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We study the homogenization of vector problems on thin periodic structures in IRn. The analysis is carried
out within the same measure framework that we previously enforced in [4] for scalar problems, namely
each periodic, low-dimensional structure is identified with the overlying positive Radon measure µ. Thus,
we deal with a sequence of measures {µε}, whose periodicity cell has size ε converging to zero, and our
aim is to identify the limit, in the variational sense of Γ-convergence, of the elastic energies associated to
µε. We show that the explicit formula for such homogenized functional can be obtained combining the
application of a two-scale method with respect to measures, and a fattening approach; actually, it turns
out to be crucial approximating µ by a sequence of measures {µδ}, where δ is an auxiliary, infinitesimal
parameter, associated to the thickness of the structure. In particular, our main result is proved under the
assumption that the structure is asymptotically not too thin (i.e. δ ½ ε), and, for all δ > 0, µδ satisfy
suitable fatness conditions, which generalize the connectedness hypotheses needed in the scalar case. We
conclude by pointing out some related problems and conjectures.
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1. Introduction

In this paper we deal with the homogenization of elasticity problems on thin structures.
Following the approach proposed in [4], we identify periodic structures to periodic positive
measures on IRn; for instance, a periodic network of bars may be represented through the
overlying one-dimensional Hausdorff measure. Thus, for a given periodic Radon measure
µ on IRn, we are led to study the asymptotic behaviour, as the positive parameter ε tends
to zero, of a sequence of functionals of the type

Jε(u) :=

∫

Ω

j (e(u)) dµε , u ∈ C1
0(Ω; IR

n) , (1)

where Ω is a bounded open subset of IRn, e(u) is the symmetric part of the gradient of u,
and µε are the rescaled measures µε(B) := εnµ

(

B
ε

)

; the integrand j(z) is assumed to be

convex, to depend only on the symmetric part z∗ := z+zT

2
of the matrix z ∈ IRn2

and to
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satisfy standard p-growth conditions, i.e., for all z ∈ IRn2
and suitable positive constants

c, C,

c |z∗|p ≤ j(z∗) = j(z) ≤ C(1 + |z∗|p) . (2)

For instance, in the case of an isotropic linearly elastic body, j will take the form j(z) =
β|z∗|2 + α

2
| tr(z∗)|2, being α, β the so-called Lamé constants.

In [4] we treated the scalar case: when u belongs to C1
0(Ω) and e(u) is replaced by ∇u

in (1), we proved a quite general homogenization theorem for the limit of the energies
{Jε} in the variational sense of Γ-convergence [8]. The method we used relies on a two-
scale structure result for sequences of gradients, holding under suitable connectedness
assumptions on the measure µ. Moreover, we investigated the case of reinforced structures.
Such kind of periodic structures are made by bars (or layers) of a very small cross-section
(or thickness) δ, so that the associated measures µδ are absolutely continuous with respect
to the Lebesgue measure, and they weakly converge, as δ tends to zero, to a measure µ
supported on a thin structure (the zero thick skeleton). More precisely, given a periodic
measure µ concentrated on a low-dimensional set in IRn, we think of µδ as the convolution
of µ with a sequence of mollifiers {ρδ}, or else as the rescaled Lebesgue measure over a
δ-tubular neighbourhood of the support of µ. In this situation, we showed that the
connectedness of µ guarantees the commutativity of the limit process with respect to ε
(the periodicity parameter) and δ (the fattening parameter).

In occasion of the French-German-Italian Conference on Optimization held in Montpellier
on September 2000, Gérard Michaille asked us a question about the possibility of extend-
ing our results to the vector case. As far as we knew, it would have been reasonable
to expect a positive answer; this was partially motivated by the fact that a relaxation
theorem for the stored energy functional of elasticity had already been proved in [2].

In this paper, we show that actually the same two-scale technique, considered with respect
to a general measure µ, may be fruitfully employed to handle the problem also in the vector
case; nevertheless, attention must be paid because some remarkable different features come
into light.

Actually, one can adapt the approach of [2] to the periodic setting, thus recovering the
space of all finite energy displacements; moreover a two-scale structure theorem for all
the possible two-scale limits of symmetric parts of gradients can be proved. In spite, the
assumptions that are needed on µ for the validity of such result are so stringent that in
practise they are never satisfied by thin structures.

This fact leads to reconsider the δ-fattening approach, which in the scalar case was
unessential in view of the above mentioned commutativity result [4, Theorem 6.1]. At
this regard, the behaviour of the elasticity case can be summarized as follows:

• the δ-fattening approach is in some sense necessary to handle the problem, as oth-
erwise the Γ-limit of the sequence of energies given by (1) may degenerate to zero,
even for quite simple measures µ;

• the passage to the limit with respect to the periodicity and the thickness parameters
fails in general to be commutative;

• for every fixed δ, a homogenization result holds in suitable generality replacing the
measure µ in (1) by the approximating measures µδ defined as above; so the most
appropriated procedure seems to be first apply such homogenization result to each
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µδ, and secondly pass to the limit as δ tends to zero; let us mention that such a
procedure has been extensively studied using quite different techniques (based on the
existence of extension operators) for which we refer to [7] and references therein;

• if we let δ depend on ε, and we let ε (and δ(ε) at the same time) go to zero, it would
be interesting to characterize the rate of convergence to zero of the function δ = δ(ε)
which ensures a non-vanishing limit energy; in this case, we would like such energy
to coincide with the Γ-limit obtained by the method described in the previous item,
that is making tend to zero ε and δ in the order.

Each of these aspects of the problem is discussed therein. The outline is the following.

In Section 2, we introduce some notation and preliminaries; in particular, we give a short
survey of our earlier results on scalar homogenization.

Section 3 is devoted to the relaxation of elastic energies, via suitable notions of admissible
displacements and tangential strain operator.

In Section 4, we deal with the homogenization of vector problems: in Section 4.1 we
exploit the two-scale technique to find the Γ-limit of the functionals Jε; this can be done
under suitable assumptions on µ, which are shown to fail for thin structures in Section
4.2.

In Section 5, we focus on the fattening approach, which allows to use fruitfully the result
found in Section 4.1 provided ε first tend to zero (see Theorem 5.2) or δ(ε) ½ ε (see
Theorem 5.4).

In Section 6 we discuss some related problems and conjectures. Throughout the following

sections, some of the proofs are omitted since they follow by minor changes from the
results of our previous paper [4], to which the reader is referred.

2. Notation and preliminaries

We begin by introducing some notation which are used throughout the paper.

Let Ω be an open bounded subset of IRn with boundary ∂Ω of class C1, let IRn2

sym be
the space of n × n symmetric real matrices, and let p, p′ ∈ (1,+∞) be fixed conjugated

exponents. If not otherwise specified, j will denote a real convex integrand on IRn2

sym

satisfying (2).

In the following, µ will always be a positive, Y -periodic Radon measure on IRn, where Y :=
(0, 1)n; we assume for simplicity the not restrictive conditions µ(Y ) = 1 and µ(∂Y ) = 0.
For every ε > 0, we let µε be the (εY )-periodic measure defined by

∫

Ω

ϕ(x) dµε(x) := εn
∫

Ω/ε

ϕ(εx) dµ(x) ∀ϕ ∈ C0(Ω) , (3)

being C0(Ω) the space of continuous and compactly supported functions on Ω.

We also set T the n-torus in IRn. Whenever a µ-measurable function is Y -periodic (or
kY -periodic for a positive integer k), its domain will be indicated by T (or kT).

We recall that, for a given σ ∈ L1
µ,loc(Ω, IR

n2

sym), the vector-valued distribution div(σµ) is
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defined on Ω by

〈div(σµ), ψ〉 := −
∫

Ω

σ · ∇ψ dµ ∀ψ ∈ C∞
0 (Ω; IRn) .

Here and in the following, the notation A · B stands for the scalar product between two
matrices A,B ∈ IRn2

sym, or sometimes between two vectors A,B ∈ IRn.

When div(σµ) is a measure absolutely continuous with respect to µ, with a density be-
longing to Lp′

µ (Ω; IR
n), we write for brevity div(σµ) ∈ Lp′

µ (Ω; IR
n), and we denote by divµ σ

the derivative d
dµ

div(σµ). The analogous definitions are adopted if σ takes values in IRn

(in this case, div(σµ) is a scalar distribution).

We set Tµ(x) the tangent space to µ at x, namely

Tµ(x) := µ− ess
⋃

{

Φ(x) : Φ ∈ Xp′

µ (Ω; IR
n)
}

for µ-a.e. x ∈ Ω , (4)

where the class Xp′
µ (Ω; IR

n) of tangent fields to µ is given by

Xp′

µ (Ω; IR
n) :=

{

Φ ∈ Lp′

µ (Ω; IR
n) : div(Φµ) ∈ Lp′

µ (Ω)
}

.

