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Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary, and assume that f : Ω × Rm×n → R is a
Carathéodory integrand such that f(x, ·) is polyconvex for Ln- a.e. x ∈ Ω. In this paper we consider
integral functionals of the form

F(u,Ω) :=

∫

Ω
f(x,Du(x)) dx,

where f satisfies a growth condition of the type

|f(x,A)| ≤ c(1 + |A|p),

for some c > 0 and 1 ≤ p < ∞, and u lies in the Sobolev space of vector-valued functions W 1,p(Ω,Rm).
We study the implications of a function u0 being a critical point of F . In this regard we show among
other things that if f does not depend on the spatial variable x, then every piecewise affine critical point
of F is a global minimizer subject to its own boundary condition. Moreover for the general case, we
construct an example exhibiting that the uniform positivity of the second variation at a critical point is
not sufficient for it to be a strong local minimizer. In this example f is discontinuous in x but smooth in A.

1. Introduction

Let Ω ⊂ Rn be a bounded domain (open connected set) with Lipschitz boundary ∂Ω, and
let f : Ω × Rm×n → R be a Carathéodory integrand such that for Ln-a.e. x ∈ Ω and all
A ∈ Rm×n

|f(x,A)| ≤ c(1 + |A|p), (1)

for some c > 0 and 1 ≤ p < ∞. We consider functionals of the form

F(u,Ω) =

∫

Ω

f(x,Du(x)) dx, (2)

over the Sobolev space of vector-valued functions W 1,p(Ω,Rm).

A longstanding problem in the multi-dimensional calculus of variations is to formulate
sufficient conditions on a given Sobolev function u0 and the integrand f , based on quasi-
convexity, to ensure that u0 provides a local minimizer for F . Of course the notion of a
local minimizer depends very much on the choice of the topology. To make this clear let
us fix an exponent q in the range p ≤ q ≤ ∞ and for a fixed u0 ∈ W 1,q(Ω,Rm) set

Aq
u0
(Ω) := {u ∈ W 1,q(Ω,Rm) : (u− u0)|∂Ω = 0},

where the boundary values are to be interpreted in the sense of traces.
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Assume now that u0 is a given map as above and that the exponent 1 ≤ r ≤ ∞. Then we
refer to u0 as an Lr (respectively W 1,r) local minimizer of F provided that there exists
ε > 0 such that

F(u0,Ω) ≤ F(u,Ω)

for all u ∈ Aq
u0
(Ω) satisfying ||u− u0||Lr(Ω,Rm) ≤ ε (respectively ||u− u0||W 1,r(Ω,Rm) ≤ ε ).

In accordance with classical terminology, we often refer to a W 1,∞ local minimizer as a
weak local minimizer, and a strong local minimizer refers to a W 1,r local minimizer with
1 ≤ r < ∞ or an Lr local minimizer with 1 ≤ r ≤ ∞.

It is easy to check that if u0 ∈ W 1,∞(Ω,Rm) is a weak local minimizer of F and f is
of class C1 or if u0 ∈ W 1,p(Ω,Rm) is a weak local minimizer and the first derivative of
f satisfies the growth |Df(x,A)| ≤ c(1 + |A|p−1) for some c > 0 then u0 satisfies the
Euler-Lagrange equation associated with F , i.e. for every ϕ ∈ C∞

0 (Ω,Rm)

d

dt
F(u0 + tϕ,Ω)|t=0 =

n
∑

α=1

m
∑

i=1

∫

Ω

fP i
α
(x,Du0(x))ϕ

i
,α(x) dx = 0.

A solution to this equation, in the sequel is called a critical point of F . For a detailed
discussion of necessary and sufficient conditions for weak and strong local minimizers in
the case min(n,m) = 1, we refer the interested reader to classical texts on calculus of
variations e.g. the monograph by G. Bliss [8].

The aim of the present article is to make a first attempt towards resolving the above
mentioned problem in the multi-dimensional setting. We start by considering the case
where f does not depend on the spatial variable x. In this case, special attention is made
towards piecewise affine mappings. These are Sobolev mappings u0 ∈ W 1,∞(Ω,Rm) with
piecewise constant gradients where the jumps occur across (n−1)-dimensional hyperplanes
intersecting Ω (cf. Definition 3.1). Such mappings can be viewed as the simplest kind
of possible nonlinear critical points for F . The Euler-Lagrange equation in this case is
equivalent to a set of jump relations to be satisfied on each hyperplane, namely for every
1 ≤ i ≤ m

n
∑

α=1

(

fP i
α
(Aj)− fP i

α
(Ak)

)

µα
(j,k) = 0

for all adjacent Ωj and Ωk, where µ(j,k) ∈ Rn denotes the unit normal to the hyperplane.
It follows immediately from this that if f is rank-one convex then it is affine along the
rank-one direction {Aj + t(Ak − Aj) : 0 ≤ t ≤ 1}. Consequently if f is not affine in any
rank-one direction of Rm×n (e.g. f is strictly rank-one convex) then F does not admit
such critical points (cf. J. Ball [2]).

In Section 3 Theorem 3.7, we show that any piecewise affine critical point u0 of F with
a polyconvex integrand is a global minimizer of F in A∞

u0
(Ω). Recall that the function

f : Rm×n → R is polyconvex if and only if there exists a convex function h : Rσ → R
such that f(A) = h(T (A)) for some σ-tuple of subdeterminants of A denoted by T (A).
Although polyconvex integrands are rank-one convex they are not necessarily strictly
rank-one convex.

When u0 ∈ W 1,∞(Ω,Rm) and ϕ ∈ C∞
0 (Ω,Rm) it follows from Jensen’s inequality for
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convex functions that

−
∫

Ω

h(T (Du0(x) +Dϕ(x))) dx ≥ h

(

−
∫

Ω

T (Du0(x) +Dϕ(x)) dx

)

= h

(

−
∫

Ω

T (Du0(x)) dx

)

.

Furthermore if
(H) h|conv{T (Du0)} is affine,
then

h

(

−
∫

Ω

T (Du0(x)) dx

)

= −
∫

Ω

h(T (Du0(x))) dx.

Note that (H) is also implied by this equality (this can be easily checked). We can
therefore state the following:
If h : Rσ → R is convex and satisfies (H), then u0 is a global minimizer of F in A∞

u0
(Ω).

We show that in the case of a piecewise affine critical point, the Euler-Lagrange equation
implies (H). We also consider the case where f(x,A) = h(x, detA) and study sufficiently
smooth critical points of F . In this particular case it is again possible to show that such
critical points are global minimizers of F in A∞

u0
(Ω).

