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For a convex function, we consider a space decomposition that allows us to identify a subspace on which
a Lagrangian related to the function appears to be smooth. We study a particular trajectory, that we call
a fast track, on which a certain second-order expansion of the function can be obtained. We show how
to obtain such fast tracks for a general class of convex functions having primal-dual gradient structure.
Finally, we show that for a point near a minimizer its corresponding proximal point is on the fast track.
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1. Introduction and motivation

Consider the problem

min
x∈IRn

f(x) , (1)

where f is a convex function. A classical conceptual algorithm for solving (1) is the
proximal point method, based on the Moreau-Yosida regularization of f , [14], [21], [8],
[18]. Implementable forms of the method can be obtained by means of a bundle technique,
alternating serious steps with sequences of null steps, [1], [3], [4].

More recently, new conceptual schemes for solving (1) have been developed by using an
approach that is somewhat different from Moreau-Yosida regularization. This is the VU -
theory introduced in [7] and further studied in [10], [12], [11], [16]. The basic idea is to
decompose IRn into two orthogonal subspaces V and U depending on a point in such a
way that near the point f ’s nonsmoothness is concentrated essentially in V . When f
satisfies certain structural properties, it is possible to find smooth trajectories, tangent to
U , yielding a second-order expansion for f . The resulting VU -algorithms make a step in
the V-subspace, followed by a U -Newton move in order to obtain superlinear convergence.
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However, implementability depends on being able to approximate these subspaces well
enough.

The purpose of this paper is to determine links between the two schemes mentioned above.
More specifically, we uncover the relation between the proximal point mapping and a
particular smooth trajectory, or fast track, defined from VU -space decomposition theory.
We address purely theoretical questions here as a prerequisite for future development of
rapidly convergent implementable algorithms. Along the lines of [7, §§ 4.3] and [10, § 3],
such algorithms will exploit the smoothness on the U -subspace of a certain Lagrangian for
f in order to apply Newton-like methods on the fast track. Implementability via bundling
techniques will follow from the crucial relation between fast tracks and the proximal points
established in Theorem 5.2 below.

Our paper is organized as follows. We start by recalling the main elements of the VU -space
decomposition theory in § 2. The new concept of a fast track is defined in Section 2.3.
Initial properties of fast tracks are given in Section 3. We show how to obtain fast
tracks for a large class of functions in Section 4. This class, consisting of functions with
primal-dual gradient (pdg ) structure, was introduced and thoroughly studied in [12]. In
Theorem 4.2 we show that a pdg -structured function that satisfies strong transversality
at a minimizer has a fast track. Moreover, for such fast tracks the VU -decomposition
has certain basis matrix functions that are C1 on a ball about 0 ∈ U . In Section 5 we
give our main result, relating proximal points to fast tracks. In addition, we show that a
Newton-step based on the Moreau-Yosida regularization is equivalent to a proximal step
followed by a Newton-step in the U -subspace. We finish in Section 6 with some concluding
remarks on current algorithmic research contained in [13].

For algebraic purposes we consider (sub)gradients to be column vectors. For a vector
function v(·), its Jacobian Jv(·) is a matrix, each row of which is the transposed gradient
of the corresponding component of v(·). The identity matrices in IRn, IRdim U , and IRdimV

are denoted, respectively, by I, IU , and IV . Given a set Y , we denote by linY its linear
hull.

2. Some elements of VU-theory

Here we introduce some important concepts needed for our development, namely, VU -
space decomposition, U -Lagrangians and fast tracks.

2.1. VU-space decomposition

We start by recalling some concepts from [7] and [12]. For a convex function f , let g
be any subgradient in ∂f(x̄), the subdifferential of f at x̄ ∈ IRn. Then the orthogonal
subspaces

V := lin(∂f(x̄)− g) and U := V⊥ (2)

define the VU -space decomposition at x̄ of [7, §2]: IRn = U ⊕V. From this definition, the
relative interior of ∂f(x̄), denoted by ri∂f(x̄), is the interior of ∂f(x̄) relative to its affine
hull, a manifold that is parallel to V .
Letting V̄ be a basis matrix for V , not necessarily orthonormal, and letting Ū be an
orthonormal basis matrix for U every x ∈ IRn can be decomposed into components xU
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and xV as follows:

IRn 3 x = Ū (Ū>x) + V̄
(

[V̄ >V̄ ]−1V̄ >x
)

= Ū xU + V̄ xV
= xU ⊕ xV ∈ IRdim U × IRdimV .

The reason why we do not assume that V̄ is orthonormal is because typical V-basis matrix
approximations made by bundle methods are not orthonormal.

Note that, since [V̄ |Ū ] is a basis for IRn, the identity in IRn can be written as I =
Ū Ū> + V̄ [V̄ >V̄ ]−1V̄ >.

2.2. U-Lagrangians of convex functions

Given a subgradient ḡ ∈ ∂f(x̄) with V-component ḡV = ([V̄ >V̄ ]−1V̄ >)ḡ, the U -Lagrangian
of f , depending on ḡV , is defined by

IRdim U 3 u 7→ LU(u; ḡV) := min
v∈IRdimV

{f(x̄+ Ūu+ V̄ v)− ḡ>V̄ v} . (3)

Note that employing the scalar product induced by V̄ >V̄ yields the U -Lagrangian expres-
sion from [7], LU(u; ḡV) = minv{f(x̄ + u ⊕ v) − 〈ḡV , v〉}. The vector ḡV in our notation
LU(u; ḡV) plays the role of a multiplier vector, such as one that occurs in a Lagrangian from
constrained optimization, because multipliers coming from the subspace minimization in
(3) depend on ḡV .