For more details on the properties of the above notion of Tµ, see [4] and references therein
(in particular, see [5] for the meaning of the µ-essential union). We just remark that for
usual measures the right hand side in (4) is independent of the exponent p′; further, Tµ

coincides with the usual tangent space to S when µ is the Hausdorff measure Hk over a
k-Lipschitz manifold S in IRn. Let us now briefly recall the main Γ-convergence theorem

proved in [4] for the sequence {Fε} which corresponds to (1) in the scalar case, that is

Fε(u) :=

∫

Ω

f (∇u) dµε , u ∈ C1
0(Ω) . (5)

Here the integrand f is assumed to be convex on IRn and to satisfy the analogous of (2),
i.e. c|z|p ≤ f(z) ≤ C(1 + |z|p) for all z ∈ IRn.

The Γ-limit of {Fε} will be computed with respect to the convergence uεµε⇀uLn, in-
tended in the sense of the weak ∗ convergence of measures on IRn (here and in the following,
if u is a function on Ω vanishing on ∂Ω, we still denote by u its extension to zero out of
Ω).

More precisely, we preliminarily redefine Fε on the class M of Radon measures on IRn by
setting

Fε(λ) =

{
∫

Ω
f
(

∇u
)

, dµε if λ = uµε , u ∈ C1
0(Ω) ,

+∞ otherwise.
(6)

Then we say that Fε
Γ−→F hom if, for every λ ∈ M, both the Γ- liminf and Γ- limsup

inequalities hold, which read respectively:

inf
{

liminf
ε→0

Fε(λε) : λε⇀λ
}

≥ F hom(λ) ; (7)

inf
{

limsup
ε→0

Fε(λε) : λε⇀λ
}

≤ F hom(λ) . (8)
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In order to find the explicit expression of F hom, suitable assumptions on µ are required.
Their formulation involves the notions of µ-tangential gradient and related Sobolev spaces
associated to µ. The µ-tangential gradient ∇µ can be defined, for any smooth function
ψ, by PTµ [∇ψ], being PTµ the orthogonal projector from IRn onto Tµ. If one considers the
operator ∇µ : Lp

µ(Ω) → Lp
µ(Ω; IR

n) as defined either on the domain D(∇µ) := C∞
0 (Ω), or

on the domain D(∇µ) := C∞(T), in both cases it turns out to be closable. The domain
of its unique closed extension gives in the former case the Banach space H1,p

0,µ(Ω) of µ-
Sobolev functions vanishing at the boundary of Ω, and in the latter case the Banach space
H1,p

µ (T) of periodic µ-Sobolev functions. We also set H1,p
µ,loc := {u ∈ Lp

µ,loc(IR
n) : uψ ∈

H1,p
0,µ(IR

n) ∀ψ ∈ C∞
0 (Ω)}.

We can now summarize the connectedness assumptions on µ introduced in [4]. They are
given in relation to the growth exponent p of the integrand f in (5). For remarks and
examples concerning definitions below, we refer to [4, Section 4]; c and C are supposed
real constants.

• µ is weakly p-connected on T if:

(C1) u ∈ H1,p
µ (T), ∇µu = 0 µ-a.e. ⇒ ∃ c : u = c µ-a.e. ;

• µ is weakly p-connected on IRn if:

(C2) u ∈ H1,p
µ,loc, ∇µu = 0 µ-a.e. ⇒ ∃ c : u = c µ-a.e. ;

• µ is strongly p-connected on T if:

(C3) ∃C :

∫

Y

|u|p dµ ≤ C

∫

Y

|∇µu|p dµ , ∀u ∈ H1,p
µ (T) with

∫

Y

u dµ = 0 ;

• µ is strongly p-connected on IRn if:

(C4) ∃C :

∫

kY

|u|p dµ ≤ C kp

∫

kY

|∇µu|p dµ ∀k ∈ IN ,∀u ∈ H1,p
µ,loc with

∫

kY

u dµ = 0 .

Finally, we are in a position to state the homogenization theorem holding for measures
which are strongly p-connected on IRn. For the proof, as well as for weaker versions of
this result, which are valid when µ satisfies (C3) but possibly not (C4) and (C2), we refer
to [4].

Theorem 2.1. Let µ satisfy (C4). Then the sequence {Fε} defined in (5) Γ-converges
on M as ε → 0 to the homogenized functional F hom given by

F hom(λ) =

{
∫

Ω
fhom(∇u(x)) dx if λ = uLn , u ∈ W 1,p

0 (Ω)

+∞ otherwise,
(9)

where for any z ∈ IRn the integrand fhom(z) is defined via the unit-cell problem

fhom(z) : = inf
{

∫

Y

f(z +∇u(y)) dµ : u ∈ C∞(T)
}

= inf
{

∫

Y

fµ(y, PTµ(y)z +∇µu(y)) dµ : u ∈ H1,p
µ (T)

}

,

(10)

being
fµ(y, z) := inf

{

f(z + ξ) : ξ ∈ [Tµ(y)]
⊥} , ∀(y, z) ∈ Y × IRn . (11)
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3. Relaxation of elastic energies

In order to extend Theorem 2.1 to the case of elasticity, we need to restate the unit cell
problem (10) in a suitable space of admissible periodic displacements associated with the
measure µ. Such functional space can be obtained by a procedure similar to the one
adopted in [2] within the non-periodic setting. Therefore, for the sake of clearness, let us
briefly recall the line followed in [2]: this will also enable us to give some explicit examples
of relaxation which will be useful in Section 4.2.

In [2, Section 3], the authors define, for any positive Radon measure µ on IRn and µ-

a.e. x ∈ Ω, a linear subspace Mµ(x) of IR
n2

sym as

Mµ(x) := µ− ess
⋃

{

Φ(x) : Φ ∈ Xp′

µ (Ω, IR
n2

sym)
}

,

where
Xp′

µ (Ω, IR
n2

sym) :=
{

Φ ∈ Lp′

µ (Ω, IR
n2

sym) : div(Φµ) ∈ Lp′

µ (Ω, IR
n)
}

.

The tangential strain operator eµ : Lp
µ(Ω; IR

n) → Lp
µ(Ω, IR

n2

sym) is defined by

D(eµ) := C∞
0 (Ω; IRn) , eµu := PMµ [e(u)] , (12)

where D(eµ) is the domain of eµ, and PMµ is the orthogonal projector onto Mµ. In
particular, one can show that

(i) if µ is the Lebesgue measure over an open subset of IRn, then eµu coincides with the
usual strain tensor e(u);

(ii) if µ is the Hausdorff measure H1 or H2 over a one or two-dimensional structure in
IR3, then eµu = PTµ(e(u))PTµ , being PTµ the orthogonal projector on Tµ defined in
(4).

It turns out that the operator eµ defined by (12) is closable (see Lemma 3.2 of [2]). There-
fore, one can consider the completion of C∞

0 (Ω; IRn) endowed with the norm ‖u‖p,µ,Ω +
‖eµu‖p,µ,Ω, finding by this way the Banach space D1,p

0,µ(Ω; IR
n) of admissible displacements.

Such space can also be characterized by duality and by relaxation. More precisely, using
the duality Lemma 3.1 of [4], one obtains:

u ∈ D1,p
0,µ(Ω; IR

n) ⇔ ∃ C > 0 : |〈u, div(PMµσµ)〉| ≤ C‖σ‖p′,µ,Ω ∀σ ∈ D(e∗µ) . (13)

Here e∗µ denotes the adjoint operator of eµ, and one can easily check that an element σ of

Lp′
µ (Ω; IR

n2

sym) belongs to D(e∗µ) if and only if div(PMµσµ) ∈ Lp′
µ (Ω; IR

n).

On the other hand, D1,p
0,µ(Ω; IR

n) coincides with the finiteness domain of the relaxed func-

tional J in the Lp
µ-topology of

J(u) =

{
∫

Ω
j(e(u)) dµ if u ∈ C∞

0 (Ω; IRn)

+∞ if u ∈ Lp
µ(Ω; IR

n) \ C∞
0 (Ω; IRn).

Indeed, one has

J(u) =

{
∫

Ω
jµ(x, eµu) dµ if u ∈ D1,p

0,µ(Ω; IR
n)

+∞ if u ∈ Lp
µ(Ω; IR

n) \ D1,p
0,µ(Ω; IR

n) ,
(14)
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where
jµ(x, z) := inf

{

j(z + ξ) : ξ ∈ [Mµ(x)]
⊥} , ∀(x, z) ∈ Ω× IRn2

. (15)

For instance, in the case of an isotropic linearly elastic body, when j(e(u)) = β|e(u)|2 +
α
2
| tr(e(u))|2, the explicit expression of jµ becomes jµ(y, eµu) =

αβ
α+2β

| tr(eµu)|2 + β|eµu|2

in the case of a membrane, and jµ(y, eµu) =
β(3α+2β)
2(α+β)

|eµu|2 in the case of a string.