We recall that the growth condition (1) on f combined with the Meyer-Serrin approxi-
mation theorem implies that if u0 is a global minimizer of F in A∞

u0
(Ω), then it is also a

global minimizer in Ap
u0
(Ω). Without such growth assumption, this statement would be

false for general p < ∞ as the cavitation example of J. Ball shows (cf. [3], [6]).

The above results suggest the question of whether a critical point of F with a polyconvex
(or more generally a quasiconvex) integrand f = f(Du) is a global minimizer in A∞

u0
(Ω)?

The answer to this question is “NoÔ. Firstly, the well known example of non-uniqueness
due to F. John [12] shows that even in the case of affine boundary conditions this does
not necessarily hold (cf. also K. Post and J. Sivaloganathan [18]). The idea being that
by taking an annular domain in R2 and the boundary condition u = identity, one can
produce at least countably many critical points with different energies by minimizing F
over appropriate homotopy classes. Secondly, even if one is willing to restrict to domains
with a trivial topology (e.g. starshaped domains) the recent counterexamples of S. Müller
and V. Sverak to regularity show that for at least Lipschitz mappings such a conclusion
does not hold. (Note that the counterexamples of S. Müller and V. Sverak correspond to
quasiconvex integrands.) It should be pointed out that the search for a nontrivial example
of a strong local minimizer of F in a starshaped domain that is not a global minimizer in
A∞

u0
(Ω), does not seem to have received much attention. It is important to observe that

in any such example u0 should have non affine boundary values as a simple dilatation
argument shows that any W 1,p local minimizer of F in a starshaped domain and subject
to affine boundary values is necessarily a global minimizer (cf. Section 3, or [20] and [21]
for more on the significance of the domain topology).

In the final part of this paper we construct a counterexample to the claim that the
positivity of the second variation at a smooth critical point would imply it to be a strong
local minimizer. Indeed in this case we take f(x,A) = a(x)g(A) where a > 0 is piecewise
constant on Ω and g : Rn×n → R is polyconvex. This example has been motivated by the
work of J. Ball and J. Marsden [5].
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2. Preliminaries

A function F : Rm×n → R is rank-one convex at A ∈ Rm×n if and only if for every a ∈ Rm,
b ∈ Rn, the function g(t) = F (A + ta ⊗ b) is convex at t = 0. Similarly a continuous
function F : Rm×n → R is quasiconvex at A if and only if

∫

Ω

F (A) dx ≤
∫

Ω

F (A+Dϕ(x)) dx, (3)

for all ϕ ∈ W 1,∞
0 (Ω,Rm). This condition simply says that among functions in Ax +

W 1,∞
0 (Ω,Rm), the linear map u = Ax is a minimizer. We note that it is also possible to

show, using a covering argument, that the above definition is independent of the choice
of the domain Ω.

We say that F is rank-one convex (quasiconvex) if and only if it is rank-one convex (qua-
siconvex) at every A ∈ Rm×n. We also recall that if F is rank-one convex (or quasiconvex)
then F is locally Lipschitz (cf. e.g. [9]).

An important subclass of quasiconvex functions are the so-called polyconvex functions
introduced in [1], [15]. We recall that a function F : Rm×n → R is polyconvex if and only
if F (A) = h(T (A)) for some convex function h : Rσ → R and all A ∈ Rm×n. Here T :
Rm×n → Rσ denotes an arbitrary σ-tuple of subdeterminants of A with 1 ≤ σ ≤ τ(n,m),
where

τ(n,m) =
n∧m
∑

s=1

ρ(s)

with n ∧m = min(n,m) and ρ(s) = 1
(s!)2

n!m!
(n−s)!(m−s)!

.

The importance of quasiconvexity in connection to the study of local minimizers of F is
linked to the following proposition. It is an extension of the so-called Weierstrass necessary
condition from the case min(n,m) = 1 to the multi-dimensional setting. A weaker form
of this statement was proved by L. Graves (cf. [10]). For the case of regular minimizers,
that is minimizers of class C1 it was derived by N. Meyers (cf. [14], also J. Ball [1]).
Other extensions to the non regular case are due to F. Hüsseinov [11]. The following is a
quicker way of achieving this and is based on discussions with J. Ball [7].

Proposition 2.1. (The necessity of quasiconvexity) Let u0 ∈ W 1,p(Ω,Rm) be a
strong local minimizer of F where f satisfies (1). Then f(x, ·) is quasiconvex at Du0(x)
for Ln- a.e. x ∈ Ω.

Note that in the proof of this proposition, whenever necessary, the function u0 denotes
the precise representative of the Sobolev class it belongs to.

Proof. For simplicity we first consider the case where f does not depend on the variable
x. Assume that u0 is a W 1,r local minimizer of F . Let ϕ ∈ C∞

0 (B,Rm), where B ⊂ Rn

denotes the unit ball, and for arbitrary x ∈ Ω and ρ > 0, consider the sequence ϕρ(·) =
ρϕ((· − x)/ρ). It is clear that ϕρ → 0 in W 1,r(Ω,Rm), and so for ρ sufficiently small

F(u0, Bρ(x)) ≤ F(u0 + ϕρ, Bρ(x)). (4)
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After a simple change of variables and setting uρ
0(y) = 1

ρ
(u0(x + ρy) − u0(x)) it follows

that
∫

B

f(Duρ
0(y)) dy ≤

∫

B

f(Duρ
0(y) +Dϕ(y)) dy.

If x is a p-Lebesgue point of Du0, that is

−
∫

Bρ(x)

|Du0(y)− (Du0)x,ρ|p dy → 0

as ρ → 0+, where (Du0)x,ρ = −
∫

Bρ(x)
Du0(y) dy, it follows from this and the Calderon-

Zygmund theorem on the Lp derivatives that the sequence {uρ
0} converges strongly to the

linear map Ay in W 1,p(B,Rm), where A = Du0(x). As the functional F is strongly W 1,p

continuous, we can pass to the limit and hence the claim is justified.

Now we consider the case with f depending on x as well. We note that the proof below
requires essentially no regularity on the integrand f and is based on discussions with J.
Ball. We re-write (4) in the following form

∫

Bρ(x)

f(y,Du0(y)) dy ≤
∫

Bρ(x)

f(y,Du0(y) +Dϕ(
y − x

ρ
)) dy.

Assume now that ψ ∈ C∞
0 (Rn) with suppψ ⊂ Ω is an arbitrary non negative function.