Each U -Lagrangian is a convex function that is differentiable at u = 0 with

∇LU(0; ḡV) = ḡU = Ū>ḡ = Ū>g for all g ∈ ∂f(x̄). (4)

For u 6= 0 Theorem 3.3(i) in [7] gives the following expression for each subdifferential:

∂LU(u; ḡV) = {gU : gU ⊕ ḡV ∈ ∂f(x̄+ u⊕ w)} (5)

where V̄ w is an arbitrary element in W (u; ḡV), the set of V-space minimizers defined by

W (u; ḡV) := {V̄ v : LU(u; ḡV) = f(x̄+ Ūu+ V̄ v)− ḡ>V̄ v} . (6)

Whenever ∇2LU(0; ḡV) exists, those x̄ + u ⊕ w with V̄ w ∈ W (u; ḡV) yield the following
expansion of f :

f(x̄+ u⊕ w) = f(x̄) + ḡ>(u⊕ w) +
1

2
u>∇2LU(0; ḡV)u+ o(‖u‖2) . (7)

Furthermore, when ḡ ∈ ri∂f(x̄), each w ∈ W (u; ḡV) is o(‖u‖) ([7, Corollary 3.5]).

Next we develop and name a particular trajectory x̄+ u⊕ w.
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2.3. Fast tracks to minimizers

Definition 2.1. Let f : IRn → IR be a convex function with minimizer x̄ ∈ IRn so that
0 ∈ ∂f(x̄). We say that x̄ + u⊕ v(u) is a fast track leading to a minimizer of f if for all
u small enough

(i) v : IRdim U 7→ IRdimV is a C2-function satisfying V̄ v(u) ∈ WU(u; ḡV) for all ḡ ∈
ri∂f(x̄); and

(ii) the particular U -Lagrangian LU(u; 0) is a C2-function.

When we write v(u) we implicitly assume that dim U ≥ 1 and dimV ≥ 1. For the
remaining two cases we define u⊕ v(u) to be 0 if dim U = 0 and u if dimV = 0.

Theorem 3.2(iv) in [7] establishes that WU(u; ḡV) is nonempty for all ḡ ∈ ri∂f(x̄). We
now show that a similar non-emptiness result holds for ḡ = 0 ∈ ∂f(x̄), not necessarily in
the relative interior, whenever condition (i) above holds.

Lemma 2.2. Let f : IRn → IR be a convex function with minimizer x̄ ∈ IRn. Suppose
that x̄ + u ⊕ v(u) satisfies condition (i) of Definition 2.1. Then V̄ v(u) ∈ WU(u; 0) and
LU(u; 0) = f(x̄+ u⊕ v(u)).

Proof. If 0∈ri∂f(x̄), the result follows from (3), (6) with ḡ = 0 and condition (i).
Otherwise, 0 ∈ cl∂f(x̄), the closure of ∂f(x̄). From Lemma III.2.1.6 in [4], for any
ḡ ∈ ri∂f(x̄), the convex combination αḡ + (1 − α)0 = αḡ is in ri∂f(x̄) for all α ∈ (0, 1].
For purposes of contradiction, suppose that the result does not hold. Then there exists
w ∈ IRdimV such that f(x̄+u⊕ v(u)) > f(x̄+ Ūu+ V̄ w). Choose α positive and so small
that the small quantity αḡ>V̄ (v(u)− w) satisfies

f(x̄+ u⊕ v(u)) > f(x̄+ Ūu+ V̄ w) + αḡ>V̄ (v(u)− w) .

Then f(x̄ + u ⊕ v(u)) − αḡ>V̄ v(u) > f(x̄ + Ūu + V̄ w) − αḡ>V̄ w, which contradicts the
fact that V̄ v(u) ∈ WU(u;αḡV), since αḡ ∈ ri∂f(x̄).

Remark 2.3. The above proof can be modified to show that V̄ v(u) ∈ WU(u; ḡV) for all
ḡ ∈ ∂f(x̄). So, the symbol “riÔ could be deleted in Definition 2.1(i). However, we prefer
to keep it as written in order to have a smaller set of vectors to deal with when showing
satisfaction of (i), as for example in the proof of Theorem 4.2 below.

The terminology “fast trackÔ can be understood by examining the limiting differential
behavior of the trajectory under consideration:

Tangency to U : By [7, Corollary 3.5], since ri∂f(x̄) is nonempty, condition (i) implies
that v(u) = o(‖u‖) and, hence,

v(0) = 0 and Jv(0) = 0 . (8)

Thus, x̄+ u⊕ v(u) is a trajectory leading to x̄ which is tangent to U .

Minimality: Since x̄ minimizes f , 0 ∈ ∂f(x̄) and relation (4) with g = 0 gives

∇LU(0; ḡV) = 0 for all ḡ ∈ ∂f(x̄) . (9)
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Thus, each LU(u; ḡV) is minimized at u = 0 and any subgradient ḡ ∈ ∂f(x̄) has the form
ḡ = 0⊕ ḡV .

Second-order smoothness: Lemma 2.2, combined with the fact that LU(0; 0) = f(x̄)
and with (9) gives the second-order expansion

LU(u; 0) = f(x̄+ u⊕ v(u)) = f(x̄) +
1

2
u>∇2LU(0; 0)u+ o(‖u‖2) . (10)

Equivalents of the above fast track properties are employed by many authors to obtain
rapidly convergent algorithms for minimizing maximum eigenvalue functions; see [17],
[20], [6], [15], [16].

3. Additional properties of fast tracks

Here we give some consequences of our new VU -theory definition. Associated with a fast
track we define the matrices

BU(u) := Ū + V̄ Jv(u) and BV(u) := V̄ − ŪBU(u)
>V̄ (11)

of sizes n× dim U and n× dimV , respectively. Note that BU(u) is the Jacobian matrix
of the fast track x̄+ Ūu+ V̄ v(u). Also, since Ū and V̄ are orthogonal, and Ū>Ū = IU ,

Ū>BU(u) = IU , and BV(u)
>V̄ = V̄ >V̄ . (12)

Other properties of these two matrices are given in the following proposition.