Of course, one is free to choose a periodic measure µ. In Examples 3.1 and 3.2 below, we
take as a periodic measure µ the Hausdorff measure H1 over a truss structure composed of
straight linear elastic beams with constant stiffness, which are linked one to each other at
their ends (called nodes). It turns out that the relaxed energy sees only the longitudinal
component of the displacement on each bar. In fact, the total displacement vector field u
has an energetic meaning only at that nodes of the frame where the directions of outcoming
bars span all IRn. In that sense, when dealing with a frame made of trusses, it is natural to
consider loads concentrated on the nodes and to write the total energy in terms of finitely
many variables corresponding to the displacement of each node (see for instance [6], [11]).
Unfortunately, such a representation is available only for one-dimensional structures.

Example 3.1. Let us detail what the above described tools give when µ is the periodic
measure in IR3 whose restriction to the unit cell is the Hausdorff measureH1 over a system
of threads parallel to the three coordinate axes (see Figure 3.1 below); for simplicity, we
normalize µ in order that µ(Y ) = 1.

Figure 3.1

We denote by µj the measure associated to the fibers disposed along ej, so that µ =
µ1 + µ2 + µ3. We claim that the space of admissible displacements can be characterized
by:

u ∈ D1,p
0,µ(Ω; IR

3) ⇔ uj ∈ H1,p
0,µj(Ω) for every j = 1, 2, 3 . (16)

Before proving (16), let us add few comments on it.

Note that (16) provides a well-defined notion of displacement at each node x0 in the
network determined by spt(µ). Actually, for a given u ∈ D1,p

0,µ(Ω, IR
3), the component of

u along ej at x0 can be determined as the trace of uj at x0.

We also observe that, taking as a density energy j(z) = β|z∗|2+ α
2
| tr(z∗)|2, the relaxation

formula (14) reads

J(u) =







β(3α+ 2β)

2(α+ β)

[∫

Ω

∣

∣

∣

∂u1

∂x1

∣

∣

∣

2

dµ1 +

∫

Ω

∣

∣

∣

∂u2

∂x2

∣

∣

∣

2

dµ2 +

∫

Ω

∣

∣

∣

∂u3

∂x3

∣

∣

∣

2

dµ3

]

if u ∈ D1,2
0,µ(Ω; IR

3),

+∞ otherwise,
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where, for every u ∈ D1,2
0,µ(Ω; IR

3) and every j = 1, 2, 3,
∂uj

∂xj

is well defined (as a L2
µj(Ω)

function), in view of (16).

Proof of (16). One can adopt two different arguments, based respectively on:

(i) exploiting the characterization by duality given by (13);

(ii) using directly the definitions of D1,p
0,µ(Ω; IR

3) and H1,p
0,µj(Ω).

For the reader’s convenience, let us explain both methods. (i) Let σ ∈ Lp′
µ (Ω, IR

n2

sym). We

have:

div(PMµσµ) =
3

∑

j=1

div
(

σ(ej ⊗ ej)µj
)

=
3

∑

j=1

∂σjj(x)

∂xj

ejµj .

Therefore, the requirement div(PMµσµ) ∈ Lp′
µ (Ω; IR

3) can be reformulated as div(σ(ej ⊗
ej)µj) ∈ Lp′

µj
(Ω, IR3) for j = 1, 2, 3, or equivalently (PT

µj
σjµj) ∈ Xp′

µj
(Ω), where σj denotes

the jth column of σ. Inserting such condition into (13), we infer that (16) holds. (ii) In

view of the definitions of D1,p
0,µ(Ω; IR

3) and H1,p
0,µj(Ω), since the measures µj are mutually

singular, it is immediate that the implication ⇒ in (16) holds. To show the converse, as-
sume that, for every j = 1, 2, 3, the components uj of u belong to H1,p

0,µj(Ω). Then we claim

that u can be approximated in the Lp
µ-norm by a sequence {vh} ⊂ C∞

0 (Ω; IR3) such that

suph

∫

Ω
|eµvh|p dµ < +∞. Indeed, since uj ∈ H1,p

0,µj(Ω), there exists {wj
h}h ⊂ C∞

0 (Ω), con-

verging to uj in the Lp
µj -norm, such that suph

∫

Ω
|∇µjwj

h|p dµj < +∞. Choose a sequence of

positive numbers {ρh}, converging to zero as h → +∞, such that lim
h→+∞

(

ρh ‖wj
h‖

p
∞,Ω

)

= 0

for j = 1, 2, 3. For every h ∈ IN, let {Bh,k}k be family of the balls of radius ρh cen-
tered at the points of Ω ∩ ZZ 3, with k = 1, . . . , K(Ω). Consider the sequence of vec-
tor functions {vh} whose component vjh is obtained as the restriction of wj

h to the set
F :=

[

spt(µ)\
⋃

k Bh,k

]

∪
[⋃

k Bh,k ∩ spt(µj)
]

, for j = 1, 2, 3. One can extend each vjh to a

smooth function on Ω (still denoted by vjh), such that ‖vjh‖∞,Ω ≤ ‖wj
h‖∞,Ω. By construc-

tion, the sequence of vector functions {vh} thus obtained lies in C∞
0 (Ω; IR3), and satisfies

suph

∫

Ω
|eµvh|p dµ < +∞. Moreover, lim

h→+∞

∫

Ω
|vjh − uj|pdµ = 0, since, by the definition of

vjh and the choice of the sequence {ρh}, it holds

∫

Ω

|vjh − wj
h|

pdµ =

∫

Ω\F
|vjh − wj

h|
pdµ

≤ 2p−1
(

‖vjh‖
p
∞,Ω + ‖wj

h‖
p
∞,Ω

)

µ(Ω \ F ) ≤ 2p+2K(Ω)ρh‖wj
h‖

p
∞,Ω .

Example 3.2. Let us consider the case when µ is the periodic measure in IR2 whose
restriction to the unit cell is the Hausdorff measure H1 over a network containing also
oblique bars (see Figure 3.2 below).
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Figure 3.2

For j = 1, 2, 3, 4, we denote by µj the measure associated to the fibers along the direction
νj, being ν1 := e1, ν2 := e2, ν3 = e1+e2, ν4 = e1−e2. In this case, if one takes four scalar
functions uj, each one belonging to H1,p

0,µj(Ω), in general it does not exist an admissible

displacement u ∈ D1,p
0,µ(Ω; IR

2) whose component (u ·νj) along νj equals uj. The existence
of such a displacement is subject to the additional compatibility conditions

{

tru3(x0) = tru1(x0) + tru2(x0),

tru4(x0) = tru1(x0)− tru2(x0),

which must be satisfied at each node x0 of spt(µ). This can be obtained argueing in
a similar way as in Example 3.1, for instance by duality. Moreover, still for j(z) =
β|z∗|2 + α

2
| tr(z∗)|2, the relaxed energy takes the form

J(u) =











β(3α+ 2β)

2(α+ β)

4
∑

j=1

∫

Ω

∣

∣

∣

∂(u · νj)

∂νj

∣

∣

∣

2

dµj if u ∈ D1,2
0,µ(Ω; IR

2),

+∞ otherwise,

where, for every u ∈ D1,2
0,µ(Ω; IR

2) and every j = 1, 2, 3, 4, the expression
∂(u · νj)

∂νj
makes

sense (as a L2
µj(Ω) function), as u · νj belongs to H1,2

0,µj(Ω).

Periodic displacements. Let us adapt the previous framework to Y -periodic functions.
Set

Xp′

µ (T, IRn2

sym) :=
{

Φ ∈ Lp′

µ (T, IRn2

sym) : div(Φµ) ∈ Lp′

µ,loc(IR
n, IRn)

}

.

Notice that, since µ(∂Y ) = 0, the periodicity condition satisfied by functions in

Xp′
µ (T, IRn2

sym) does not affect their µ-essential union, so that

µ− ess
⋃

{

Φ(x) : Φ ∈ Xp′

µ (T, IRn2

sym)
}

= Mµ(x) for µ-a.e. x ∈ Ω .