Multiplying the above inequality by ψ and integrating over Rn we have

∫

Rn

∫

Bρ(x)

ψ(x)f(y,Du0(y)) dy dx

≤
∫

Rn

∫

Bρ(x)

ψ(x)f(y,Du0(y) +Dϕ(
y − x

ρ
)) dy dx.

Setting z = (y − x)/ρ we deduce that

∫

Rn

∫

Rn

ψ(y − ρz)f(y,Du0(y))χ{|z|<1} dy dz ≤
∫

Rn

∫

Rn

ψ(y − ρz)f(y,Du0(y) +Dϕ(z))χ{|z|<1} dy dz,

or after passing to the limit ρ → 0+

∫

Rn

ψ(y)f(y,Du0(y)) dy ≤
∫

Rn

ψ(y)−
∫

B1(0)

f(y,Du0(y) +Dϕ(z)) dz dy.

The conclusion now follows by recalling that ψ ∈ C∞
0 (Rn) is non negative.

Remark 2.2. In the case when u0 is a weak local minimizer of F by a slight modification
of the above argument one can show that for Ln- a.e. x ∈ Ω the function f(x, ·) is weakly
quasiconvex at Q = Du0(x). We recall that a continuous function F : Rm×n → R is said
to be weakly quasiconvex if and only if there exists δ > 0 such that (3) holds for every

ϕ ∈ W 1,∞
0 (Ω,Rm) satisfying |Dϕ(x)| ≤ δ for Ln- a.e. x ∈ Ω (cf. C. Morrey [16]). This

seems to have not been noticed before.
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Remark 2.3. It is worthwhile mentioning that the statement of the above proposition
is optimal in the sense that one can not in general replace quasiconvexity of f(x, ·) at
Du0(x) with convexity. This can be justified by observing that adding a null Lagrangian
to f does not affect the variational structure of F (local and global minimizers as well
as critical points remain the same). However unlike the case min(n,m) = 1 where every
null Lagrangian is necessarily an affine function of the gradient, in the multi-dimensional
setting there are examples of non affine null Lagrangians and hence one can easily destroy
convexity by adding such non affine terms to f .

3. Local versus global minimizers in multi-dimensions

It is well know that if f is of class C2 and u0 of class C
1 is a critical point of F such that

the Jacobi operator corresponding to the quadratic form

J (ϕ,Ω) =
n

∑

α,β=1

m
∑

i,j=1

∫

Ω

fP i
αP

j
β
(x,Du0(x))ϕ

i
,α(x)ϕ

j
,β(x) dx

with ϕ ∈ W 1,2
0 (Ω,Rm), is strongly elliptic and has a strictly positive first eigenvalue, then

u0 is a weak local minimizer of F in Ap
u0
(Ω). According to Proposition 2.1, if u0 is a

strong local minimizer of F , then f(x, ·) is quasiconvex at Du0(x) for Ln- a.e. x ∈ Ω.
When min(n,m) = 1, this immediately implies that any strong local minimizer u0 is a

global minimizer of F in Ap
u0
(Ω). (Otherwise by (1) there exists ϕ ∈ W 1,∞

0 (Ω,Rm) such
that for u = u0 + ϕ we have F(u,Ω) < F(u0,Ω) and so convexity of f(x, ·) at ∇u0(x)
implies that for 0 < θ < 1

f (x,∇u0(x) + θ∇(u(x)− u0(x))) ≤ f (x,∇u0(x)) +

θ (f (x,∇u(x))− f (x,∇u0(x))) ,

which upon integration, gives for θ small enough, the desired contradiction). However
when min(n,m) > 1, this is far from being true, even if we replace this with the stronger
assumption of f being quasiconvex everywhere. Indeed under such an assumption and
the differentiability of f , when min(n,m) = 1 it follows easily that any critical point u0 is
a global minimizer in Ap

u0
(Ω), again in sharp contrast to the case min(n,m) > 1 (cf. the

above references or [21]).

Therefore an interesting question in this regard would be to formulate sufficient conditions
on the critical point u0 to ensure that u0 is a strong local minimizer of F . In particular,
would the eigenvalue criterion on the Jacobi operator mentioned above (which is equivalent
to the uniform positivity of the second variation) be enough?

Let us mention that in the case min(n,m) > 1 and f = f(Du) a simple dilatation
argument implies that any W 1,p local minimizer of F in a starshaped domain Ω ⊂ Rn

(without loss of generality with respect to the origin) and subject to the linear boundary
condition u0|∂Ω = Ax is indeed a global minimizer of F in Ap

u0
(Ω). For this recall that

the growth condition (1) and the quasiconvexity of f at A imply that the linear map
u1 = Ax is a global minimizer of F in Ap

u0
(Ω). Thus if the local minimizer u0 is not a

global minimizer of F in the above class, it must be that F(u1,Ω) < F(u0,Ω). One can
then consider the sequence {uδ} for δ < 1 where

uδ(x) =

{

δu0(
y
δ
) in Ωδ

Ax in Ω\Ωδ,
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and Ωδ = δΩ.
It is easy to see that F(uδ,Ω) = F(u0,Ω) + (1 − δn) (F(u1,Ω)−F(u0,Ω)), and so the
contradiction is reached by noting that uδ → u0 in W 1,p(Ω,Rm) as δ → 1−.

In the rest of this section we shall pursuit the question raised above. In Subsections 3.1
and 3.2 we restrict to integrands f without explicit dependence on the spatial variable
x, and consider the simplest kind of possible nonlinear critical points of F , namely the
piecewise affine mappings. We prove that when f is polyconvex, then any such critical
point is in fact a global minimizer inAp

u0
(Ω). This provides us with a somewhat affirmative

answer to the question in the polyconvex case. However in Subsection 3.3 we consider
the case where f = f(x,Du) and show that the second variation criterion is not sufficient
for a critical point of F to be a strong local minimizer. We should point out that in this
example the integrand f is discontinuous in the spatial variable x, but smooth in A.

We finally note that it is possible to formulate sufficient conditions for strong local mini-
mizers of F in the case f = f(Du), that is based on quasiconvexity and takes into account
the topology of the domain Ω. We aim to discuss this issue elsewhere (cf. e.g. [20], [21]).

3.1. Piecewise affine mappings

In this subsection we introduce piecewise affine mappings and explore some of their basic
properties.

To start let H be an (n − 1)-dimensional hyperplane, that is H = {x ∈ Rn : x · µ = α}
for some unit vector µ ∈ Rn and some α ∈ R. We denote by H+ and H− the half spaces
H+ = {x ∈ Rn : x · µ > α} and H− = {x ∈ Rn : x · µ < α} respectively.