Proposition 3.1. Let x̄+ u⊕ v(u) be a fast track as described in Definition 2.1. For all
u small enough the following hold:

(i) both BU(u) and BV(u) are C1 with BU(u) → Ū and BV(u) → V̄ as u → 0;

(ii) both BU(u)
>BU(u) and BV(u)

>BV(u) are invertible matrices;

(iii) [BV(u)|BU(u)] is a basis for IRn with BV(u) and BU(u) orthogonal; and

(iv) for any g := gU ⊕ gV ∈ IRn

BU(u)
>g = gU +BU(u)

>V̄ gV and BV(u)
>g = BV(u)

>ŪgU + V̄ >V̄ gV . (13)

Proof. From Definition 2.1(i), BU(·) is C1 and from (8), as u → 0, BU(u) → Ū and,
hence, V̄ >BU(u) → 0. As a result, BV(·) is also a C1 function and BV(u) → V̄ as u → 0
and (i) follows.
Since [V̄ |Ū ] is a basis for IRn, from (i) it follows that, for all u small enough, the columns
of BV(u) and of BU(u) are also linearly independent, so (ii) follows.
We now abbreviate notation and drop the symbol (u) so that, for example, BV(u) becomes
BV . From (11) and the first equality in (12),

B>
VBU =

(

V̄ > − V̄ >BU Ū
>
)

BU = V̄ >BU − V̄ >BU Ū
>BU = V̄ >BU − V̄ >BU = 0 ,

which is the orthogonality needed to show (iii).
Finally, to see that both equalities in (13) hold, write g = ŪgU+V̄ gV and use, respectively,
the transpose of the first equality and the second equality in (12).
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From here on we assume that 0 ∈ ri∂f(x̄) in order to eventually obtain differentiability of
basis matrix functions for the VU -decomposition on a fast track and to be able to apply
the Implicit Function Theorem in the proof of Theorem 5.1 below.

Lemma 3.2. Let f : IRn → IR be a convex function with minimizer x̄ ∈ IRn. Suppose
that 0 ∈ ri∂f(x̄) and let x̄ + u ⊕ v(u) be a fast track as described in Definition 2.1. For
each ḡ ∈ ri∂f(x̄) and all u small enough the following hold:

(i) the gradient of LU(·; ḡV) has the expression

∇LU(u; ḡV) = ∇LU(u; 0)−BU(u)
>V̄ ḡV .

Furthermore, ∇LU(·; ·) is a C1-function on a ball about (u; ḡV) = (0; 0) ∈ U × V;
and

(ii) the vector ∇LU(u; ḡV)⊕ ḡV is in ∂f(x̄+ u⊕ v(u)).

Proof. [(i)] From item (i) in Definition 2.1, V̄ v(u) is a minimizer in (3), which means
that

LU(u; ḡV) = f(x̄+ u⊕ v(u))− ḡ>V̄ v(u) .

Lemma 2.2 together with the identity (V̄ >ḡ)> = (V̄ >V̄ ḡV)
> yields

LU(u; ḡV) = LU(u; 0)− ḡ>
V V̄

>V̄ v(u) .

Because the right hand side of this equation is differentiable with respect to u,

∇LU(u; ḡV) = ∇LU(u; 0)− (V̄ Jv(u))>V̄ ḡV .

The first stated result follows from the fact that, by (11), (V̄ Jv(u))>V̄ = (BU(u)−Ū)>V̄ =
BU(u)

>V̄ , because Ū>V̄ = 0.
Since 0 ∈ ri∂f(x̄), the first stated result in (i) holds for all ḡV in a ball about 0 ∈ V.
Thus, because ∇LU(u; ḡV) is affine in ḡV , and both ∇LU(u; 0) and BU(u) are C1 in u, by
Definition 2.1 (ii) and (i), respectively, ∇LU(u; ḡV) is C

1 in the pair (u; ḡV) about (0; 0).
[(ii)] Since here ∂LU(u; ḡV) is the singleton {∇LU(u; ḡV)}, taking w = v(u) in (5) gives
the desired result.

Our next two theorems lay the groundwork for later obtaining VU basis matrix functions
along a fast track for certain functions with primal-dual gradient structure; see Section 4
below.

We let V(u) be the V-subspace relative to x̄+ u⊕ v(u) defined from ∂f(x̄+ u⊕ v(u)) as
in (2) with x̄ replaced by x̄+ u⊕ v(u), i.e., for any g0 ∈ ∂f(x̄+ u⊕ v(u))

V(u) := lin(∂f(x̄+ u⊕ v(u))− g0) . (14)

Theorem 3.3. Let f : IRn → IR be a convex function with minimizer x̄ ∈ IRn. Suppose
that 0 ∈ ri∂f(x̄) and let x̄ + u ⊕ v(u) be a fast track as described in Definition 2.1. For
all u small enough the following three statements are equivalent:

(i) the matrix BV(u) is a basis for V(u);
(ii) the matrix BU(u) is a basis for V(u)⊥; and
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(iii) for all g ∈ ∂f(x̄+ u⊕ v(u))

BU(u)
>g = ∇LU(u; 0) .

(i) ⇔ (ii). This is straightforward from Proposition 3.1(iii).
In order to show [(ii) ⇒ (iii) ⇒ (i)] we use Lemma 3.2(ii) with ḡ = 0 ∈ ri∂f(x̄) to write

Ū∇LU(u; 0) = Ū∇LU(u; 0) + V̄ 0 = ∇LU(u; 0)⊕ 0 ∈ ∂f(x̄+ u⊕ v(u)) . (15)

If (ii) holds, then BU(u)
>(g1−g2) = 0 for any g1 , g2 ∈ ∂f(x̄+u⊕v(u)), since g1−g2 ∈ V(u).