In particular, we can restrict the tangential strain operator to the class of smooth periodic
functions, namely we can consider the operator eµ : Lp

µ(T; IRn) → Lp
µ(T, IRn2

sym) defined
by

D(eµ) := C∞(T; IRn) , eµu := PMµ [e(u)] . (17)

Argueing as in the proof of [4, Lemma 3.4], one can show that the integration by parts
formula

∫

Y

eµu · Φ dµ = −
∫

Y

u divµΦ dµ (18)
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holds for every u ∈ C∞(T; IRn) and every Φ ∈ Xp′
µ (T; IRn2

sym). This allows to adapt the
proof of [2, Lemma 3.2] to the periodic setting, thus proving that the operator eµ defined
by (17) is still closable. Therefore, we can consider the completion of C∞(T; IRn) endowed
with the norm ‖u‖p,µ,Y + ‖eµu‖p,µ,Y . By this way, we find the Banach space of admissible
periodic displacements, that we call D1,p

µ (T; IRn). It turns out to be a closed subspace of

D1,p
µ,loc :=

{

u ∈ Lp
µ,loc(IR

n; IRn) : uψ ∈ D1,p
0,µ(IR

n; IRn) ∀ψ ∈ C∞
0 (IRn)

}

.

Extending the notion of tangential strain and the integration by parts formula (18) to
every u ∈ D1,p

µ (T; IRn), one can easily generalize the relaxation formula (14) to the periodic
case. More precisely, one finds that the relaxed functional of

J(u) =

{
∫

Y
j(e(u)) dµ if u ∈ C∞(T; IRn)

+∞ if u ∈ Lp
µ(T; IRn) \ C∞(T; IRn),

is given by

J(u) =

{
∫

Y
jµ(y, eµu) dµ if u ∈ D1,p

µ (T; IRn)

+∞ if u ∈ Lp
µ(T) \ D1,p

µ (T; IRn) ,
(19)

where jµ is still given by formula (15).

4. Homogenization of vector problems by the two-scale method

4.1. Results for p-fat structures.

This section is devoted to transpose into the vector setting the main homogenization result
of [4] (cf. Theorem 4.2 below). This aim will be pursued by means of the very same two-
scale technique used for scalar problems. We recall that a sequence {vε} ∈ Lp

µε
(Ω; IRd) two-

scale converge to v0 ∈ Lp
Ln⊗µ(Ω×T; IRd) if, for every test function ϕ ∈ C∞

0 (Ω; C∞(T; IRd)),
it holds (componentwise)

lim
ε→0

∫

Ω

vε(x)ϕ
(

x,
x

ε

)

dµε(x) =

∫

Ω×Y

v0(x, y)ϕ(x, y) dLn(x)⊗ dµ(y) ; (20)

for more details and the properties of such convergence, we refer to [4, Section 2].

The key argument which is needed for applying the two-scale approach to the sequence
{Jε} in (1), is an explicit characterization of all the possible two-scale limits of symmetric
parts of gradients {e(uε)}, when {uε} ⊂ C1

0(Ω; IR
n) satisfy the uniform boundedness esti-

mate supε
∫

Ω
|uε|p + |e(uε)|p dµε < +∞. Such characterization requires suitable assump-

tions on the periodic measure µ. We are thus led to introduce the following notions of
p-fatness for periodic measures; they are the analogue in the vector case of the properties of
p-connectedness introduced in [4] within the scalar setting. The reason of the terminology
“p-fatnessÔ comes from the behaviour of thin structures with respect to rigid orthogonal
displacements, and it will be clarified in Section 4.2. Observe that the relations between
the different notions of fatness below look similar to those holding for the connectedness
hypotheses of Section 2, that is (H4) ⇒ (H3) ⇒ (H1) and (H4) ⇒ (H2) ⇒ (H1).

• µ is weakly p-fat on T if:

(H1) u ∈ D1,p
µ (T; IRn), eµu = 0 µ-a.e. ⇒ ∃ c ∈ IRn : u = c µ-a.e. ;
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• µ is weakly p-fat on IRn if:

(H2) u ∈ D1,p
µ,loc(IR

n; IRn), eµu = 0 µ-a.e. ⇒ ∃ c ∈ IRn, R ∈ IRn2

skew : u(x) = Rx+c µ-a.e. ;

• µ is strongly p-fat on T if:

(H3) ∃C > 0 :

∫

Y

|u|p dµ ≤ C

∫

Y

|eµu|p dµ , ∀u ∈ D1,p
µ (T; IRn) with

∫

Y

u dµ = 0 ;

• µ is strongly p-fat on IRn if:

(H4) ∃C > 0 :

∫

kY

|u|pdµ ≤ Ckp
∫

kY

|eµu|p dµ ∀k ∈ IN ,∀u ∈ D1,p
µ (kT; IRn) with

∫

kY

u dµ = 0 .

A major role in the proof of Theorem 4.1 below, is played by the following orthogonality
conditions.

– Let
V :=

{

divµΦ : Φ ∈ Xp′

µ (T; IRn2

sym)
}

⊂ Lp′

µ (T; IRn) ;

under (H1), the orthogonal space of V in Lp
µ(T; IRn) is given by

V ⊥ :=
{

u ∈ D1,p
µ (T; IRn) : ∃ c such that u = c µ-a.e.

}

. (21)

– Let
W :=

{

σ ∈ Lp′

µ (T; IRn2

sym) : div(PMµσµ) = 0
}

⊂ Lp′

µ (T; IRn2

sym) ; (22)

under (H3), the orthogonal space of W in Lp
µ(T; IRn2

sym) is given by

W⊥ =
{

eµu : u ∈ D1,p
µ (T; IRn)

}

. (23)

In order to show (21) and (23), one has to transpose into the vector framework the proofs
of Lemma 4.3 and Lemma 4.6 of [4]. Let us notice that condition (H3) ensures that the
subspace

{

eµu : u ∈ D1,p
µ (T; IRn)

}

is closed. If it is not the case, we simply have

W⊥ =
{

eµu : u ∈ D1,p
µ (T; IRn)

}

, (24)

where the closure is intended in the Lp
µ(T, IRn2

sym)-norm.

The orthogonality relations (21) and (23) can be used as crucial steps to obtain the
following two-scale structure result for symmetric parts of gradients.

Theorem 4.1. Let {uε} ⊂ C1
0(Ω; IR

n) satisfy
∫

Ω

(

|uε|p+ |e(uε)|p
)

dµε ≤ M ; possibly pass-
ing to a subsequence, assume that uε ⇀⇀ u0 ∈ Lp

Ln⊗µ(Ω × Y ; IRn) and e(uε) ⇀⇀ χ ∈
Lp
Ln⊗µ(Ω× Y ; IRn2

). Then:

(i) if µ satisfies (H1), u0(x, y) = u(x) (i.e. u0 is independent of y), where the function
u belongs to W 1,p

0 (Ω; IRn) provided µ satisfies also (H2) and (H3);

(ii) under assumptions (H2) and (H3) on µ, there exists u1 ∈ Lp
(

Ω,D1,p
µ (T; IRn)

)

such that χ(x, y) = e(u)(x) + eµ,yu1(x, y) + ξ(x, y), with u as in (i), and ξ(x, y) ∈
Lp(Ω; [Mµ(y)]

⊥). In addition, eµεuε ⇀⇀ e(u)(x) + eµ,yu1(x, y).
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Proof (sketch). The result can be deduced following the same line of the proof as in
[4, Theorem 4.2], taking care of adapting it to the vector framework. Mainly, one has to
replace the operators ∇u and ∇µu by e(u) and eµu, the space Tµ and the projector onto

Tµ by the space Mµ and the projector onto Mµ, X
p′
µ (T) by Xp′

µ (T; IRn2

sym), and H1,p
µ (T)

by D1,p
µ (T; IRn). We notice also that the assertion u ∈ W 1,p

0 (Ω; IRn) in the statement can
be proved as follows: first show, by the generalization procedure indicated above, that
e(u) ∈ Lp(Ω; IRn2

sym), then apply the Korn inequality.

We are now in a position to give the homogenization result for p-fat measures. We
preliminarily extend Jε to the class Mn of vector Radon measures on IRn by setting

Jε(λ) =

{
∫

Ω
j
(

e(u)
)

dµε if λ = uµε , u ∈ C1
0(Ω; IR

n) ,

+∞ otherwise;
(25)

then we say that {Jε} Γ-converge to Jhom if, for every λ ∈ Mn, the Γ- liminf and Γ- limsup
inequalities (7) and (8) hold, with Jε and Jhom in place of Fε and F hom.