Assume now that V1 and V2 are given open sets in Rn and U ⊂ Rn is arbitrary. We say
that V1 and V2 have a common (n − 1)-dimensional planar interface in U if and only if
there exist x0 ∈ ∂V1 ∩ ∂V2, an (n − 1)-dimensional hyperplane H containing x0 and an
open ball B(x0) in Rn such that

(i) B(x0) ⊂ U

(ii) V1 ∩B(x0) = H+ ∩B(x0)

(iii) V2 ∩B(x0) = H− ∩B(x0).

For an open set Ω ⊂ Rn, let ω = {Ωi}i∈N be a countable family of pairwise disjoint,
bounded subdomains of Ω such that

Ω =
⋃

i∈N

Ωi ∪ E,

where N denotes the set of natural numbers and Ln(E) = 0. The family ω is said to be
a regular dissection of Ω if and only if for each nonempty Ωi and Ωj in ω there exists a
finite set {Ωσ(s)}s0s=1 ⊂ ω where σ(1) = i, σ(s0) = j and such that Ωσ(s) and Ωσ(s+1) have
a common (n− 1)-dimensional planar interface in Ω for 1 ≤ s ≤ s0 − 1.

As an example consider the case where Ω is the unit ball in R2 with the line segment
{(x, y) ∈ R2 : x ∈ [0, 1), y = 0} removed from it. It can be verified that the family

ω = {Ωi}i∈N with Ωi = {x ∈ Ω : 2(i−1)
i

π < θ < 2i
i+1

π} is a regular dissection of Ω.

Note that the above definition of a regular dissection does not rule out the possibility of
two arbitrary sets Ωi, Ωj ∈ ω with a common (n−1)-dimensional planar interface to meet
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at two or more points in U along different hyperplanes with non-parallel normals. Indeed
the example Ω = (−1, 1)n with ω = {Ω1,Ω2} where Ω1 = (−1

2
, 1
2
)n and Ω2 = Ω\Ω1 shows

that ω is a regular dissection of Ω. However as we will see later these cases are of no great
interest as we can always “joinÔ such Ωi and Ωj and hence introduce a new dissection
without such interfaces (this will be clear below).

Definition 3.1. Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary. A function
u0 ∈ W 1,∞(Ω,Rm) is piecewise affine if and only if for some regular dissection of Ω and
some sequence {Ai}i∈N ⊂ Rm×n

Du0(x) = Ai for Ln- a.e. x ∈ Ωi.

As a consequence of the Sobolev embedding theorem any piecewise affine map u0 is
contained in C(Ω,Rm). Also if Ωi, Ωj ∈ ω have a common (n − 1)-dimensional planar
interface and Du0(x) = Ai for Ln- a.e. x ∈ Ωi, and Du0(x) = Aj for Ln- a.e. x ∈ Ωj, then
Ai and Aj are rank-one connected. Indeed from the Hadamard jump condition applied
to B(x0) (cf. the first paragraph of this section), it follows that there exists a ∈ Rm such
that Aj − Ai = a⊗ b where b ∈ Rn is the unit normal to the hyperplane H.

Now recalling the paragraph prior to Definition 3.1 we realize that if some Ωi, Ωj ∈ ω
meet at different points along hyperplanes with non-parallel normals (consider the example
given there) then for some unit vectors b1, b2 ∈ Rn with b1 6= b2 and some a1, a2 ∈ Rm,
we would have Aj − Ai = a1 ⊗ b1 and Aj − Ai = a2 ⊗ b2. But this can not hold unless
Ai = Aj and so the claim that we can join the two sets and obtain a new dissection is
justified.

Let us now assume that K = {x1, ..., xn} ⊂ Rn consisting of n distinct points is affine
independent, i.e. that the set {x2 − x1, ..., xn − x1} is linearly independent. This in
particular implies that for some unit vector µ ∈ Rn and some α ∈ R, K ⊂ H, where
H = {x ∈ Rn : x · µ = α}. Assume x0, xn+1 ∈ Rn are such that x0 · µ < α and
xn+1 · µ > α. Setting K1 = {x0, ..., xn}, K2 = {x1, ..., xn+1} and Ω = int conv(K1) ∪
int conv(K2)∪ int conv(K), it is clear that ω = {int conv(K1), int conv(K2)} is a regular

dissection of Ω. Now for any function u ∈ C(Ω,Rm) its linear interpolant u0, that is
the function which coincides with u on K1 ∪K2 and is affine on conv(K1) and conv(K2)
respectively, is piecewise affine and therefore its gradient satisfies the appropriate rank-
one connection on the interface. Note that in most cases this method is an effective way
of constructing piecewise affine mappings, when the dissection is known.

Having defined piecewise affine mappings, we will now explore some of their basic proper-
ties. We start by considering the functional (2) where f = f(Du) is convex and without
loss of generality we assume that m = 1 and seek necessary and sufficient conditions for
F to have piecewise affine critical points. Let us start with the following simple lemma.

Lemma 3.2. Let f ∈ C1(Rn) be convex and such that

(∇f(b)−∇f(a)) · (b− a) = 0, (5)

for some a, b ∈ Rn. Then f is affine on conv({a, b}). Furthermore ∇f is constant on
this set.

Proof. Consider the function g(t) = f(a+t(b−a)). Then g′(t) = ∇f(a+t(b−a)) ·(b−a)
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and so

g′(1)− g′(0) = (∇f(b)−∇f(a)) · (b− a) = 0.

This together with the monotonicity property for the derivative of convex functions imply
that g′ is constant on the interval [0, 1] and so the first part is proved.

To show the next part we prove that ∇f(a) = ∇f(b). Indeed if this is not the case, for
each 0 < λ < 1 we can set

aε = a− ε[∇f(a)−∇f(b)], bε = b+ ε
λ

1− λ
[∇f(a)−∇f(b)].

Then it is easy to see that λa+ (1− λ)b = λaε + (1− λ)bε and so using Taylor’s formula
can write

λf(a) + (1− λ)f(b) = f (λaε + (1− λ)bε)

≤ λf(aε) + (1− λ)f(bε)

≤ λf(a) + (1− λ)f(b)− ελ|∇f(a)−∇f(b)|2 + o(ε).

The contradiction now proves the claim.

Proposition 3.3. Let f ∈ C1(Rn) be convex and let K ⊂ Rn be a nonempty set. Then
the following conditions are equivalent

(i) ∇f(·) is constant on K.

