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This note is concerned with the controllability of differential inclusions whose right-hand
sides are convex processes. More precisely, it relates the controllability of Úx(t) ∈ F (x(t))
with the controllability of a perturbed version Úx(t) ∈ Fn(x(t)). The reference (or nominal)
convex process F is seen as the “limitÔ of a sequence {Fn}n∈IN of approximations.
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1. Introduction

Throughout this paper X denotes a finite dimensional real Hilbert space with inner prod-
uct 〈· , ·〉 and associated norm || · || . A convex process on X is a multivalued operator
F : X −→−→X whose graph

Gr F := {(s, v) ∈ X ×X | v ∈ F (s)}

is a convex cone containing the origin. Equivalently, a convex process F : X −→−→X is
characterized by the following three requirements :

(a) 0 ∈ F (0) ; (normalization)
(b) F (αs) = αF (s) ∀α > 0 , s ∈ X ; (positive homogeneity)
(c) F (s1) + F (s2) ⊂ F (s1 + s2) ∀s1, s2 ∈ X . ( super-additivity)

A convex process is said to be closed if its graph is a closed set. For the sake of convenience,
we shall write

Q(X) := {F : X −→−→X | F is a closed convex process} .

To each operator F : X −→−→X and terminal time T > 0, one associates the differential
inclusion

Úx(t) ∈ F (x(t)) for a.e. t ∈ [0, T ] , (1)

ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag



536 P. Lavilledieu, A. Seeger / Rank Condition and Controllability of Parametric ...

whose solutions are sought in the class

WX [0, T ] := {x : [0, T ] −→ X | x is absolutely continuous} .

A central issue of control theory is to know whether a given dynamical system is con-
trollable or not. In the context of our work, the precise meaning of controllability is as
follows :

Definition 1.1. The operator F : X −→−→X is said to be controllable if for each state
ξ ∈ X, there are a finite time T > 0 and a solution x to (1) such that x(0) = 0 and
x(T ) = ξ .

Necessary and sufficient controllability conditions for convex processes have been sug-
gested by Aubin, Frankowska and Olech in their paper [4] of 1986. These authors proved
that

F is controllable ⇐⇒
{

F is nonempty-valued and reproducing,
and its adjoint F ∗ has no eigenvalues .

(2)

Reproducibility refers to a certain rank condition that is discussed in Section 3. The
orientation of our work deviates from [4] in a fundamental way : F is no longer seen as a
fixed element of Q(X), but rather as a “limitÔ of a sequence {Fn}n∈IN of approximate or
perturbed convex processes. The differential inclusion (1) is interpreted as the “limitingÔ
version of

Úx(t) ∈ Fn(x(t)) for a.e. t ∈ [0, T ] .

Under suitable “inner convergenceÔ and “boundednessÔ assumptions on {Fn}n∈IN ⊂ Q(X),
one can show that the controllability of F forces the controllability of Fn for each n ∈ IN
sufficiently large. A result of this type has been obtained recently by Naselli-Ricceri
[9, Theorem 3.2]. The proof technique used in [9] relies on semicontinuity properties of
solution-sets to parametric differential inclusions. As shown in this note, preservation of
controllability can also be obtained from the equivalence (2). This alternative approach
is more direct and does not involve heavy mathematical machinery.

2. Notation and preliminary results

The notation that we employ is for the most part standard :

BX := {s ∈ X : ||s|| ≤ 1} ,
dist [z;S] := distance from z ∈ X to the set S ⊂ X,

K+ := {w ∈ X | 〈w, s〉 ≥ 0 ∀s ∈ K} ,
dom F := {s ∈ X | F (s) 6= ∅} .

Recall that the composition G ◦ F : X −→−→X of two operators G,F : X −→−→X is defined by
the rule

(G ◦ F )(s) := G(F (s)) =
⋃

v∈F (s)

G(v) ∀s ∈ X .

The composition of F : X −→−→X with itself can be repeated as many times as one wishes.
In this way one gets the operators F p : X −→−→X defined recursively by

F 1 := F , F p+1 := F p ◦ F ∀p ≥ 1 .

Inner and outer-limits will be understood in the sense of Painlevé-Kuratowski:
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Definition 2.1. Let {Cn}n∈IN be a sequence of sets in a topological space Z. The outer-
limit of {Cn}n∈IN is defined by

z ∈ outlim Cn ⇐⇒







there are a sequence {zn}n∈IN −→ z and a strictly
increasing function ϕ : IN −→ IN such that
zn ∈ Cϕ(n) for all n ∈ IN .