Theorem 4.2. Let µ satisfy (H4). Then the sequence {Jε} defined in (25) Γ-converges
on Mn as ε → 0 to the homogenized functional Jhom defined by

Jhom(λ) =

{
∫

Ω
jhom(e(u)(x)) dx if λ = uLn , u ∈ W 1,p

0 (Ω; IRn)

+∞ otherwise,
(26)

where for any z ∈ IRn2

sym the integrand jhom(z) is defined via the unit-cell problem

jhom(z) : = inf
{

∫

Y

j(z + e(u)(y)) dµ : u ∈ C∞(T; IRn)
}

= inf
{

∫

Y

jµ(y, PMµ(y)z + eµu(y)) dµ : u ∈ D1,p
µ (T; IRn)

}

.

(27)

Proof. It can be derived with minor changes from the proof of [4, Theorem 5.2]. In
particular, the Γ- liminf inequality follows from the assumption (H4), Theorem 4.1, and
the relaxation formula (19); the Γ- limsup inequality can be obtained considering the
sequence uε(x) := u(x) + εϕ(x, x

ε
) for ϕ varying in C∞

0 (Ω; C∞(T; IRn)).

Remark 4.3. A weaker version of Theorem 4.2 holds for measures µ which do not enjoy
(H4) or (H2). In case of lackness of (H4), one has to restrict the statement to sequences
{uε} such that supε

∫

Ω
|uε|p dµε < +∞. In case of lackness of (H2), the homogenized

integrand is still given by formula (27), but it can degenerate along some directions. In
particular, the space W 1,p

0 (Ω; IRn) in the domain of Jhom has to be replaced by

W 1,p
0,M(Ω; IRn) := {u ∈ Lp(Ω; IRn) : ∀ z ∈ M, z · e(u) ∈ Lp(Ω) and u · (z νΩ) = 0 on ∂Ω} ,

being νΩ the unit normal to ∂Ω, and M the linear space generated in IRn2

sym by the relative

interior of the convex setK :=
{

∫

Y
Φ dµ : Φ ∈ Xp′

µ (T; IRn2

sym), divµΦ = 0, ‖Φ‖p′,µ,Y ≤ 1
}

.

The space M corresponds to the set of non-degeneracy directions of jhom; for knowing
how it can be obtained, we refer to the proof of Theorem 4.2 in [4].
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Let us notice that, when µ is the measure chosen in Example 3.1, the space M is given by
the class of all diagonal matrices, so that the corresponding jhom is not coercive on IR9

sym

(see (41)). In spite, for the measure of Example 3.2, one can check that M equals IR2, so
that the corresponding jhom is coercive on IR4

sym.

4.2. Thin structures are not p-fat.

We wish now to investigate the behaviour of low-dimensional structures in regard to the
p-fatness properties introduced in the previous section. Let us recall that, if u is a smooth
vector field on Ω, and eij, ωij denote respectively the symmetric and skew-symmetric
parts of the Jacobian matrix of u, for every x′, x′′ in Ω the Cesaro formula holds (which
can be proved by elementary integration by parts):

ui(x
′′) = ui(x

′)+ωij(x
′)(x′′

j −x′
j)+

∫ x′′

x′
eir(x)+(x′′

j −xj)

(

∂eir(x)

∂xj

− ∂ejr(x)

∂xi

)

dxr . (28)

Here the notation
∫ x′′

x′ ψ(x) dxr stands for the one-dimensional integral
∫ t

0
ψ(x′+ sν)νr ds,

being x′′ = x′ + tν.

In particular, it follows from (28) that, if u satisfies the equation e(u) = 0 on Ω, then it
can be written as u(x) = Rx+c, being R a skew-symmetric n×n matrix, and c a constant
vector. Such kind of vector fields u are usually referred in the elasticity literature as rigid
displacements.

Let us now focus attention on the two model examples when µ is given on the unit cell
respectively by the measure µ1 equal to H1 F , where F is the vertical fiber Y ∩ {y1 =
y2 = 0}, or by the measure µ2 equal toH2 S, where S is the horizontal plane Y ∩{y3 = 0}
(see Figures 4.1 and 4.2 below). In these cases, the condition eµu = 0 appearing in the
assumption (H1) yields respectively:

∂u3

∂y3
= 0 µ1-a.e. and

∂u1

∂y1
=

∂u2

∂y2
=

∂u1

∂y2
+

∂u2

∂y1
= 0 µ2-a.e. , (29)

where uj stands for the component of u along the direction ej.

In case of measure µ1, we infer from (29) that the third component u3 of umust be constant
along F (Figure 4.1 represents the case when such constant equals zero). Similarly, in
case of measure µ2, the first components (u1, u2) of u turn out to be given by a rigid
displacement on the plane S, that is (u1, u2)(x) = Rx + c for µ2-a.e. x, where R is
a constant skew-symmetric element of IR4, and c is a constant vector in IR2; recalling
that u must also satisfy a periodicity condition (cf. (H1)), this yields that u1 and u2 are
necessarily constant on S (Figure 4.2 represents the case when such constants are both
zero).

The above examples show why low-dimensional structures are not p-fat, even in the
weakest sense of assumption (H1); indeed, more generally, each of the p-connected thin
structures that we considered in [4] for the scalar case, are not p-fat.

Thus, since there is no hope to apply Theorem 4.1 to the associated measures (and also by
stronger reasons discussed in Example 4.4 below), we shall need to hang on the fattening
method, as it is illustrated in the next section. We stress once more that this is in full
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contrast with the behaviour of the scalar case, in which we showed that an advantageous
approach for reinforced structures is letting the thickness parameter δ tend to zero before
making the homogenization procedure.

u

µ

u

µ

Figure 4.1 Figure 4.2

Example 4.4. Further differences from the scalar case appear looking at the Γ-limit
of the functionals (1), which can be found by explicit computations in case of simple
measures µ, having the property to be p-connected but not p-fat. For instance, let µ be
the periodic 1-dimensional measure in IR3 considered in Example 3.1, and let us take as
a density energy j(z) = β|z∗|2 + α

2
| tr(z∗)|2. We claim that

Γ− lim
ε→0

Jε(u) = 0 ∀u ∈ W 1,2
0 (Ω) . (30)

The validity of (30), that we are going to prove, puts in evidence how stringent is the need
of the fattening approach when dealing with the homogenization of elasticity problems
on thin structures.

Proof of (30). We begin by noticing that, since j(z) is nonnegative for every z ∈ IR9, the
Γ- liminf inequality is trivially satisfied. Therefore, we focus on the Γ- limsup inequality.
In view of the density of C∞

0 (Ω; IR3) into W 1,2
0 (Ω; IR3), by a standard diagonalization

argument it is not restrictive to assume that u ∈ C∞
0 (Ω; IR3); moreover, by a well-known

property of Γ-convergence, it is enough to prove that Γ − lim
ε→0

Jε = 0, being Jε(u) =
∫

Ω
jµε(x,∇µεu) dµε the relaxed functional of Jε in the L2

µε
-norm. We stress that the

explicit expression of Jε is analogous to the one found in Example 3.1, replacing µ and
µj respectively by their ε-scalings µε and µj

ε.

Let u ∈ C∞
0 (Ω; IR3), and let us show that we can find {uε} ⊂ D1,2

0,µε
(Ω; IR3) such that

uεµε⇀uL3 , lim
ε→0

∫

Ω

|eµεuε|2 dµε = 0 . (31)

We let {uε} be the sequence whose components uj
ε are defined µε-a.e. by

uj
ε =

{

0 on spt(µj
ε) ,

3
2
uj on spt(µε) \ spt(µj

ε) .
(32)

It is easy to check that uε satisfy both conditions in (31). It remains to show that, for fixed
ε, uε belong to D1,2

0,µε
(Ω; IR3). In fact, it is immediate that uj

ε ∈ H1,2

0,µj
ε
(Ω) for every j =
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1, 2, 3; therefore, since the equivalence (16) proved in Example 3.1 still holds replacing µ
by µε, we obtain that {uε} lies in D1,2

0,µε
(Ω; IR3).

5. The fattening approach

The aim of this section is to show that, even when the underlying periodic measure µ
does not satisfy the p-fatness properties, the limit energy defined in (26) can still be used
for the homogenization of elastic thin structures. This can be justified by two different
arguments, both involving the fattening approach.

In a similar way as in [4], we consider a sequence of Y -periodic measures {µδ}, each one
associated with a structure of thickness δ, in such way that {µδ} converge weakly ∗ to µ
as δ tends to zero. When the size of the periodicity cell of µδ is scaled to ε, the elastic
energy of the corresponding δ thick, ε periodic structure can be modeled by the functional

Jδ,ε(u) =

∫

Ω

j
(

e(u)) dµδ,ε , u ∈ C1
0(Ω; IR

n) , (33)

where µδ,ε is the ε-periodization of µδ according to (3).

The simplest procedure in order to study the asymptotic behaviour of the sequence defined
in (33), consists first in homogenizing with respect to each µδ, and then let δ tend to zero.