(ii) ∇f(·) is constant on conv(K).

(iii) f is affine on conv(K).

Proof. We shall prove the proposition when the set K is finite, that is K = {a1, ..., ar}
for some r ∈ N. The general case follows by recalling the definition of the convex hull

conv(K) =
⋃

r≥1

{

r
∑

i=1

λiai, where ai ∈ K, λi ≥ 0, and
r

∑

i=1

λi = 1

}

.

To prove the case where K is finite we argue by induction on r. For r = 2 the equivalences
(i) ⇔ (ii) ⇔ (iii) are consequences of Lemma 3.2. Assume now that the claim is true for
some r ≥ 2 that is (i) ⇔ (ii) ⇔ (iii). Let x ∈ conv(K). It follows that

x =
r+1
∑

i=1

λiai, where λi ≥ 0, and
r+1
∑

i=1

λi = 1.

Note that we can assume 0 < λi < 1 for 1 ≤ i ≤ r+ 1 as otherwise the point x lies in the
convex hull of K\{ai} for some i and the claim is clearly true. We can therefore write

x = (1− λr+1) a+ λr+1 ar+1

where

a =
1

1− λr+1

r
∑

i=1

λiai ∈ conv{a1, ..., ar}.
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Now let (i) hold. Then ∇f(a) = ∇f(ar+1) and so it follows from Lemma 3.2 that ∇f(·)
is constant along conv({a, ar+1}). In particular f(x) = (1 − λr+1)f(a) + λr+1f(ar+1) =
∑r+1

i=1 λif(ai). This implies (iii) as the point x is arbitrary.

Now assume (iii). Then (5) holds with b = ar+1. Thus ∇f(ar+1) = ∇f(a) = ∇f(ai) for
1 ≤ i ≤ r. Hence (i) follows.

A similar argument shows that (i) ⇔ (ii). The conclusion is therefore true for r+1. The
proof is thus complete.

Following Definition 3.1, let w = {Ωi}i∈N be a regular dissection of Ω and let u0 be a
piecewise affine function defined on Ω such that ∇u0(x) = ai for Ln- a.e. x ∈ Ωi. We can
now state the following proposition.

Proposition 3.4. Let f ∈ C1(Rn) be convex. Then the piecewise affine function u0 is a
global minimizer of F in A∞

u0
(Ω) if and only if f is affine on conv({ai}i∈N).

Proof. As f is convex, u0 is a global minimizer of F if and only if u0 is a critical point of
F . We now claim that u0 is a critical point if and only if f is affine on conv({ai}i∈N), or
appealing to Proposition 3.3. u0 is a critical point if and only if ∇f(∇u0(·)) is constant
Ln- a.e. on Ω.

Let Ωi, Ωj ∈ ω have a common (n−1)-dimensional planar interface in Ω and let∇u0(x) =
ai for Ln- a.e. x ∈ Ωi and ∇u0(x) = aj for Ln- a.e. x ∈ Ωj. Clearly the Euler-Lagrange
equation in this case implies the following jump condition

(∇f(ai)−∇f(aj)) · (ai − aj) = 0.

It now follows from this and Lemma 3.2 that ∇f(ai) = ∇f(aj). This in particular implies
that ∇f(∇u0(·)) is Ln- a.e. constant on ∪i∈NΩi and as Ω = ∪i∈NΩi ∪ E with Ln(E) = 0,
it follows that ∇f(∇u0(·)) is Ln- a.e. constant on Ω.

Clearly u0 is a critical point if ∇f(∇u0(·)) is Ln- a.e. constant on Ω. The proof is thus
complete.

Remark 3.5. The convexity of f at a ∈ Rn is necessary and sufficient for u0 = a · x to
be a global minimizer of F in A∞

u0
(Ω). It follows that this convexity assumption is no

longer sufficient for a piecewise affine function u0 to be a global minimizer of F (unless
as is stated in the proposition f is affine on conv({ai}i∈N)). Consider for example the
Dirichlet integral F(u,D) =

∫

D
|∇u|2dx, where D is the unit cube in Rn with center

on the origin and let a, b ∈ Rn satisfy b − a = ken for some nonzero k ∈ R. Setting
D1 = {x ∈ D : xn > 0} and D2 = {x ∈ D : xn < 0}, it follows that the harmonic function
satisfying the boundary condition u = a · x on ∂D1 ∩ ∂D and u = b · x on ∂D2 ∩ ∂D is
not the piecewise affine function u0(x) = a · xχD1(x) + b · xχD2(x), as the convex function
f(p) = |p|2 is never affine. Note that we know this also by the interior regularity of
harmonic functions.

Remark 3.6. Assume now that f is convex and of class C2 and that the set K ⊂ Rn in
Proposition 3.3 is not contained in any (n − 1)-dimensional hyperplane. It follows from
the fact that f is affine on conv(K) that ∇2f(x) = 0 for every x in this set. Indeed in
this case int conv(K) is a nonempty open set in Rn and of course the second derivative
of any function which is affine on an open set is zero. Note that this claim is not true in
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general as the set conv(K) could be “lower dimensionalÔ that is, it could be contained in
an (n− 1)-dimensional hyperplane. To justify this let f ∈ C2(Rn) for some n ≥ 2 be any
convex function such that f(x) = α|x|, for |x| ≥ 1/2. Then f is affine on conv{a, b} for
any a with |a| > 1 and b = βa with β ≥ 1/2; however neither of ∇2f(a) or ∇2f(b) is zero.

3.2. Critical points of functionals with polyconvex integrands

We will now assume that f is polyconvex, so that there exists a convex function h : Rσ →
R such that f(A) = h(T (A)) for some σ-tuple of subdeterminants of A denoted by T . It
can be easily checked that the first and second variations ofF at a point u0 ∈ W 1,∞(Ω,Rm)
along a variation ϕ ∈ C∞

0 (Ω,Rm) are given by

δF(u0,Ω)[ϕ] =
∑

k

∑

α,i

∫

Ω

hpk(T (Du0(x)))T
k
P i
α
(Du0(x))ϕ

i
,α(x) dx, (6)

and

δ2F(u0,Ω)[ϕ, ϕ] =
∑

k,l

∑

α,β,i,j

∫

Ω

hpkpl(T (Du0(x)))T
k
P i
α
(Du0(x))T

l
P j
β

(Du0(x))ϕ
i
,α(x)ϕ

j
,β(x) dx

+
∑

k

∑

α,β,i,j

∫

Ω

hpk(T (Du0(x)))T
k
P i
α P j

β

(Du0(x))ϕ
i
,α(x)ϕ

j
,β(x) dx, (7)

provided that h has the required degree of smoothness. Note that here h = h(p) =
h(p1, ..., pσ). The main result in this section is the following theorem.