The inner-limit of {Cn}n∈IN corresponds to the set given by

z ∈ innlim Cn ⇐⇒
{

there is a sequence {zn}n∈IN −→ z such that
zn ∈ Cn for all n ∈ IN large enough .

The operators outlim Fn : X −→−→X and innlim Fn : X −→−→X are defined respectively by

Gr [outlim Fn] = outlim [Gr Fn] , Gr [innlim Fn] = innlim [Gr Fn] .

If the sequence {Fn}n∈IN lies in Q(X), then so does innlim Fn. However, the graph of
outlim Fn may fail to be convex. See the book by Rockafellar and Wets (1998) for an
elaborate discussion on Painlevé-Kuratowski limits.

One says that F ∗ : X −→−→X is the adjoint (or transpose) of F : X −→−→X if

Gr F ∗ := {(q, w) ∈ X ×X | (−w, q) ∈ (Gr F )+} .

For an arbitrary sequence {Fn}n∈IN in Q(X), one has always the inclusion

Gr[outlim F ∗
n ] ⊂ Gr[(innlim Fn)

∗] . (3)

To each convex process F : X −→−→X, one can associate the nonnegative number

N [F ] := sup
s∈BX∩ domF

dist[0;F (s)] .

Loosely speaking, N [F ] can be seen as the “magnitudeÔ of F . There is a rich theory
behind this concept, but we just need to retain the following two results.

Proposition 2.2. Let F ∈ Q(X) be nonempty-valued. Then,

(a) N [F ] is finite ;

(b) ||w|| ≤ N [F ] ||q|| ∀(q, w) ∈ Gr F ∗ .

Proof. Part (a) is due to Robinson (1972). Part (b) can be found in [2, p. 71].

Proposition 2.3. Suppose the sequence {Fn}n∈IN ⊂ Q(X) satisfies the boundedness cri-
terion

∀s ∈ X,∃r ∈ IR+ such that Fn(s) ∩ rBX 6= ∅ ∀n ∈ IN . (4)

Then, sup{N [Fn] | n ∈ IN} < ∞ .

Proof. See Theorem 2.3.1 in [2], or the original source [3] .

Observe that (4) forces each Fn to be nonempty-valued.
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3. Rank condition

This section can be considered as the core of our work. The concept of reproducibility
is studied here for its own sake. If F : X −→−→X is a convex process, then {F p(0)}p≥1 is a
sequence of convex cones arranged in a nondecreasing order :

{0} ⊂ F 1(0) ⊂ F 2(0) ⊂ F 3(0) ⊂ · · · ⊂ X . (5)

Definition 3.1. A convex process F : X −→−→X is said to be reproducing if

there is an integer p ≥ 1 such that X = F p(0)− F p(0) . (6)

Of course, F p(0) − F p(0) corresponds to the linear space spanned by F p(0). The “rank
condition" (6) was explored by Korobov (1980) in the particular case F (x) := Ax +K,
with A : X −→ X being a linear operator, and K a convex cone of controls. The set
F p(0) takes then the particular form

F p(0) = K + AK + · · ·+ Ap−1K .

In the general case, the computation of F p(0) can be quite cumbersome. However, the
following lemma helps us to understand the nature of this cone.

Lemma 3.2. Let F ∈ Q(X) be nonempty-valued. Then,

[F p(0)]+ = dom[(F ∗)p] ∀p ≥ 1 . (7)

If F ∈ Q(X) fails to be nonempty-valued, then one still has the inclusion

[F p(0)]+ ⊃ dom[(F ∗)p] ∀p ≥ 1 .

Proof. Formula (7) appears in Phat [10, Proposition 2.3].

Next we establish an estimate for F p(0) when F is the inner-limit of a certain sequence
{Fn}n∈IN .
Proposition 3.3. Assume that {Fn}n∈IN ⊂ Q(X) satisfies the boundedness criterion (4).
Then,

(innlim Fn)
p(0) ⊂ innlim[F p

n(0)] ∀p ≥ 1 . (8)

Proof. As a preliminary step, we shall prove that

outlim
[

dom(Gp
n)
]

⊂ dom
[

(outlim Gn)
p
]

∀p ≥ 1 , (9)

where Gn = F ∗
n . We proceed by induction. For p = 1, the above inclusion becomes

outlim
[

dom Gn

]

⊂ dom
[

outlim Gn

]

.

Let q be in the outer-limit of {domGn}n∈IN . One can find a strictly increasing function
ϕ : IN −→ IN and a sequence {qn}n∈IN −→ q such that

qn ∈ dom Gϕ(n) ∀n ∈ IN .