We are going to prove that, under the assumption that for each fixed δ the measure µδ

satisfies (H4), the effective energy obtained by this method coincides with the homogenized
functional defined by (26).

In what follows, the Γ-limit of Jδ,ε as ε → 0 is computed with respect to the analogous
convergence as in Theorem 4.2, namely uεµδ,ε ⇀ uLn. Moreover, in order to simplify
the presentation, we use as measures µδ the approximations of µ by convolution. More
precisely, for every δ > 0, we let ρδ be a convolution kernel ρδ(x) :=

1
δn
ρ
(

x
δ

)

, where ρ is
assumed to be a smooth, positive, even function, with support compactly contained into
Y , and such that

∫

IRn ρ dx = 1. We set µδ := (ρδ ? µ)Ln, being ρδ ? µ the smooth function
ρδ ? µ(x) :=

∫

IRn ρδ(x− y) dµ(y); in particular, we observe that the sequence of measures
{µδ} converge weakly ∗ to µ as δ → 0+. Further, due to the periodicity of µ, it holds

ρδ ? µ(x) =

∫

Y

ρ]δ(x− y) dµ(y) , (34)

being ρ]δ the Y -periodic function obtained by ρδ through

ρ]δ(y) :=
∑

i∈ZZ n

ρδ(y − i) , y ∈ Y .

For v ∈ L1
loc(IR

n), ρδ ? v denotes the usual convolution, that is ρδ ? v(x) =
∫

IRn ρδ(x −
y)v(y) dy. Similarly as above, when v is Y -periodic, ρδ ? v can be written as an integral
over Y , i.e.

ρδ ? v(x) =

∫

Y

ρ]δ(x− y)v(y) dy , ∀v ∈ L1(T) . (35)

We keep the notation jhom for the function on IRn2

sym associated to µ according to (27);
when in such formula µ is replaced by µδ, we call jhomδ the integrand thus obtained.
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Lemma 5.1. For every z ∈ IRn2

sym, it holds

lim
δ→0+

jhomδ (z) = inf
δ>0

jhomδ (z) = jhom(z) . (36)

Proof. Let z ∈ IRn2

sym be fixed, and let us show that limsup
δ→0+

jhomδ (z) ≤ jhom(z). It is easy

to check that

limsup
δ→0+

inf
u∈C∞(T;IRn)

∫

Y

j(z + e(u)(y)) dµδ(y) ≤ inf
u∈C∞(T;IRn)

limsup
δ→0+

∫

Y

j(z + e(u)(y)) dµδ(y) .

(37)
For every u ∈ C∞(T; IRn), due to the weak ∗ convergence of µδ to µ and to the continuity
of the mapping y 7→ j(z + e(u)(y)), we have

lim
δ→0+

∫

Y

j(z + e(u)(y)) dµδ(y) =

∫

Y

j(z + e(u)(y)) dµ(y) . (38)

Combining (37) and (38), we deduce that limsup
δ→0+

jhomδ (z) ≤ jhom(z).

On the other hand, the inequality jhom(z) ≤ jhomδ (z) holds for every fixed δ > 0. To
prove such claim, it is enough to show that, for every u ∈ C∞(T; IRn), there exists
uδ ∈ C∞(T; IRn) such that

∫

Y

j(z + e(uδ)(y)) dµ(y) ≤
∫

Y

j(z + e(u)(y)) dµδ(y) .

Set uδ := ρδ ?u. Using in the order the commutation between convolution and symmetric
gradient, the Jensen’s inequality, (35), Fubini’s theorem, and (34), we obtain

∫

Y

j(z + e(uδ)(y)) dµ(y) =

∫

Y

j
[

ρδ ?
(

z + e(u)(y)
)]

dµ(y)

≤
∫

Y

ρδ ? j
[

z + e(u)(y)
]

dµ(y) =

∫

Y

{

∫

Y

ρ]δ(x− y)j[z + e(u)(y)] dy
}

dµ(x)

=

∫

Y

j[z + e(u)(y)]
{

∫

Y

ρ]δ(x− y) dµ(x)
}

dy =

∫

Y

j(z + e(u)(y)) dµδ(y) ,

which concludes the proof.

As a consequence of Lemma 5.1, we obtain the following result, which gives a first rigorous
justification for using (26) as an effective energy, whenever µ belongs to a large class of
(possibly non-fat) measures.

Theorem 5.2. Let µ be a Y -periodic measure such that, for every δ > 0, µδ := (ρδ ?µ)Ln

satisfies (H4). Moreover, assume that the integrand jhom defined by (27) is coercive on

IRn2

sym. Then

Γ−lim
δ→0

(

Γ−lim
ε→0

Jδ,ε

)

= Jhom , (39)

with Jhom defined by (26).
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Proof. By Theorem 4.2, for every δ > 0 there holds Γ− lim
ε→0

Jδ,ε = Jhom
δ , where

Jhom
δ (λ) =

{
∫

Ω
jhomδ (e(u)(x)) dx if λ = uLn , u ∈ W 1,p

0 (Ω; IRn)

+∞ otherwise.

Hence we are reduced to prove that Jhom
δ Γ-converges to Jhom as δ → 0. Since by

Lemma 5.1 we have jhomδ ≥ jhom, by the coerciveness assumption on jhom and the classical
Korn inequality, the functionals Jhom

δ , Jhom are lower semicontinuous and equi-coercive
on W 1,p

0 (Ω; IRn); thus we may substitute the weak star topology on measures λ with the
strong topology on Lp(Ω; IRn). We thus have Γ−liminf

δ→0
Jhom
δ ≥ Jhom. On the other hand,

for every u ∈ W 1,p
0 (Ω; IRn), using uδ := u as an approximating sequence, we deduce from

(36) and the monotone convergence theorem that

Γ−limsup
δ→0

Jhom
δ (u) ≤ limsup

δ→0
Jhom
δ (u) ≤ Jhom(u) .

Remark 5.3. (i) The assumption (H4) on µδ can be recovered in practice by prov-
ing that Korn inequality holds on a connected periodic open subset of IRn whose
thickness is uniformly minorized (by δ). In particular, considering one unit cell, it
implies that there exists a constant Cδ such that

∫

Y

|u|p dµδ ≤ Cδ

∫

Y

|e(u)|p dµδ , ∀u ∈ D1,p
µδ
(T; IRn) with

∫

Y

u dµδ = 0 ; (40)

(ii) Equality (39) remains true for all functions u ∈ C∞
0 (Ω; IRn) also when jhom fails

to be coercive. In this case, if one would find the explicit expression of the left
hand side of (39) on its whole finiteness domain, one should extend by relaxation
the functional obtained as the restriction of Jhom to C∞

0 (Ω; IRn). For instance, (5.7)
remains true on C∞

0 (Ω; IRn) when µ is the measure of Example 3.1. In this case one
can easily check that

jhom(z) = jµ(PMµz
∗) =

β(3α+ 2β)

2(α+ β)
(z211 + z222 + z233) . (41)

In particular, taking into account (30) and (39), equation (41) enlights the non-
commutativity of the limit process in ε and δ.

(iii) By a standard diagonalization argument, it turns out from Theorem 5.2 that, for a
suitable sequence δ(ε) → 0, we have Γ−lim

ε→0
Jδ(ε),ε = Jhom . A more precise statement

concerning the results which can be obtained when δ depends on ε will be given in
Theorem 5.4 below.

Now we focus attention on the limiting behaviour of the sequence {Jδ,ε} when the param-
eters δ and ε tend to zero at the same time, and in particular on the Γ-limit as ε → 0
of {Jδ(ε),ε}, being δ(ε) an assigned sequence infinitesimal with ε. In light of the examples
made in Section 4, when the limit measure µ does not satisfy assumption (H4), we can-
not expect the commutativity of the passage to the limit in (33) as ε and δ tend to zero.
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Anyhow, we are going to show that, when the dependence of δ on ε is such that δ(ε) ½ ε,
the Γ-limit of Jδ(ε),ε as ε → 0 still coincides with the functional Jhom in (26), provided
a suitable additional assumption on the sequence {µδ} holds. Such assumption concerns
the constant Cδ in (40). Indeed, if µ does not satisfy any fatness condition, it is clear
that Cδ will tend to infinity as δ → 0. But we want to drive our attention on the precise
behaviour of Cδ: in fact one can observe that, in most situations where fattened struc-

tures of thickness δ are considered, (40) holds with Cδ =
C

δp
, being C a positive constant

independent of δ. Otherwise said, in most cases the following assumption is satisfied by
the measures µδ:

(H3)δ ∃C > 0 :

∫

Y

|u|p dµδ ≤
C

δp

∫

Y

|e(u)|p dµδ , ∀u ∈ D1,p
µδ
(T; IRn) with

∫

Y

u dµδ = 0 .