Thus, BU(u)
>g is the same constant vector (depending on u) for all g ∈ ∂f(x̄+u⊕ v(u)).

Since from (15) the particular g = g0 := ∇LU(u; 0) ⊕ 0 is in ∂f(x̄ + u ⊕ v(u)), the left
hand side equality in (13) gives the right hand side constant in (iii) as follows:

BU(u)
>g0 = BU(u)

>
(

∇LU(u; 0)⊕ 0
)

= ∇LU(u; 0) +BU(u)
>V̄ 0 = ∇LU(u; 0) .

If (iii) holds, then for any g := ŪgU + V̄ gV ∈ ∂f(x̄+ u⊕ v(u)) the left hand side equality
in (13) yields ∇LU(u; 0) = BU(u)

>g = gU +BU(u)
>V̄ gV and, hence,

g − Ū∇LU(u; 0) = Ū
(

gU −∇LU(u; 0)
)

+ V̄ gV

= −ŪBU(u)
>V̄ gV + V̄ gV

=
(

V̄ − ŪBU(u)
>V̄

)

gV
= BV(u)gV ,

by (11). Thus, each vector of the form

g − Ū∇LU(u; 0) with g ∈ ∂f(x̄+ u⊕ v(u)) (16)

is a linear combination of the columns of BV(u). From (15), g0 := Ū∇LU(u; 0) ∈ ∂f(x̄+
u ⊕ v(u)), so, from (14), all vectors of form (16) are in V(u) and, since V(u) is a linear
combination of all such vectors, BV(u) is a basis for V(u).

Theorem 3.4. Let f : IRn → IR be a convex function with minimizer x̄ ∈ IRn. Suppose
that 0 ∈ ri∂f(x̄) and let x̄ + u ⊕ v(u) be a fast track as described in Definition 2.1. For
all u small enough let

γ(u) := BU(u)[BU(u)
>BU(u)]

−1∇LU(u; 0) . (17)

Then the following hold:

(i) there exists a positive constant ρ such that for all z ∈ IRdimV with ‖z‖ ≤ ρ the vector
γ(u) +BV(u)z belongs to ∂f(x̄+ u⊕ v(u)) ;

and if, in addition, any one of the three statements in Theorem 3.3 holds, then

(ii) γ(u) +BV(u)z ∈ ri∂f(x̄+ u⊕ v(u)) for all z with ‖z‖ ≤ 1
2
ρ; and

(iii) each fast track point x̄+ u⊕ v(u) is a unique minimizer of f on the corresponding
affine set x̄+ u⊕ v(u) + V(u).
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Proof. To abbreviate notation, we again drop symbols such as (u) and (u; 0) so that, for
example, ∇LU(u; 0) becomes ∇LU . By Proposition 3.1(iii), B>

VBV is invertible. Hence,
` := −[B>

VBV ]
−1B>

V Ū∇LU is well defined, with ` → 0 as u → 0, by (9) and Proposi-
tion 3.1(i). Given z ∈ IRdimV and letting w := z + `, we claim that

(∇LU(u; 0)−BU(u)
>V̄ w)⊕ w = γ(u) +BV(u)z (18)

for all u small enough. To prove this claim, we consider these two vectors with respect
to [BV |BU ], which is a basis for IRn, by Proposition 3.1(iii). Let G be the left hand side
vector in (18). Taking g = G in (13) gives

B>
UG = GU +B>

U V̄ GV = ∇LU −B>
U V̄ w +B>

U V̄ w = ∇LU

and

B>
VG = B>

V ŪGU + V̄ >V̄ GV

= B>
V Ū

(

∇LU −B>
U V̄ w

)

+ V̄ >V̄ w

= −B>
VBV`−B>

V ŪB>
U V̄ w + V̄ >V̄ w [by definition of `]

= −B>
VBV`−B>

V

(

V̄ −BV)w + V̄ >V̄ w [by (11)]

= −B>
VBV`− V̄ >V̄ w +B>

VBVw + V̄ >V̄ w [by the second equality in (12)]

= B>
VBVz . [by definition of w]

Altogether, we have that

B>
UG = ∇LU and B>

VG = B>
VBVz .

Our claim is established, because from (17) and the orthogonality of BU and BV given in
Proposition 3.1(iii), we have that

B>
U (γ +BVz) = ∇LU and B>

V (γ +BVz) = B>
VBVz .

[(i)] Since 0 ∈ ri∂f(x̄), there exists ρ0 > 0 such that for w ∈ IRdimV

0⊕ w ∈ ri∂f(x̄) if ‖w‖ ≤ ρ0 .

By Lemma 3.2(i) and (ii), if ‖w‖ ≤ ρ0, then for all u small enough

(∇LU(u; 0)−BU(u)
>V̄ w)⊕ w ∈ ∂f(x̄+ u⊕ v(u)) . (19)

Since ρ0 > 0, there exist small enough ρ , ρ1 > 0 such that

ρ+ ‖`‖ ≤ ρ0 for all u ∈ IRdim U such that ‖u‖ ≤ ρ1.