Theorem 3.7. Let h ∈ C1(Rσ) be convex. Then any piecewise affine critical point of F
is a global minimizer in A∞

u0
(Ω).

Before proceeding with the proof of this theorem we state and prove the following lemma.

Lemma 3.8. Let B − A = a⊗ b for some a ∈ Rm, b ∈ Rn and h, T be as above. Then

σ
∑

k=1

(hpk(T (B))− hpk(T (A)))
(

T k(B)− T k(A)
)

=

σ
∑

k=1

〈hpk(T (B))T k
P (B)− hpk(T (A))T

k
P (A), a⊗ b〉. (8)

Proof. Note that for each 1 ≤ k ≤ σ,

T k(A+ a⊗ b)− T k(A) =
n

∑

α=1

m
∑

i=1

T k
P i
α
(A)aibα,

and hence the result is true provided that

n
∑

α=1

m
∑

i=1

(

T k
P i
α
(A+ a⊗ b)− T k

P i
α
(A)

)

aibα = 0. (9)
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Since for each 1 ≤ k ≤ σ, the subdeterminant T k : Rm×n → R is rank-one affine (cf. e.g.
[9]), it follows that the function g(t) = T k(A + ta ⊗ b) is affine and so g′(1) − g′(0) = 0
which is (9). £

Proof of Theorem 3.7. Let u0 be a piecewise affine map. We claim that u0 is a critical
point of F if and only if ∇h(T (Du0(·))) is Ln- a.e. constant on Ω. For this let ΩA, ΩB ∈ ω
have a common (n − 1)-dimensional planar interface in Ω and let for Ln- a.e. x ∈ ΩA,
Du0(x) = A and for Ln- a.e. x ∈ ΩB, Du0(x) = B. The Euler-Lagrange equation in this
case implies the jump condition

σ
∑

k=1

n
∑

α=1

(

hpk(T (B))T k
P i
α
(B)− hpk(T (A))T

k
P i
α
(A)

)

bα = 0,

for each 1 ≤ i ≤ m. Thus multiplying the above by ai, summing over i and using the
previous lemma we have

σ
∑

k=1

[hpk(T (B))− hpk(T (A))] [Tk(B)− Tk(A)] = 0.

We now apply Lemma 3.2 to the convex function h to conclude that ∇h(T (A)) =
∇h(T (B)). This in particular implies that ∇h(T (Du0(·))) is Ln- a.e. constant on ∪i∈NΩi

(see Definition 3.1). Moreover as Ω = ∪i∈NΩi ∪ E with Ln(E) = 0, it follows that
∇h(T (Du0(·))) is Ln- a.e. constant on Ω.

We now show that if ∇h(T (Du0(·))) = h̃ is Ln- a.e. constant on Ω, then u0 is a critical
point of F . According to (6) we can write

δF(u0,Ω)[ϕ] =
σ

∑

k=1

n
∑

α=1

m
∑

i=1

∫

Ω

hpk(T (Du0(x)))T
k
P i
α
(Du0(x))ϕ

i
,α(x) dx

=
σ

∑

k=1

h̃k
d

dt

∫

Ω

T k(Du0(x) + tDϕ(x)) dx |t=0 = 0,

as T k is a null Lagrangian for each 1 ≤ k ≤ σ.

Now let ∇h(T (Du0(·))) be Ln- a.e. constant on Ω. The conclusion of the theorem follows
by integrating the inequality

h(T (Du0(x) +Dϕ(x))) ≥ h(T (Du0(x))

+
σ

∑

k=1

hpk(T (Du0(x)))
[

T k(Du0(x) +Dϕ(x))− T k(Du0(x))
]

which itself is a consequence of the convexity of h, and again using the fact that each T k

is a null Lagrangian.

We now look at the second variation of F at these special critical points u0 (cf. (7)). The
first sum is non negative by the convexity of h, however the second sum is zero since it is
equal to

σ
∑

k=1

hpk(T (Du0(x)))
d2

dt2

∫

Ω

T k(Du0(x) + tDϕ(x)) dx |t=0.
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Similar to the convex case described earlier (cf. Remark 3.6) if the set {T (Ai)}i∈N ⊂
Rσ is not contained in a (σ − 1)- dimensional hyperplane, the fact that h is affine on
conv({T (Ai)}i∈N) implies that ∇2h = 0 and thus the first term is also zero. Clearly a
necessary condition for this to hold is that the set {T (Ai)}i∈N have at least σ+1 elements.

We now consider the case f(x,A) = h(x, detA), where h is sufficiently smooth and for
each fixed x ∈ Ω, convex in detA. We begin with the following lemma.

Lemma 3.9. Let a ∈ W 1,1(Ω), u ∈ C1(Ω,Rn) and detDu(x) 6= 0 for Ln- a.e. x ∈ Ω.
Then

∫

Ω

a(x)〈cofDu(x), Dϕ(x)〉 dx = 0 (10)

for all ϕ ∈ C∞
0 (Ω,Rn) implies that the function a is constant.

Proof. For sufficiently smooth a and u we have for 1 ≤ i ≤ n

n
∑

j=1

[a(x)(cofDu(x))ij],j =
n

∑

j=1

[a,j(x)(cofDu(x))ij + a(x) (cofDu(x))ij,j]

=
n

∑

j=1

a,j(x)(cofDu(x))ij,

where we have used Piola’s identity, namely div cofDu = 0. Thus for ϕ ∈ C∞
0 (Ω,Rn) we

can write

∫

Ω

a(x)〈cofDu(x), Dϕ(x)〉 dx = −
n

∑

i,j=1

∫

Ω

(cofDu(x))ij a,j(x)ϕi(x) dx

that holds also for a ∈ W 1,1(Ω) and u ∈ C1(Ω,Rn) by a density argument. Using (10) we
have

cofDu(x)∇a(x) = 0

for Ln- a.e. x ∈ Ω. As det(cofA) = (detA)n−1, we infer that ∇a(x) = 0 for Ln- a.e.
x ∈ Ω and as Ω is connected it follows that the function a is constant.