The main result of this section is the following. It yields a second reason to retain formula

(26) still valid for several non-fat measures.

Theorem 5.4. Under the same assumptions of Theorem 5.2, assume in addition that
condition (H3)δ is satisfied by the measures µδ. Then, for every sequence δ(ε) such that
δ(ε) ½ ε, we have

Γ− lim
ε→0

Jδ(ε),ε = Jhom , (42)

with Jhom defined by (26).

In order to prove Theorem 5.4, we need to restate the structure Theorem 4.1 about two-
scale convergence. The notion of convergence defined by (20) can be extended in a natural
way to the framework of varying measures µδ(ε) converging weakly ∗ to µ. A sequence

{vε} ⊂ Lp
µδ(ε),ε

(Ω; IRd) will be said two-scale converging to v0 ∈ Lp
Ln⊗µ(Ω × T; IRd) if, for

every test function ϕ ∈ C∞
0 (Ω; C∞(T; IRd)), it holds

lim
ε→0

∫

Ω

vε(x)ϕ
(

x,
x

ε

)

dµδ(ε),ε =

∫

Ω×Y

v0(x, y)ϕ(x, y) dLn(x)⊗ dµ(y) . (43)

We set N the subspace of the space W in (22) defined by

N := W ∩Xp′

µ (T; IRn2

sym) =
{

σ ∈ Lp′

µ (T; IRn2

sym) : div(σµ) = 0
}

. (44)

Denoting by Potµ(T; IRn2

sym) the space of periodic potential matrices

Potµ(T; IRn2

sym) :=
{

eµu : u ∈ D1,p
µ (T; IRn)

}

, (45)

and recalling (24), we find that the orthogonal space of N in Lp
µ(T; IRn2

sym) is

N⊥ = Potµ(T; IRn2

sym) + Lp
µ(T;Mµ(y)

⊥) . (46)

Let K be the convex subset of IRn2

sym defined by

K :=

{∫

Y

Ψdµ : Ψ ∈ N , ‖Ψ‖
L∞(T;IRn2

sym)
≤ 1

}

. (47)

The next result can be obtained following the same line of proof as in [4, Lemma 4.5].
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Lemma 5.5. Let jhom be the convex function on IRn2

sym defined by (27), and let (jhom)∗ be
its Fenchel conjugate. Then

(jhom)∗(z∗) = min
{∫

Y
j∗(σ)dµ : σ ∈ N ,

∫

Y
σdµ = z∗

}

, ∀z∗ ∈ IRn2

sym , (48)

jhom(z) = min
{∫

Y
j(z + ζ(y))dµ : ζ ∈ N⊥} , ∀z ∈ IRn2

sym . (49)

Moreover, if jhom is coercive on IRn2

sym, then the set K in (47) has a non-empty interior,
i.e. there exists r > 0 such that

τ ∈ IRn2

sym , |τ | < r ⇒ τ ∈ K . (50)

We are now in a position to state the variant of Theorem 4.1 holding for the generalized
notion (43) of two-scale convergence. For notational simplicity, in the following we omit
to indicate the dependence of δ on ε.

Theorem 5.6. Let {uε} ⊂ C1
0(Ω; IR

n) satisfy
∫

Ω

(

|uε|p + |e(uε)|p
)

dµδ,ε ≤ M ; possibly
passing to a subsequence, assume that uε ⇀⇀ u0 ∈ Lp

Ln⊗µ(Ω × Y ; IRn) and e(uε) ⇀⇀ χ ∈
Lp
Ln⊗µ(Ω× Y ; IRn2

). Then, under the assumptions of Theorem 5.4, we have

(i) u0 is independent of y and u0(x, y)= u(x)where the function u belongs toW 1,p
0 (Ω;IRn).

(ii) there exists η ∈ Lp
(

Ω;Potµ(T; IRn2

sym)
)

such that χ(x, y) = e(u)(x)+η(x, y)+ξ(x, y),

with u as in (i), and ξ(x, y) ∈ Lp
(

Ω;
[

Mµ(y)
]⊥)

.

Proof of (i). Let vε be the unique function on IRn constant on each small cell Yi,ε =
ε(i + Y ), and such that

∫

Yi,ε
vε dµδ,ε =

∫

Yi,ε
uε dµδ,ε, for all i ∈ ZZ n. Then, by a change of

variable and making use of (H3)δ, we infer

∫

Yi,ε

|uε − vε|p dµδ,ε ≤ C
εp

δp

∫

Yi,ε

|e(uε)|p dµδ,ε ,

so that, summing with respect to i over ZZ n:

∫

Ω

|uε − vε|p dµδ,ε ≤ C
εp

δp

∫

Ω

|e(uε)|p dµδ,ε .

As δ ½ ε, it follows that the sequence {vε} has the same two-scale limit as {uε}. Let
us check the two-scale convergence (43) of {vε} choosing a test function of the kind
ϕ(x, y) = θ(x)Ψ(y), with θ ∈ D(Ω; IRn), and Ψ ∈ C∞(T). Since vε is constant on each
cell Yi,ε, there exists an infinitesimal o(ε) associated with the Lipschitz constant of θ such
that, for all i ∈ ZZ n:

∫

Yi,ε

vε(x) · θ(x)Ψ(
x

ε
)µδ,ε =

(

∫

Yi,ε

vε(x) · θ(x) dµδ,ε

)

(∫

Y

Ψdµδ

)

(

1 + o(ε)
)

.

Thus, summing the previous equality over i ∈ ZZ n and passing to the limit as ε → 0, we
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infer that

lim
ε→0

∫

Ω

uε(x) · θ(x)Ψ(
x

ε
) dµδ,ε = lim

ε→0

∫

Ω

vε(x) · θ(x)Ψ(
x

ε
) dµδ,ε

=

(

lim
ε→0

∫

Ω

vε(x)θ(x) dµδ,ε

)(

lim
δ→0

∫

Y

Ψdµδ

)

=

(∫

Ω×Y

u0(x, y) · θ(x) dx⊗ dµ(y)

)(∫

Y

Ψdµ

)

.

Thus, setting u(x) :=
∫

Y
u0(x, y) dµ(y), we deduce the first assertion of (i) from the

following equality holding for every pair (θ,Ψ) ∈ D(Ω; IRn)× C∞(T):

∫

Ω×Y

[u0(x, y)− u(x)] · θ(x)Ψ(y) dx⊗ dµ(y) = 0 .

We prove now that u belongs to W 1,p
0 (Ω; IRn). For ϕ ∈ C∞(Ω) and Ψ ∈ N , one has

div
(

ϕ(x)Ψ(
x

ε
)µδ,ε

)

= Ψ(
x

ε
)∇ϕ(x)µδ,ε .

Thus, applying (43) to the sequence {e(uε)} with ϕ(x)Ψ(y) as test function, enforcing
the integration by parts formula (18), and using the two-scale convergence of {uε} to
u0(x, y) = u(x), we obtain:

∫

Ω×Y

χ(x, y)ϕ(x)Ψ(y) dx⊗ dµ(y) = lim
ε→0

∫

Ω
e(uε)ϕ(x)Ψ(x

ε
)dµδ,ε

= − lim
ε→0

∫

Ω
uε(x) ·Ψ(x

ε
)∇ϕ(x) dµδ,ε (51)

= −
∫

Ω×Y
u(x) ·Ψ(y)∇ϕ(x)dx⊗ dµ(y)

= −
(∫

Y
Ψdµ

)

·
(

∫

Ω
u(x) ⊗

s
∇ϕ(x) dx

)

,

where the symbol ⊗
s
denotes the symmetrized tensor product of two vectors in IRn.

Applying (51) for Ψ running over the elements of N⊥ whose Lp′
µ -norm is smaller than 1,

by the Hölder inequality and by (50), we deduce that, for a suitable constant C > 0, there
holds

∣

∣

∣

∣

∫

Ω

u(x) ⊗
s
∇ϕ(x) dx

∣

∣

∣

∣

≤ C ‖ϕ‖Lp′ (Ω) , ∀ϕ ∈ C∞(Ω) . (52)

This proves that the distributional strain e(u) belongs to Lp(Ω; IRn2

sym), hence, by the
classical Korn inequality, u ∈ W 1,p(Ω; IRn). We may now integrate by parts to find

∫

Ω

u(x) ⊗
s
∇ϕ(x) dx = −

∫

Ω

e(u)(x)ϕ(x) dx +

∫

∂Ω

(u(x) ⊗
s
n(x))ϕ(x) dHn−1 , (53)

where n(x) denotes the unit exterior normal vector to ∂Ω. Then, from (52) and (53), it
easily follows that the trace of u vanishes on ∂Ω .
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Proof of (ii). By (51) and (53), the equality

∫

Ω×Y

[χ(x, y)− e(u)(x)]ϕ(x)Ψ(y) dx⊗ dµ(y) = 0

holds for every ϕ ∈ C∞(Ω) and Ψ ∈ N . Localizing with respect to x, we infer that, for
almost all x ∈ Ω, χ(x, ·) belongs to N⊥. Then we conclude deducing (ii) from (46).