Let z ∈ IRdimV have arbitrary direction and length ‖z‖ ∈ [0, ρ] and let w = z + `. Then
‖w‖ ≤ ρ0 if ‖u‖ ≤ ρ1, so, by (18) and (19), γ +BVz is a subgradient of f at x̄+ u⊕ v(u)
for all u small enough, and (i) follows.
[(ii)] Since any of the three equivalent statements in Theorem 3.3 holds, BV(u) is a basis
for V(u), a subspace parallel to ∂f(x̄ + u ⊕ v(u)) by (14). As a result, the topology
giving the relative interior of this subdifferential consists of relative balls of the form
Bδ :=

{

BV(u)t : for any t ∈ IRdimV with ‖BV(u)t‖ ≤ δ
}

for positive δ. Take δ so small
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that any corresponding t satisfies ‖t‖ ≤ ρ/2. Then, for all z with ‖z‖ ≤ ρ/2, ‖z + t‖ ≤ ρ
and from item (i), with z replaced by z + t, γ + BV(z + t) is a subgradient of f at
x̄+ u⊕ v(u), i.e., γ +BVz + Bδ ⊂ ∂f(x̄+ u⊕ v(u)) and the result follows.
[(iii)] For any x ∈ x̄+ u⊕ v(u) + V(u), d := x− (x̄+ u⊕ v(u)) ∈ V(u). Since BV(u) is a
basis for V(u) and, by Proposition 3.1(iii) BU(u) and BV(u) are orthogonal, d and γ(u)
are orthogonal too. From item (ii), γ(u) ∈ ri∂f(x̄ + u⊕ v(u)), so there exists a positive
η sufficiently small such that γ(u) + ηd ∈ ∂f(x̄ + u ⊕ v(u)). From the convexity of f it
follows that

f(x) ≥ f(x̄+ u⊕ v(u)) + (γ(u) + ηd)>d
= f(x̄+ u⊕ v(u)) + η‖d‖2 .

Thus, unless x = x̄+ u⊕ v(u), f(x) > f(x̄+ u⊕ v(u)), which implies (iii).

In the next section we show how to obtain fast tracks to certain minimizers of functions
with primal-dual gradient (pdg ) structure, as introduced in [12].

4. A class of functions having fast tracks

To support the usefulness of our fast track definition, we next study a large class of
functions for which such trajectories exist. The subdifferential of a function in this class
is allowed to have a continuum of extreme points and its shape is reflected in the shape of a
certain convex multiplier set ∆. If the underlying structure of such a function is known and
the nonlinear system (20) given below can be solved (as is done for the example functions in
[10], [11]), then the fast track functions v(u) and ∇2LU(u; ḡV) can be computed. However,
for practical algorithm purposes we are content just to know that they exist.

4.1. Primal-dual gradient structure and VU-decomposition

Definition 4.1. We say that a convex function f : IRn → IR has primal-dual gradient
structure about x̄ ∈ IRn if the following conditions hold:

There exists a ball about x̄, B(x̄), m1 + 1 +m2 primal functions

{fi(x)}m1
i=0 and {ϕ`(x)}m2

`=1

that are C2 on B(x̄) and a dual multiplier set ∆ ⊂ IRm1+1+m2 such that

(i) x̄ ∈ P := {x ∈ B(x̄) : ϕ`(x) = 0 for ` = 1, . . . ,m2} and fi(x̄) = f(x̄) for i =
0, 1, . . . ,m1;

(ii) for each x ∈ P
f(x) = max{fi(x) : i = 0, 1, . . . ,m1} ;

(iii) ∆ is a closed convex set such that
(a) if α := (α0, . . . , αm1 , αm1+1, . . . , αm1+m2) ∈ ∆ then (α0, . . . , αm1) is an element

of the unit simplex in IRm1+1 given by

∆1 := {(α0, α1, . . . , αm1) :
m1
∑

i=0

αi = 1 , αi ≥ 0 , i = 0, 1, . . . ,m1} ,

(b) for each i = 0, 1, . . . ,m1 1i+1 ∈ ∆, where 1j is the j
th unit vector in IRm1+1+m2 ,

and
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(c) for each ` = 1, 2, . . . ,m2 there exists α
` ∈ ∆ such that α`

m1+` 6= 0; and α`
m1+i = 0

for i ∈ {1, 2, . . . ,m2}\{`};
(iv) for each x ∈ P, g ∈ ∂f(x) if and only if

g =
m1
∑

i=0

αi∇fi(x) +
m1+m2
∑

i=m1+1

αi∇ϕi−m1(x) ,

where the multipliers α0, α1, . . . , αm1+m2 satisfy
complementary slackness: αi = 0 if fi(x) < f(x) and i ≤ m1,

and
dual feasibility: α = (α0, α1, . . . , αm1+m2) ∈ ∆.

The class of pdg -structured functions appears to be quite large and includes maximum
eigenvalue functions as well as other convex functions such as some that are pointwise
maxima of finite or infinite collections of smooth functions, [10], [11].

In a forthcoming paper we will extend pdg -structure to a class of not necessarily convex
functions, similar to the amenable class [19, p. 442] in the sense of having desirable smooth
substructure, but different due to containing functions that are not regular [19, p. 260]
and containing regular ones that are not fully amenable [19, p. 443] such as maximum
eigenvalue functions. We will relate the new class to partly smooth functions [5] and give
expressions for manifold restricted Hessians and for second-order epi-derivatives [19, Ch.
13].

We say that a pdg -structured function f satisfies strong transversality at x̄ when the
n× (m1 +m2) matrix

V̄ := [{∇fi(x̄)−∇f0(x̄)}m1
i=1 ∪ {∇ϕi−m1(x̄)}m1+m2

i=m1
]

has full column rank. In this case, this V̄ is a basis matrix for V , see [12, Lemma 4.4]
with K = I := {0, 1, . . . ,m1 +m2}, the set of all primal function indices.

4.2. Fast tracks for pdg -structured functions

We now employ some results from [12, §§5,6] to show how to obtain a fast track satisfying
VU -decomposition “differentiabilityÔ for a pdg -structured function f that satisfies strong
transversality at a minimizer.

Relative to the function vI(·) defined next, let VI(u) := V(u) when v(u) = vI(u) in (14).