Theorem 3.10. Let u0 ∈ C2(Ω,Rn) be a critical point of the functional

F(u,Ω) =

∫

Ω

f(x,Du(x)) dx

and assume that either of the followings hold:

i) f(x,A) = h(x, detA) with h ∈ C2(Ω×R) where for Ln- a.e. x ∈ Ω, h(x, ·) is convex
and for Ln- a.e. x ∈ Ω, detDu0(x) 6= 0, or

ii) f(x,A) = h(detA) where h ∈ C2(R) is convex. Then u0 is a global minimizer of F
in A∞

u0
(Ω).

Proof. As u0 is a critical point of F it follows that
∫

Ω

hp(x, detDu0(x))〈cofDu0(x), Dϕ(x)〉dx = 0 (11)
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for all ϕ ∈ C∞
0 (Ω,Rn). We now claim that (11) implies hp(x, detDu0(x)) to be con-

stant over Ω. In the case (i) this is similar to the previous lemma by taking a(x) =
hp(x, detDu0(x)). The conclusion in this case follows from the convexity of h(x, ·). Hence
we proceed with case (ii).

Consider the connected components of the open sets Ω+ := {x ∈ Ω : detDu0(x) > 0} and
Ω− := {x ∈ Ω : detDu0(x) < 0}. Indeed if ϕ is taken so that suppϕ is contained in these
components, it follows from (12) and the definition of Ω+ and Ω− that the assumptions
of the previous lemma hold. Thus h′(detDu0) is constant on each component. Moreover
setting Ω0 := {x ∈ Ω : detDu0 = 0}, it is clear that h′(detDu0) is constant on Ω0. Thus
the remaining task is to show that these constants are the same. But this follows from
the continuity of h′(detDu0) and the fact that Ω = Ω− ∪ Ω0 ∪ Ω+.

Once we know this, the conclusion of the theorem follows by integrating the inequality

h(detDu(x)) ≥ h(detDu0(x)) + h′(detDu0(x))(detDu(x)− detDu0(x)),

where u = u0 + ϕ and ϕ ∈ W 1,∞
0 (Ω,Rn).

We can now look at the second variation of F at the critical point u0 in the case (ii) of
the previous theorem. Then for ϕ ∈ C∞

0 (Ω,Rn) we can write

δ2F(u0,Ω)[ϕ, ϕ] =

∫

Ω

(h′′(detDu0(x))

[

n
∑

α,i=1

detP i
α
(Du0(x))ϕ

i
,α(x)

]2

+ 2h′(detDu0(x))
n

∑

α,β,i,j=1

detP i
α P j

β
(Du0(x))ϕ

i
,α(x)ϕ

j
,β(x)) dx.

As h′(detDu0(x)) is constant, the second sum in the above expression can be written in
the form

h′(detDu0(x))
d2

dt2

∫

Ω

det(Du0(x) + tDϕ(x)) dx |t=0

which is zero as ϕ ∈ C∞
0 (Ω,Rn) and the determinant is a null Lagrangian. Moreover if

the set {detDu0(x);x ∈ Ω} is not a singleton the first term also vanishes. This is because
h′ is constant on this interval and so h′′(detDu0(x)) = 0.

3.3. A counterexample

In this subsection we prove the following theorem.

Theorem 3.11. There exists an integrand f : Ω × Rm×n → R measurable in x, poly-
convex (also smooth) in A, such that the identity map u0 = x is a critical point of the
corresponding functional F , and the second variation of F is uniformly positive at u0.
However u0 is not a strong local minimizer of F in A∞

u0
(Ω).

As indicated earlier in Section 1, we assume that m = n > 1 and take an integrand f of
the form f(x,A) = a(x)g(A) where a ∈ L∞(Ω) is piecewise constant and g : Rn×n → R is
given by

g(A) = Φ(v1, ..., vn) =
n

∑

i=1

vαi + h(Πn
i=1vi).
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Here h : R → R is a sufficiently smooth convex function, vi ≥ 0 denote the singular values
of A, namely the eigenvalues of (ATA)1/2 and 1 < α < n. The function g can be shown
to be isotropic, polyconvex, strongly elliptic and nonconvex.

Before presenting the proof of Theorem 3.11, we fix some notation. For any x ∈ Rn

we set x′ = (x1, ..., xn−1), ρ = |x′|/xn and r = |x|. We take Ω to be the interior of
the right circular cone with vertex at the origin and base on the plane xn = 1, i.e.
Ω = {x ∈ Rn : 0 < xn < 1, ρ < ρ0}, where ρ0 > 0 denotes the radius of the base. We
further split Ω into two subdomains Ωl and Ωu with Ωl = {x ∈ Ω : 0 < xn < 1/2},
Ωu = Ω\Ωl and take a(x) = 1 for x ∈ Ωl and a(x) = η for x ∈ Ωu where 0 < η < 1 is to
be specified later. It can be easily seen that

δF(u0,Ω)[ϕ] =

∫

Ω

a(x)〈Dg(I), Dϕ(x)〉 dx,

and

δ2F(u0,Ω)[ϕ, ϕ] =

∫

Ω

a(x)D2g(I)[Dϕ(x), Dϕ(x)] dx,

for all ϕ ∈ W 1,2
0 (Ω,Rn). We can now state the following lemma.

Lemma 3.12. If h′(1) = −α, then the map u0(x) = x is a critical point of F . If in
addition h′′(1) > α(1 − α

n
) then there exists γ = γ(α, n) > 0 such that for all ϕ ∈

W 1,2
0 (Ω,Rn)

δ2F(u0,Ω)[ϕ, ϕ] ≥ γη||ϕ||2W 1,2(Ω,Rn).

Proof. We justify this by a direct calculation of the first and second derivatives of g.
According to Theorem 6.4 in [4] for any A,F ∈ Rn×n we can write

〈Dg(F ), A〉 =
n

∑

i=1

Φ,i(v)Aii,

where v = (v1, ..., vn) are the singular values of F . Setting F = I, the identity matrix, it
follows that Dg(I) = (α + h′(1))I and hence Dg(I) = 0 if and only if h′(1) = −α. This
shows the first part of the claim.

Referring again to [4] pp. 726, we have that

D2g(F )[A,A] =
n

∑

i,j=1

Φ,ij(v)AiiAjj

+
1

2

∑

i6=j

[

(αij + βij)(Aij)
2 + (αij − βij)AijAji

]

(12)

where

αij =

{

(Φ,i(v)− Φ,j(v)) / (vi − vj) if vi 6= vj
Φ,ii(v)− Φ,ij(v) if vi = vj

,

and βij = (Φ,i(v) + Φ,j(v)) / (vi + vj).
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Setting F = I it can be checked that αij = α(α − 1) − h′(1) and βij = α + h′(1) for all
1 ≤ i, j ≤ n. If we choose h′(1) = −α it follows from (12) that

D2g(I)[A,A] =
n

∑

i,j=1

ΦijAiiAjj +
1

4
α2

∑

i6=j

(Aij + Aji)
2 ,

where

Φij =

{

α(α− 1) + h′′(1) if i = j
h′′(1)− α if i 6= j

.