For each n ∈ IN , pick up any wn ∈ Gϕ(n)(qn). By Propositions 2.2 and 2.3, we know that

||wn|| ≤ N
[

Fϕ(n)

]

||qn|| ≤ M
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for some constant M < ∞. Since {wn}n∈IN is bounded, the limit w := limwψ(n) exists for
some strictly increasing ψ : IN −→ IN . Thus,

(

q, w) = lim
(

qψ(n), wψ(n)

)

with (qψ(n), wψ(n)

)

∈ Gr G(ϕ◦ψ)(n) .

Hence, (q, w) ∈ outlim [Gr Gn]. This proves that q ∈ dom [outlim Gn]. So, the case p = 1
has been taken care of. Let us admit (9) for a given p. We need to show that (9) remains
true for p+ 1. Pick up any

q ∈ outlim [dom (Gp+1
n )] .

Then one can find a strictly increasing function ϕ : IN −→ IN and a sequence {qn}n∈IN −→
q such that

qn ∈ dom
[

Gp+1
ϕ(n)

]

∀n ∈ IN .

For each n ∈ IN , pick up any wn ∈ Gp+1
ϕ(n)(qn). Thus, one can find a sequence {zn}n∈IN

such that
wn ∈ Gp

ϕ(n)(zn) and zn ∈ Gϕ(n)(qn) .

Propositions 2.2 and 2.3 ensure the boundedness of {zn}n∈IN . Thus, z := lim zψ(n) exists
for some strictly increasing ψ : IN −→ IN . The relations

zψ(n) ∈ dom[Gp
(ϕ◦ψ)(n)] , zψ(n) ∈ G(ϕ◦ψ)(n) (qψ(n)

)

∀n ∈ IN ,

yield z ∈ outlim [dom (Gp
n)] and z ∈(outlim Gn)(q), respectively. By invoking the in-

duction hypothesis, one arrives at z ∈ dom [(outlim Gn)
p], that is to say, the set (outlim

Gn)
p(z) contains at least one element, say w ∈ X. From the definition of the composition

operation, it is clear that

w ∈
[(

outlim Gn

)p ◦ (outlim Gn)
]

(q) .

In this way one arrives at the desired conclusion, namely

q ∈ dom
[

(outlim Gn)
p+1

]

.

Now we can prove the inclusion (8). Let F := innlim Fn. Fix any p ≥ 1 and define
Kn := [dom((F ∗

n)
p)]+ . According to Lemma 3.2 , Kn coincides with the closure of F p

n(0).
Thus

innlim[F p
n(0)] = innlim Kn = {outlim K+

n }+

= {outlim[dom((F ∗
n)

p)]}+ ⊃ {dom[(outlim F ∗
n)

p]}+ .

But, (3) says that
Gr[outlim F ∗

n ] ⊂ Gr[F ∗] ,

from where one obtains

dom[(outlim F ∗
n)

p] ⊂ dom[(F ∗)p] .

The conclusion is that

innlim[F p
n(0)] ⊃ {dom[(F ∗)p]}+ ⊃ F p(0) .
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Due to the monotonicity property (5), it is natural to introduce the expression

Ind(F ) := inf{p ≥ 1 | X = F p(0)− F p(0) } ,

which will be called the index of the convex processs F : X −→−→X. Observe that Ind(F ) =
∞ if the rank condition (6) fails. Thus, a convex process is reproducing if and only if, its
index is finite. Some calculus rules for computing indices are presented below :

Proposition 3.4. (Rule of the iterated composition). For a convex process F : X −→−→X,
the following three conditions are equivalent :

(a) F is reproducing ;

(b) there exists m ≥ 1 such that Fm is reproducing ;

(c) ∀m ≥ 1 , Fm is reproducing.

More precisely,

∀m ≥ 1 ,







Ind(Fm) =
⌊ Ind(F )−1

m

⌋

+ 1 = d Ind(F )
m

e

m Ind(Fm)−m+ 1 ≤ Ind(F ) ≤ m Ind(Fm) ,

(10)

where bγc and dγe denote, respectively, the lower and upper integer part of γ ∈ IR.

Proof. It is based on the relation

(Fm)p(0) = Fm p(0) ∀m, p ≥ 1 .

Proposition 3.5. (Rule of the inner-limit). Let F = innlim Fn, with {Fn}n∈IN ⊂ Q(X)
satisfying the boundedness criterion (4). Then,

Ind(Fn) ≤ Ind(F ) for all n ∈ IN large enough . (11)

Proof. One can assume that F is reproducing ; otherwise Ind(F ) = ∞, and there is
nothing to prove. Let p be the index of F . If the conclusion (11) was false, then one could
find a strictly increasing function ϕ : IN −→ IN such that

Ind
(

Fϕ(n)

)

> p ∀n ∈ IN .