Theorem 4.2. Let f be a pdg -structured function satisfying strong transversality at a
minimizer x̄. Then, for all u small enough, the nonlinear system with variables u and v

{

fi(x̄+ Ūu+ V̄ v) −f0(x̄+ Ūu+ V̄ v) = 0 , i = 1, . . . ,m1

ϕi−m1(x̄+ Ūu+ V̄ v) = 0 , i = m1 + 1, . . . ,m1 +m2
(20)

has a unique C2-function solution v = vI(u) such that the corresponding matrix function

V (u) :=
[{

∇fi(x̄+u⊕vI(u))−∇f0(x̄+u⊕vI(u))
}m1

i=1
∪
{

∇ϕi−m1(x̄+u⊕vI(u))
}m1+m2

i=m1+1

]

(21)
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is a C1-basis for VI(u) and such that V̄ vI(u) ∈ W (u; ḡV) for all ḡ ∈ ri∂f(x̄).

If, in addition, 0 ∈ ri∂f(x̄), then the associated trajectory x̄+ Ūu+ V̄ vI(u) is a fast track
such that all three statements of Theorem 3.3 and all three results of Theorem 3.4 hold with
v(u) = vI(u), V(u) = VI(u) and BU(u) and BV(u) as defined in (11) with Jv(u) = JvI(u).

Proof. The following cited Definition 4.2, Lemma 4.4 and Theorems 5.1, 5.2, 6.1 and 6.3
are all from [12]. The assumption of strong transversality implies that the full index set
I is a basic index set, as defined in Definition 4.2. Therefore, from Theorem 5.1, written
with K = I, there exists a unique function vI(·) solving (20) which satisfies vI(0) = 0 and
has a continuous Jacobian

JvI(u) = −(V (u)>V̄ )−1V (u)>Ū satisfying JvI(0) = 0

where V (u) is the matrix defined in (21) with linearly independent columns for u suf-
ficiently small. As a result, the trajectory x̄ + u ⊕ vI(u) has a continuous Jacobian
Ū + V̄ JvI(u) (denoted by Jx(u) in [12]). Furthermore, V (u) is a C1-function, because
the primal functions are C2 and x̄+ u⊕ vI(u) is C

1. Thus, JvI(u) is C
1, so vI(u) is C

2.
Moreover, from Lemma 4.4 with x̄ replaced by x̄ + u ⊕ vI(u) and V replaced by VI(u),
V (u) is a basis for VI(u) satisfying V (0) = V̄ .

Strong transversality also implies that I is a dual feasible basic index set for each g ∈
∂f(x̄), as defined in Definition 4.2 (ii). Thus, for each ḡ ∈ ri∂f(x̄), the combination of
Theorem 6.1 with K = I and Theorem 6.3 with K̄ = I gives V̄ vI(u) ∈ WU(u; ḡV), and,
hence, vI(u) satisfies condition (i) of the fast track definition.
The same theorems yield the following expression for the Hessian of each LU :

∇2LU(u; ḡV) =
(

Ū + V̄ JvI(u)
)>

H(u; ḡV)
(

Ū + V̄ JvI(u)
)

,

where the n× n matrix function

H(u; ḡV) :=
m1
∑

i=0

αi(u)∇2fi(x̄+ u⊕ vI(u)) +
m1+m2
∑

i=m1+1

αi(u)∇2ϕi−m1(x̄+ u⊕ vI(u))

depends on ḡV via the C1 multiplier vector function (α0(u), . . . , αm1+m2(u)) from The-
orem 5.2. Finally, since the primal functions and vI are C2 functions, ∇2LU(·; ḡV) is
continuous for each ḡ ∈ ri∂f(x̄). In particular, when 0 ∈ ri∂f(x̄), ∇2LU(·; 0) exists and
is continuous. Thus, the above results and the assumption that 0 ∈ ri∂f(x̄) imply that
x̄+ u⊕ vI(u) is a fast track.

To show that the statements in Theorem 3.3 and all three results of Theorem 3.4 here
hold, we next show that Ū + V̄ JvI(u) is a basis matrix for VI(u)

⊥. Since JvI(u) → 0
as u → 0, the columns of Ū + V̄ JvI(u) are linearly independent for all u small enough.
Furthermore, from the above expression for JvI(u),

[

Ū> + JvI(u)
>V̄ >

]

V (u) = Ū>V (u)− Ū>V (u)(V̄ >V (u))−1V̄ >V (u)
= 0 ,

so Ū + V̄ JvI(u) is a basis matrix for VI(u)
⊥.
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Remark 4.3. The above theorem shows that BV(u) and V (u) are both basis matrices
for VI(u) which converge to V̄ , a basis matrix for V = VI(0). Theorem 4.2 via Theo-
rem 3.4(iii) also shows that x̄ + u ⊕ vI(u) is the unique minimizer of f on the affine set
x̄+u⊕ vI(u)+VI(u). In addition, combined with the definition of W (u; ḡV) in (6), it im-
plies that this fast track point minimizes f on another affine set, namely x̄+u⊕vI(u)+V .
Thus, all three matrices B ∈ {BV(u), V (u), V̄ } satisfy the property that there exists a
g ∈ ∂f(x̄ + u ⊕ vI(u)) (depending on B) such that B>g = 0. Among these three ma-
trices, V (u) is the one of practical importance, because it is the type of matrix that is
approximated by bundle methods, see [9, §5], for example.