Proof of Theorem 5.4 (sketch). The proof of the Γ− limsup inequality runs exactly
as for Theorem 4.2 by considering an approximating sequence of the kind uε(x) = u(x) +
εϕ(x, x

ε
) for ϕ varying in C∞

0 (Ω; C∞(T; IRn)).

In order to prove the Γ − liminf inequality, let us consider a sequence {uε} such that
uεµδ,ε ⇀ uLn and supε

{

Jδ(ε),ε(uε)
}

< +∞. Then by the p-growth condition from be-
low satisfied by j, the sequence

∫

Ω
|e(uε)|p dµδ,ε remains bounded, so that we may apply

Theorem 5.6 (which holds in fact under the sole assumption of an uniform control on
∫

Ω
|uε|dµδ,ε instead of

∫

Ω
|uε|pdµδ,ε) to find that u belongs to W 1,p

0 (Ω) and that, possibly
passing to a subsequence, we have:

e(uε) ⇀⇀ e(u)(x)+η(x, y)+ξ(x, y), with η ∈ Lp
(

Ω;Potµ(T; IRn2

sym)
)

, ξ ∈ Lp
(

Ω;
[

Mµ(y)
]⊥)

.

Then, using a straighforward convexity argument [see [4], Proposition 2.5], we deduce
that

liminf
ε→0

Jδ(ε),ε(uε) = liminf
ε→0

∫

Ω

j(e(uε)) dµδ,ε

≥
∫

Ω×Y

j
(

e(u)(x) + η(x, y) + ξ(x, y)
)

dx⊗ dµ(y)

≥
∫

Ω×Y

jµ
(

e(u)(x) + η(x, y)
)

dx⊗ dµ(y)

≥
∫

Ω

jhom(e(u)) dx.

6. Related problems and conjectures

We wish to conclude the paper by pointing out some related problems, which arise in
the framework of both scalar and vector homogenization. First of all, we think it could

be interesting to study the asymptotic behaviour of the sequence {Jδ,ε} in (33), when δ
depends on ε, but we don’t have δ(ε) ½ ε for ε → 0 (as in Theorem 5.4). The critical
scale for δ(ε) below which the Γ-limit degenerates to zero seems to be δ(ε) ∼ ε. As far as
we know, this problem is fully open in any general framework. Further, two more topics

are in our opinion worth of investigation, as they would provide respectively possible ap-
plications in mechanics, and a full theoretical understanding of non-local homogenization
phenomena.

The former matter is the investigation of optimal bounds for the effective matrices or
tensors, which can be obtained homogenizing scalar or vector problems on low-dimensional
structures. Actually, a wide part of the classical literature on homogenization, is devoted
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to the following problem: characterize the matrices Ahom or the fourth-order tensors
Bhom which can be found starting respectively from a symmetric matrix A(x) or fourth-
order tensor B(x), whose elements are periodic and bounded functions on a sub-domain
of IRn. To that aim, one has to prove accurate estimates satisfied by Ahom or Bhom,
and possibly show that they are attained, namely that the involved inequalities turn into
equalities when A or B are suitably chosen. For instance, if one restricts the analysis to the
case of isotropic matrices associated to two-phase media, whose periodicity cell contains
two given materials in fixed proportions, the inequalities satisfied by the corresponding
homogenized matrix are the famous Hashin-Shtrikman bounds [9], which are regarded as
a central result in the theory of composite materials; it is also well-known that optimal
media in this respect are stratified composites of rank one. We refer to Chapters 6 and
13 of the book [10], and references quoted therein, for a review on this subject.

The same kind of problem may be considered, within our measure approach, for low-
dimensional structures. Indeed, one can wonder what kind of matrices or fourth-order
tensors may be found, via the homogenization formulae (10) or (27), when the integrands
f and j are prescribed quadratic forms, and µ belongs by assumption to a certain class
of measures.

We address to a forthcoming paper for the answer to such question under dimension and
mass constraints on µ [3].

The latter topic we would probe, is the scalar homogenization, by fattening approach, of
measures µ which are not p-connected in the sense of (C1). More precisely, let us consider
the sequence of two-parameter integrals {Fδ,ε} defined as in (6), replacing the measure
µε(x) = µ(x

ε
) by µδ,ε(x) = µδ(

x
ε
), where µδ := ρδ ? µ.

If µ is p-connected, we have shown in [4, Section 6] that the passage to the limit with
respect to the two parameters ε and δ is commutative; thus, the homogenized energy
F0 := Γ− lim

ε→0
Fδ(ε),ε is independent of the asymptotic behaviour of δ(ε) as ε tends to zero,

and it can be obtained simply applying Theorem 2.1 to the measure µ.

On the other hand, if µ is not p-connected, the commutativity of the limit process becomes
false, and F0 may be a non-local functional, depending on the rate of convergence to zero
of δ = δ(ε). The explicit computation of F0 when µ is associated to a fibred structure
in IR3, has been performed by capacitary methods in [1], where it was firstly pointed out
the appearance of non-local homogenized functionals.

The range of this phenomenon is in our opinion an extended one, as non-locality is strictly
linked to the lack of connectedness (see [4, Section 6] for a reinterpretation of the main
result of [1] in the framework of measures). Thus, we have tried to characterize the func-
tional F0 when µ is non-connected, and we have got convinced of the following conjecture,
which so far we are not able to prove.

Suppose that we can write µ as µ = µ1 + · · · + µm, where the measures µi are mutually
singular, and each of them is p-connected. Take a sequence {uε} ⊂ C1

0(Ω) such that
supε{Fδ(ε),ε} < +∞. The two-scale limit u0(x, y) of uε (intended in the sense of (43)),

will be given, for µi-a.e. y ∈ Y , by a function ui(x) belonging to W 1,p
0 (Ω). Therefore, we

expect that F0 will contain the sum of the diffusion energies related to each µi, that is
m
∑

i=1

∫

Ω
fhom
i (∇ui) dx, where fhom

i are defined by formula (10) with µ = µi.
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Nevertheless, one should also take into account that, if uε oscillate at scale ε, say uε(x) =
u0(x,

x
ε
) + εv(x, x

ε
), a term of order −1 in ε appears in the gradient of uε, due to the

dependence of u0 on the rapid variable x
ε
. We think that such term is responsible for

the interaction between the different “connected componentsÔ µi of µ, and we guess that
it can be somehow decoupled from the other terms, in such way that it produces the
non-local effect in the expression of F0.

In order to describe in a proper mathematical way the energy created by the gaps between
the different values u1(x), u2(x), . . . , um(x) of u0(x, ·), we are led to consider an auxiliary
sequence of variational integrals on the unit cell. For every λ in the space M(T) of signed
periodic measures, set

Gε(λ) :=







∫

Y

f
(∇w

ε

)

dµδ(ε) if λ = wµδ(ε), w ∈ C∞(T) ,

+∞ otherwise;

and assume that the sequence Gε(λ) Γ-converges with respect to the weak ∗ convergence
on M(T) to a functional G0(λ). Then, by the growth condition from below satisfied by
f , it is easy to check that G0(λ) is finite only if λ is absolutely continuous with respect to
µ, with a density w satisfying (∇µw)µ = 0, hence constant on spt(µi), for i = 1, . . . ,m.
Therefore G0 is completely described in terms of the real function g defined on IRm by
setting

g(c1, . . . , cm) := G0

(
m
∑

i=1

ciµi

)

.

The statement of the conjecture is the following:

F0(λ1, . . . , λm) =















m
∑

i=1

∫

Ω

fhom
i (∇ui(x)) dx+

∫

Ω

g(u1(x), . . . , um(x)) dx if λi = uiLn,

ui ∈ W 1,p
0 (Ω);

+∞ otherwise.

Let us finally remark that, to our mind, the validity of this conjecture can be extended to
the case in which µδ, instead of being ρδ ? µ, is any approximating sequence for µ which
guarantees suitable properties of convergence for the related functional spaces Xp′

µδ
(Ω). In

particular, the above expression of F0 can be used to recover the non-local homogenized
functional found by Bellieud and Bouchitté in [1].
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