive relation.
One can consult [2], chapter II for more details. One has the following characterization
of this preorder, due to the Birkhoff’s Theorem (see [2] II.2.3 and II.1.10). Let us recall
that P(m) is the finite group of permutation matrices.

Proposition 5.3. Let x, y ∈ Rm. Then x ≺ y if and only if there exists a family

(αP )P∈P(m) of non-negative reals (∀P ∈ P(m), αP ≥ 0) such that
∑

P∈P(m)

αP = 1 and

such that

x =
∑

P∈P(m)

αPPy.

Our interest in this preorder arises from the property:

Theorem 5.4 ([2] (III.13)). Let A,B ∈ S(m), then

λ(A+B) ≺ λ(A) + λ(B).

Let δ = (m1, ...,mp) ∈ (N∗)p such that m1 + ... + mp = m. We see the space Rm as
∏

i=1,...,p R
mi and define the preorder ≺δ as ≺×p so that

(x1, ..., xp) ≺δ (y1, ..., yp) ⇔ xi ≺ yi, ∀i = 1, ..., p.

We will use the following lemma which is a consequence of Proposition 5.3:

Lemma 5.5. Let x, y ∈ Rm. Then x ≺δ y if and only if there exists a family of non–
negative reals (αP )P∈P(δ) such that

∑

P∈P(δ) αP = 1 and

x =
∑

P∈P(δ)

αPPy.

Proof. Let (x1, ..., xp) ≺δ (y1, ..., yp) then, from proposition 5.3, one deduces that there
exists (αi

P )P∈P(mi), i = 1, ..., p, p families of non–negative reals such that

∀i ∈ {1, ..., p},
∑

P∈P(mi)

αi
P = 1, xi =

∑

P∈P(mi)

αi
PPyi.
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So

(x1, ..., xp) =
∑

P1∈P(m1)

α1
P1

(

P1 ⊕ Im2 ⊕ · · · ⊕ Imp

)

(y1, x2..., xp)

(y1, x2..., xp) =
∑

P2∈P(m2)

α2
P2

(

Im1 ⊕P2 ⊕ Im3 ⊕ · · · ⊕ Imp

)

(y1, y2, x3, ..., xp)

...

(y1, ..., yp−1, xp) =
∑

Pp∈P(mp)

αp
Pp

(

Im1 ⊕ · · · ⊕ Pp

)

(y1, ..., yp).

It follows that:

(x1, ..., xp) =
∑

P1⊕···⊕Pp∈P(δ)

α1
P1
α2
P2
...αp

Pp
P1 ⊕ · · · ⊕ Pp(y1, ..., yp),

with
α1
P1
α2
P2
...αp

Pp
≥ 0,

∑

P1⊕···⊕Pp∈P(δ)

α1
P1
α2
P2
...αp

Pp
= 1.

The other implication is direct.

From Theorem 5.4, one deduces that for all A,B ∈ S(δ),

λδ(A+B) ≺δ λδ(A) + λδ(B). (25)

The following properties will be useful in the sequel. Let A be a P(δ)-invariant subset of
Rm. Then, due to Lemma 5.5,

x ≺δ y and y ∈ A ⇒ x ∈ co A, (26)

where co denotes the operation of taking the convex hull of a set. Note also that if
A is a P(δ)–invariant subset then coA and coA are P(δ)–invariant subsets. If A is a
P(δ)–invariant subset of Rm,

λ−1
δ (cl(A)) = cl[λ−1

δ (A)], (27)

where cl(A), for example, is the closure of A.

The main result is based essentially on the following two lemmas.

Lemma 5.6. Let C be a P(δ)-invariant, convex subset of Rm. Then λ−1
δ (C) is a convex

set. Let A be a P(δ)-invariant subset of Rm then

λ−1
δ (coA) = co(λ−1

δ (A)), λ−1
δ (coA) = co(λ−1

δ (A)). (28)

Proof. Let A,B ∈ λ−1
δ (C) and α, β ≥ 0, α+ β = 1. From (25), one deduces

λδ(αA+ βB) ≺δ αλδ(A) + βλδ(B).

But λδ(A), λδ(B) ∈ C which is convex, so αλδ(A) + βλδ(B) ∈ C and we conclude using
(26).
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Now, if A is P(δ)-invariant then coA is P(δ)-invariant too and convex. It follows that
λ−1
δ (coA) is convex and contains λ−1

δ (A), so coλ−1
δ (A) ⊂ λ−1

δ (coA). On the other hand,

diag coA = co diagA ⊂ co(O(δ) ? diagA)

and co(O(δ) ? diagA) is O(δ)-invariant, so, using (9),

λ−1
δ (coA) = O(δ) ? diag coA ⊂ co(O(δ) ? diagA) = co(λ−1

δ (A)).

This demonstrates the first equality in (28). For the second, using (27),

λ−1
δ (coA) = λ−1

δ (cl(coA)) = cl(λ−1
δ (coA)) = cl(co(λ−1

δ (A))) = co(λ−1
δ (A)).

Lemma 5.7. Let A and B be two P(δ)-invariant subsets of Rm. Then

co
[

λ−1
δ (A) + λ−1

δ (B)
]

= λ−1
δ (co [A+ B]). (29)

Proof. A+ B is P(δ)-invariant so

λ−1
δ (A+ B) = O(δ) ? diag(A+ B) ⊂ O(δ) ? diagA+O(δ) ? diagB = λ−1

δ (A) + λ−1
δ (B),

and one inclusion is true, using (28).

On the other hand, let X ∈ λ−1
δ (A) and Y ∈ λ−1

δ (B). One has

λδ(X + Y ) ≺δ λδ(X) + λδ(Y ),

so λδ(X + Y ) is δ–majorised by an element of A+ B, P(δ)-invariant, which implies that
λδ(X + Y ) ∈ co [A+ B] and the second inclusion, using the fact that, due to lemma 5.6,
λ−1
δ (co(A+ B)) is closed convex and P(δ)–invariant.

Theorem 5.8. Let F : S(m) → R be a lsc spectral function and Z ∈ S(m) with F (Z) ∈
R. Then

∂ F (Z) = TransZ ? diag ∂ sF (λ(Z)) (30)

where TransZ = {O ∈ O(m)|Z = O ? diagλ(Z)}.

Proof. First, let O ∈ TransZ , then (see (24))

∂ F (Z) = O ?∂ F (diagλ(Z)). (31)

Now, using (23) and Theorem 4.6,

∂ F (diagλ(Z)) = co
[

∂F (diagλ(Z)) + ∂∞F (diagλ(Z))
]

=co
[

λ−1
δ(Z)(∂sF (λ(Z))) + λ−1

δ(Z)(∂
∞sF (λ(Z)))

]

.

The sets ∂sF (λ(Z)), ∂
∞sF (λ(Z)) and ∂ sF (λ(Z)) are P(δ(Z))–invariant, so, using the

Lemma 5.7, (23) and (9),

∂ F (diagλ(Z)) = λ−1
δ(Z)

(

co
[

∂sF (λ(Z)) + ∂∞sF (λ(Z))
])

= O(δ(Z)) ? diag ∂ sF (λ(Z)). (32)

Finally, one has OO(δ(Z)) = TransZ , and using (31), (32), one deduces:

∂ F (Z) = TransZ ? diag ∂ sF (λ(Z)).
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