The above inequality says that F p
ϕ(n)(0) does not span the whole space X. In other words,

F p
ϕ(n)(0) lies in a set of the form

Ker qn := {v ∈ X | 〈qn, v〉 = 0} , with ||qn|| = 1 .

For some strictly increasing ψ : N −→ IN , the sequence {qψ(n)} converges to a nonzero
vector q ∈ X. By applying Proposition 3.3, one gets

F p(0) ⊂ innlim [F p
n(0)] ⊂ innlim [F p

(ϕ◦ψ)(n)(0)] ⊂ innlim[Ker qψ(n)] ⊂ Ker q .

The linear space spanned by F p(0) is thus contained in Ker q. The fact that F p(0) does
not span X contradicts the very definition of p.

We state now the main result of this section.

Proposition 3.6. Let F = innlim Fn, with {Fn}n∈IN ⊂ Q(X) satisfying the boundedness
criterion (4). Then, the following implication holds true :

F is reproducing =⇒ for all n ∈ IN large enough, Fn is reproducing . (12)

Proof. Apply Proposition 3.5.
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4. The role of eigenvalues

As in the case of linear differential systems, eigenvalues and eigenvectors play a funda-
mental role in the analysis of differential inclusions whose right-hand sides are convex
processes.

Definition 4.1. The number λ ∈ IR is said to be an eigenvalue of the multivalued oper-
ator G : X −→−→X if λξ ∈ G(ξ) for some nonzero vector ξ ∈ X. The point spectrum of
G is the set

σ(G) :=
{

λ ∈ IR : λξ ∈ G(ξ) for some ξ ∈ X \ {0}
}

of all eigenvalues of G.

General spectral results for multivalued operators can be found in the papers by Seeger
and collaborators [5, 6, 7, 13]. We shall borrow from them the formula (cf.[6, Corollary
3.3])

outlim σ(Gn) ⊂ σ(outlim Gn) , (13)

which applies to any sequence {Gn}n∈IN of positively homogeneous operators Gn : X −→−→X.
Besides (13), we shall need also the following two auxiliary results.

Proposition 4.2. Let F ∈ Q(X) be nonempty-valued. Then, σ(F ∗) ⊂ [−N(F ) , N(F )] .

Proof. It follows from Proposition 2.2.

Proposition 4.3. Let F = innlim Fn, with {Fn}n∈IN ⊂ Q(X) satisfying the boundedness

criterion (4). Then,

σ(F ∗) = ∅ =⇒ for all n ∈ IN large enough, σ
(

F ∗
n

)

= ∅ . (14)

Proof. If the conclusion of (14) was false, then it would be possible to find a strictly
increasing function ϕ : IN −→ IN such that

σ
(

F ∗
ϕ(n)

)

6= ∅ ∀n ∈ IN .

Built up any sequence
{

λn}n∈IN satisfying

λn ∈ σ
(

F ∗
ϕ(n)

)

, ∀n ∈ IN .

Thanks to Propositions 2.3 and 4.2, {λn}n∈IN is necessarily bounded. Thus, for some

increasing function ψ : IN −→ IN , the sequence {λψ(n)}n∈IN converges to a certain λ ∈ IR.

Due to (3) and (13), one can write

λ ∈ outlim σ
(

F ∗
(ϕ◦ψ)(n)

)

⊂ outlim σ
(

F ∗
n

)

⊂ σ
(

outlim F ∗
n

)

⊂ σ
(

F ∗) ,

contradicting in this way the fact that the point spectrum of F ∗ is empty.

5. Preservation of controllability

The results of the preceding sections are used here to prove that the concept of control-
lability is stable with respect to a certain class of perturbations.

Theorem 5.1. Let F = innlim Fn, with {Fn}n∈IN ⊂ Q(X) satisfying the boundedness
criterion (4). Then, the following implication holds true :

F is controllable =⇒ for all n ∈ IN large enough, Fn is controllable . (15)
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Proof. Each Fn is nonempty-valued. If one relies on the equivalence (2), then it suffices
to apply Proposition 3.6 and 4.3.

Some final comments are in order :

(a) That each Fn is controllable does not guarantee the controllability of the limit process
F . The converse of implication (15) does not hold, even in the context of linear control
systems!

(b) The above remark applies also to the concept of reproducibility : the converse of
implication (12) is not true in general.

(c) The boundedness criterion (4) has played a crucial role in Sections 3 and 4. This
condition has secured not only the nonempty-valuedness of each Fn, but also a more
substantial property :

⋃

n∈IN

F ∗
n(B) is bounded whenever B is bounded .

Dropping the latter requirement would invalidate Propositions 3.3, 3.5, 3.6, and 4.3 .
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