It is a simple calculation (e.g. based on column and row operations on matrices) to show
that for any real n × n matrix with diagonal elements a and off-diagonal elements b the
eigenvalues are given by λ1 = ... = λn−1 = a− b and λn = a+ (n− 1)b. Therefore for the
above matrix Φ we have

λmin(Φ) = min
(

α2, α2 + n(h′′(1)− α)
)

≥ 0

provided that h′′(1) ≥ α(1− (α/n)). Hence we can write

D2g(I)[A,A] ≥ λmin

n
∑

i=1

A2
ii +

1

4
α2

∑

i6=j

(Aij + Aji)
2 . (13)

This implies that D2g(I)[A,A] ≥ 0 for all A ∈ Rn×n provided that h′(1) = −α and
h′′(1) ≥ α(1− (α/n)).

It is now easy to see that (13) implies D2g(I)[A,A] > 0 for every nonzero rank-one matrix
whenever h′(1) = −α and h′′(1) > α(1 − (α/n)). Indeed if A = a ⊗ b is such a matrix
and D2g(I)[a ⊗ b, a ⊗ b] = 0 then it follows that aibi = 0 and aibj + ajbi = 0 for all
1 ≤ i, j ≤ n. But this immediately implies that at least one of a or b is zero. We can
therefore deduce the existence of ν = ν(α, n) > 0 such that for every a, b ∈ Rn, the
inequality D2g(I)[a⊗ b, a⊗ b] ≥ ν|a|2|b|2 holds.

We now write for every ϕ ∈ W 1,2
0 (Ω,Rn)

δ2F(u0,Ω)[ϕ, ϕ] =

∫

Ω

a(x)D2g(I)[Dϕ(x), Dϕ(x)] dx ≥ η

∫

Ω

D2g(I)[Dϕ(x), Dϕ(x)] dx

≥ ν(α, n)η

∫

Ω

|Dϕ(x)|2 dx,

and so the result follows by a simple application of Poincaré inequality.

Proof of Theorem 3.11. We will present this in two steps.
Step 1. We construct a map u = u0+ϕ with ϕ ∈ C∞

0 (Ω,Rn) such that F(u,Ω) < F(u0,Ω),
for a proper choice of η > 0. To this end choose ψ1 ∈ C∞

0 (R) and ψ2 ∈ C∞(R) so that
ψ1 = 1 on (1/4, 3/4), supp ψ1 ⊂ (0, 1), ψ′

1 ≥ 0 on (0, 3
4
) and

ψ2(t) =

{

0 if t ≤ 1/3,

1 if t ≥ 2/3

with ψ′
2 ≥ 0.
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Let ζ(x) = (1 + (λ− 1)ψ1(r)ψ2(1− ρ/ρ0)) where λ > 1, ρ20 ≤ 5
4
and define u(x) = ζ(x)x.

A simple calculation shows that

Du(x) = ζI + x⊗∇ζ, where ∇ζ = ζr
x

r
+ ζρ∇ρ.

Furthermore

∇ρ =
1

xn

(
x

′

|x′|
,−|x′|

xn

), x · ∇ρ = 0,

and detDu(x) = ζn + ζn−1ζrr. As Ωl ⊂ {x ∈ Ω : r = |x| ≤ 3/4}, it follows that
1 ≤ detDu(x) ≤ C1 + C2(λ− 1)n for some constant C1, C2 and for all x ∈ Ωl.

We shall now fix 1 < α < n such that the assumptions of the lemma are satisfied. Moreover
we choose 0 < β < α such that h′(t) ≤ −β for 1 ≤ t ≤ λn. Thus for λ sufficiently large
h(detDu) − h(1) ≤ 0 in Ωl. Setting D = {x ∈ Ωl :

1
4
≤ r ≤ 3

4
, ρ
ρ0

≤ 1
3
}, it is clear that

u(x) = λx on D and so we can write

F(u,Ω)−F(u0,Ω) =

∫

Ωl

(g(Du(x))− g(I)) dx+ η

∫

Ωu

(g(Du(x))− g(I)) dx

=

∫

Ωl\D
(g(Du(x))− g(I)) dx+ Ln(D) (nλα − n+ h(λn)− h(1))

+ η

∫

Ωu

(g(Du(x))− g(I)) dx

≤ C3 + C4(λ− 1)α + Ln(D) (nλα − β(λn − 1))

+ η

∫

Ωu

(g(Du(x))− g(I)) dx

≤ C(λα + 1)− Ln(D)β(λn − 1) + η

∫

Ωu

(g(Du(x))− g(I)) dx,

where C,C3 and C4 are positive constants that do not depend on h. Thus for this specific
choice of u we choose λ so that the first two terms in the last inequality are negative.
Then we select h and finally η > 0 small enough so that the whole expression is negative.

Step 2. We construct a sequence uε → u0 in W 1,r(Ω,Rn) for any r < ∞, such that
F(uε,Ω) < F(u0,Ω). For this let x0 ∈ Ω ∩ {x ∈ Rn : xn = 1

2
} be an arbitrary point and

consider the sequence

uε(x) =

{

u0(x) + ε ϕ
(

x−x0
ε

+ en
2

)

for x ∈ Ωε,x0

u0(x) elsewhere

where Ωε,x0 = x0 − ε
2
en + Ωε and Ωε = εΩ. It can be easily checked that

F(uε,Ω) =

∫

Ωl

g(Duε(x)) dx+ η

∫

Ωu

g(Duε(x)) dx

= Ln(Ωl\Ωε,x0) g(I) +

∫

Ωl∩Ωε,x0

g(Duε(x)) dx

+ ηLn(Ωu\Ωε,x0) g(I) + η

∫

Ωu∩Ωε,x0

g(Duε(x)) dx

= F(u0,Ω)− (Ln(Ωl ∩ Ωε,x0) + ηLn(Ωu ∩ Ωε,x0)) g(I) + εnF(u,Ω)
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and therefore
F(uε,Ω)−F(u0,Ω) = εn(F(u,Ω)−F(u0,Ω)) < 0.

The proof is thus complete. £

Acknowledgements. I thank John Ball and Robert Kohn for fruitful discussions.
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