5. Proximal points and fast tracks

We are now in a position to start our development to show that fast tracks attract proximal
points. In the following theorem we find implicit functions u(x) and ḡV(x) such that
u(x) → 0 and ḡV(x) → 0 as x → x̄ and we make use of the symmetric n × n matrix
defined by

J (x) :=BU(u(x))

[

1

µ
∇2LU(u(x); ḡV(x)) +BU(u(x))

>BU(u(x))

]−1

BU(u(x))
> . (22)

The inverse in this expression exists because BU(u)
>BU(u) → Ū>Ū = IU as u → 0 and,

by convexity, LU has positive semidefinite Hessians. Also, because of the first equality in
(12), J (x) satisfies the following property:

BU(u(x))Ū
>J (x) = J (x) . (23)

Theorem 5.1. Let f : IRn → IR be a convex function with minimizer x̄ ∈ IRn. Suppose
that 0 ∈ ri∂f(x̄) and let x̄+ u⊕ v(u) be a fast track as described in Definition 2.1. Given
a positive parameter µ, for all x close enough to x̄ the nonlinear system with variables
(u, ḡV) and x given by

1

µ

(

∇LU(u; ḡV)⊕ ḡV

)

−
(

x− (x̄+ u⊕ v(u))
)

= 0

has a unique C1-function solution (u, ḡV) =
(

u(x), ḡV(x)
)

such that 0⊕ ḡV(x) ∈ ri∂f(x̄),
(

u(x̄), ḡV(x̄)
)

= (0, 0), and

[

Ju(x)
JḡV(x)

]

=

[

Ū>J (x)

µ[V̄ >V̄ ]−1V̄ >
(

I − J (x)
)

]

. (24)

Proof. Note that (8) and (9) give, respectively, v(0) = 0 and ∇LU(0; 0) = 0. Therefore,
the triple (u, ḡV , x) = (0, 0, x̄) satisfies the system equation. Note also that, by Defini-
tion 2.1(i) and Lemma 3.2(i), the system function is C1 on a ball about (0, 0, x̄). So, now
we are in a position to apply the Implicit Function Theorem to this system, re-written in
its U and V components, as follows:

IRdim U 3 SU(u, ḡV , x) :=
1

µ
∇LU(u; ḡV) + u − (x− x̄)U = 0

IRdimV 3 SV(u, ḡV , x) :=
1

µ
ḡV + v(u) − (x− x̄)V = 0 .
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The corresponding Jacobian with respect to (u, ḡV) is S :=









S11 S12

S21 S22









, where

S11 :=
∂SU

∂u
=

1

µ
∇2LU(u; ḡV) + IU ,

S12 :=
∂SU

∂ḡV
= − 1

µ
BU(u)

>V̄ , [by Lemma 3.2(i)]

S21 :=
∂SV

∂u
= Jv(u) , and

S22 :=
∂SV

∂ḡV
=

1

µ
IV .

In particular, from (8) and the definition of BU(u) and the fact that Ū>V̄ = 0, this
Jacobian at (u, ḡV , x) = (0, 0, x̄) equals











1

µ
∇2LU(0; 0) + IU 0

0
1

µ
IV











,

which, by the convexity of LU , is an invertible matrix. Thus, the Implicit Function The-
orem gives the existence of the desired functions and, taking into account the definitions
of SU and SV , the following expressions for their respective Jacobians:











Ju(x)

JḡV(x)











= −S−1











∂SU

∂x

∂SV

∂x











= −S−1











−Ū>

−[V̄ >V̄ ]−1V̄ >











, (25)

where S is evaluated at (u; ḡV) = (u(x); ḡV(x)). The following expression for S−1 can be
verified by multiplication, or by using (A.8) and (A.9) in [2, p. 543], together with (22),
the transpose of the left equality in (12) or (23), and the fact that V̄ Jv(u) = BU(u)− Ū
by (11):

S−1 =











Ū>J (x)Ū Ū>J (x)V̄

−µ[V̄ >V̄ ]−1V̄ >J (x)Ū µ[V̄ >V̄ ]−1V̄ >
(

I − J (x)
)

V̄











.

Substituting this expression into (25) and writing the identity in IRn as I = Ū Ū> +
V̄ [V̄ >V̄ ]−1V̄ > yields (24).
Finally, to see that 0 ⊕ ḡV(x) ∈ ri∂f(x̄) when x is close enough to x̄, just recall that
ḡV(x̄) = 0 ∈ V and 0 ∈ ri∂f(x̄).

We mention in passing that the above implicit function result holds more generally with
1/µ in the statement of Theorem 5.1 replaced by the inverse of an arbitrary positive
definite n× n matrix.
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Relation with proximal points Given a positive scalar parameter µ, the proximal
point function, corresponding to f and µ, at a given point x ∈ IRn is defined by

p(x) := arg min
y∈IRn

{f(y) + 1

2
µ‖y − x‖2} .

Observe that the optimality condition giving the proximal point y = p(x) is the following:

there exists g ∈ ∂f(p(x)) such that g = µ
(

x− p(x)
)

. (26)

Moreover, letting F (x) := f(p(x)) + 1
2
µ‖p(x)− x‖2 be the Moreau-Yosida regularization

of f at x, it can be shown that

g(x) := µ(x− p(x)) = ∇F (x) (27)

is a Lipschitz continuous function of x, [14], [21], [18].

We now state our main result, and show that for a point near a minimizer of f its
corresponding proximal point is on the fast track.

Theorem 5.2. Let f : IRn → IR be a convex function with minimizer x̄ ∈ IRn. Suppose
that 0 ∈ ri∂f(x̄) and let x̄+ u⊕ v(u) be a fast track as described in Definition 2.1. Given
a positive parameter µ, for all x close enough to x̄

p(x) = x̄+ u(x)⊕ v(u(x)) ,

g(x) = ∇LU(u(x); ḡV(x))⊕ ḡV(x) = µ(x− p(x)) ∈ ∂f(p(x)) ,

and Jp(x) = J (x), where u(x) and ḡV(x) are from Theorem 5.1 and J (x) is defined in
(22).

In particular, p(x̄) = x̄, g(x̄) = 0 and Jp(x̄) = Ū

[

1

µ
∇2LU(0; 0) + IU

]−1

Ū>.

If, in addition, any one of the three statements in Theorem 3.3 holds, then

BU(u(x))
>g(x) = ∇LU(u(x); 0) and g(x) ∈ ri∂f(p(x)) .

Proof. Given x, the optimality condition (26) characterizes p(x) as the unique y ∈ IRn

for which there exists g ∈ ∂f(y) such that g = µ(x − y). For x close enough to x̄,
Theorem 5.1 shows the existence of (u(x), ḡV(x)) such that

1

µ

(

∇LU(u(x); ḡV(x))⊕ ḡV(x)
)

−
(

x− (x̄+ u(x)⊕ v(u(x))
)

= 0 ,

and 0⊕ ḡV(x) ∈ ri∂f(x̄). When x is close to x̄, u(x) is close to 0, so Lemma 3.2 (ii) with
ḡ := 0⊕ ḡV(x) implies that

g := ∇LU(u(x); ḡV(x))⊕ ḡV(x) = µ
(

x−
(

x̄+u(x)⊕ v(u(x))
))

∈ ∂f(x̄+u(x)⊕ v(u(x))) .

Thus, p(x) = x̄+ u(x)⊕ v(u(x)), µ(x− p(x)) ∈ ∂f(p(x)) and, from (27), g(x) = g.
The expression for Jp(x) is obtained by differentiating p(x) = x̄+ Ūu(x) + V̄ v(u(x)) and
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performing the following steps:

Jp(x) = ŪJu(x) + V̄ Jv(u(x))Ju(x)

=
[

Ū + V̄ Jv(u(x))
]

Ū>J (x) [by (24)]

= BU(u(x))Ū
>J (x) [by (11)]

= J (x) . [by (23)]

If Theorem 3.3 applies, then BV(u(x)) is a basis for V(u(x)), BU(u(x)) is a basis for
V(u(x))⊥, and, since

g(x) ∈ ∂f(p(x)) = ∂f(x̄+ u(x)⊕ v(u(x))) ,

BU(u(x))
>g(x) = ∇LU(u(x); 0), so

g(x) = BU(u(x))[BU(u(x))
>BU(u(x))]

−1∇LU(u(x); 0) +BV(u(x))z(x) , (28)

where z(x) ∈ IRdimV . Since g(x) → 0 as x → x̄, z(x) → 0 also, because on the right
hand side of (28) BU(u(x)) → Ū , ∇LU(u(x); 0) → 0 and BV(u(x)) → V̄ , a matrix with
linearly independent columns. So, from Theorem 3.4(ii) with u = u(x), we conclude that
g(x) ∈ ri∂f(p(x)), because ‖z(x)‖ ≤ ρ/2 for x close enough to x̄.

Remark 5.3. If desired, an expression for the function z(x) appearing in (28) can be
given in terms of ḡV(x), V̄ , Jv(u(x)) and ∇LU(u(x); 0) by using (11), Proposition 3.1(iii)
and Lemma 3.2(i).

For completeness we include a result concerning the extreme case where dim U = 0. A
similar result is used in [18, Proposition 8] to prove finite convergence of the proximal
point algorithm in the polyhedral function case.

Theorem 5.4. Let f : IRn → IR be a convex function with minimizer x̄ ∈ IRn. Suppose
that dimV = n and 0 ∈ ri∂f(x̄). Then 0 is in the interior of ∂f(x̄) and p(x) = x̄ for all
x close enough to x̄.

Proof. Since dimV = n, the relative interior and the interior of ∂f(x̄) are the same, so
0 is in the interior of ∂f(x̄). This implies that for all x sufficiently close to x̄ (depending
on µ and the size of ∂f(x̄))

0 + µ(x− x̄) ∈ ∂f(x̄) ,

so g = µ(x− x̄) and p(x) = x̄ satisfy (26).

We conclude with a result showing that a Newton step based on the Moreau-Yosida
regularization F is equivalent to a proximal step plus a U -Newton step.

Theorem 5.5. Let f : IRn → IR be a convex function with minimizer x̄ ∈ IRn. Suppose
that 0 ∈ ri∂f(x̄) and let x̄ + u⊕ v(u) be a fast track as described in Definition 2.1. Also
suppose that ∇2LU(0; 0) is positive definite. Then for all x close enough to x̄ the inverse
of ∇2F (x) exists and

x−
[

∇2F (x)
]−1∇F (x) = p(x)−BU(u(x))

[

∇2LU(u(x); ḡV(x))
]−1

BU(u(x))
>g(x) ,

where u(x) and ḡV(x) are from Theorem 5.1.
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Proof. Differentiating (27) and using Theorem 5.2 gives the relation

∇2F (x) = µ(I − Jp(x)) = µ(I − J (x)) .

Since ∇2LU(0; 0) is positive definite and (u(x); ḡV(x)) → (0; 0) as x → x̄, the U -Hessian
∇2LU(u(x); ḡV(x)) has an inverse for x close to x̄. Using the definition of J (x) in (22) it
can be seen either by multiplication or by applying (A.7) in [2, p. 543] that

[∇2F (x)]
−1

=
1

µ

(

I +BU(u(x))

[

1

µ
∇2LU(u(x); ḡV(x))

]−1

BU(u(x))
>

)

.

Therefore, recalling from (27) that ∇F (x) = g(x), we have

[

∇2F (x)
]−1∇F (x) =

1

µ
g(x) +BU(u(x))

[

∇2LU(u(x); ḡV(x))
]−1

BU(u(x))
>g(x) .

The result then follows from the fact that g(x) = µ(x− p(x)).

6. Concluding Remarks

A conceptual superlinearly convergent VU -algorithm makes a minimizing step in the V-
subspace, followed by a U -Newton move. By Theorem 3.4(iii), making a V-step essentially
amounts to finding a fast track point. We showed in Theorem 5.2 that, at least locally,
V-steps can be replaced by proximal steps.

Bundle methods can be used to approximate proximal steps and other VU -related quan-
tities. The properties of fast tracks from this paper are used in [13] to give conditions
on how well quantities such as p(x), BU(u(x)), and ∇2LU(u(x); ḡV(x)) need to be ap-
proximated in order to develop a future bundle-based VU -algorithm that is globally and
superlinearly convergent.
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