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Let M be a Lagrangian manifold, let the 1-form pdx be globally exact on M and let S(x, p) be defined
by dS = pdx on M. Let H(x, p) be convex in p for all x and vanish on M . Let V (x) = inf{S(x, p) : p
such that (x, p) ∈ M}. Recent work in the literature has shown that (i) V is a viscosity solution of
H(x, ∂V/∂x) = 0 provided V is locally Lipschitz, and (ii) V is locally Lipschitz outside the set of caustic
points for M . It is well known that this construction gives a viscosity solution for finite time variational
problems - the Lipschitz continuity of V follows from that of the initial condition for the variational
problem. However, this construction also applies to infinite time variational problems and stationary
Hamilton-Jacobi-Bellman equations where the regularity of V is not obvious. We show that for dimM ≤
5, the local Lipschitz property follows from some geometrical assumptions on M - in particular that the
Maslov index vanishes on closed curves on M. We obtain a local Lipschitz constant for V which is some
uniform power of a local bound on M, the power being determined by dimM. This analysis uses Arnold’s
classification of Lagrangian singularities.

1. Introduction

This paper considers a geometrical approach to constructing stationary viscosity solutions
to Cauchy problems involving Hamilton-Jacobi-Bellman (HJB) equations. This approach
has recently been put forward by M.V. Day in [11]. The geometry involved is that of
the Lagrangian manifolds in phase space on which the characteristic curves of the Cauchy
problem lie. A certain regularity assumption, namely local Lipschitz continuity, had to be
made by Day in order to show that the function he constructs is a viscosity solution. The
main point of this paper is to investigate how this assumption follows from the topological
and geometrical properties of the relevant Lagrangian manifold in the stationary case.
There are several strands in the literature which have to be introduced in order to place
this problem in its proper context. We do this now.

The first of these strands is optimal control and, more generally, Bolza type variational
problems. Sufficient conditions for a solution to such a problem usually reduce to solving
an HJB partial differential equation, see for instance Chapter 4 of [14] or Chapter 1 of
[15]. In particular, optimising over a finite time horizon leads to a Cauchy problem where
the initial condition (or alternatively the final condition) is determined by the initial
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cost term in the cost functional. The characteristic curves for the Cauchy problem are
the trajectories of the Hamiltonian system corresponding to the HJB equation. In the
case of optimal control, this Hamiltonian system is given by some form of Pontryagin’s
maximum principle. The well known difficulty in formulating such problems is that, even
with smooth initial data, the solution to the HJB equation is generally non-smooth. The
characteristic curves start to cross at a finite distance from the initial manifold and the
solution then becomes multi-valued.

This leads to the second strand, namely viscosity solutions, for which the best introductory
reference is probably still [10]. One of the main motivations for their introduction was to
provide an acceptable definition of the sense in which the value function for an optimal
control problem can be said to solve Bellman’s equation - see for instance Theorem 5.1 of
[15], Theorem 2.3 of [17] or Theorem 1.10 of [22].

As already stated, the aspect of a viscosity solution which concerns us here is its connection
with the geometry of the underlying Lagrangian manifold in phase space. This connection
has already been explored in several places, so in order to make clear the interesting
features of Day’s construction, it is worth considering briefly how it differs from these
other contributions.

Firstly, Hopf’s original formula (Theorem 5a of [24]) for a generalised solution to an HJB
equation in the case of a convex Hamiltonian is essentially geometric - the value of the
solution at a point x is related to the value of the initial condition at a point y, the rela-
tionship being that y is the initial point on the minimising trajectory through x for the
variational problem giving rise to the HJB equation. This formula was shown by Evans
in Theorem 6.1 of [13] to be a viscosity solution. In this finite time variational setting,
Lipschitz continuity of the generalised solution follows immediately from the correspond-
ing Lipschitz continuity of the initial condition. In Examples 4.1.1 and 4.1.2 of [11], Day
shows that his construction gives the same function as Hopf’s formula. The Lipschitz
property he requires in order to deduce that his construction is a viscosity solution fol-
lows from the above variational interpretation. However as the function constructed is
already known to be a viscosity solution, this example doesn’t expose the real application
of his construction, which is to infinite time variational problems.

The other recent exploration of the geometry of viscosity solutions has been in papers
such as [8] which have considered how to express classical second order conjugate point
type necessary and sufficient conditions in the viscosity setting. These results essentially
identify the points at which nearby trajectories start to cross and are no longer locally
optimal. Again the analysis studies the evolution of an initial non-smooth manifold along
the trajectories of a Hamiltonian system.

The interesting aspect of Day’s construction is that it holds in the absence of any varia-
tional interpretation. In some sense it is independent of the evolution of initial manifolds
along characteristics and it furnishes information on global optimality as opposed to lo-
cal optimality. He makes this point himself in his paper, but we hope here to give an
indication of the sense in which this is true.

This brings us to the third strand of the introduction. The particular case where Day’s
construction is of interest is in looking at stationary solutions to HJB Cauchy problems.
In this case one cannot deduce the Lipschitz continuity of the solution from the evolution
of a Lipschitz continuous initial condition, as the initial condition is the solution. No more
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is known about one than the other. Instead stationary solutions are usually arrived at as
some sort of limit of solutions to finite time variational problems and regularity is difficult
to prove. The key point of this paper is that the Lipschitz property actually follows from
the topology of the relevant Lagrangian manifold in the stationary case.

To introduce this, we briefly review various approaches to finding stationary solutions.
In linear quadratic optimal control, given appropriate stabilizability and detectability
conditions, stationary solutions are found as the limit of the value functions for finite time
optimal control problems as the final time tends to infinity - see for instance [29]. The
corresponding Hamiltonian dynamics in phase space (i.e. the dynamics arising from the
maximum principle) are hyperbolic and the limiting value function for the infinite time
problem is the generating function for the stable Lagrangian plane at the equilibrium
point. This idea is extended to non-linear infinite time optimal control in [4, 23] and
to non-linear H∞ control in [32, 33]. The key point is that the stable manifold theorem
implies the existence of a stable Lagrangian manifold whose tangent plane at the origin
is the stable plane for the phase space dynamics of the linearised control problem. In the
region around the origin where the stable manifold has a well-defined projection onto state
space, the value function for the infinite time problem is smooth and is the generating
function for the stable manifold.

The extension to viscosity solutions of infinite time optimal control problems and H∞
problems is done in, for instance, [15, 22] and [30] respectively. However the approach
is not explicitly geometric. The stable manifold approach, at least as far as viscosity
solutions are concerned, has until now been stuck at the point at which the projection
onto state space becomes ill-defined. The connection is probably contained implicitly in
the above cited works in that they all consider an exponentially discounted infinite cost
function while the stable manifold theorem gives exponential bounds on the approach to
the equilibrium point. So a transformation between the two viewpoints may be possible.

However, Day’s construction does make explicit the link between the stable manifold and
the stationary viscosity solution for infinite time optimal control - the full H∞ problem is
currently outside the scope of his construction as convexity of the Hamiltonian is required.
As above, the relevant Lagrangian manifold is the stable manifold for the Hamiltonian
system. This is simply connected - at least that portion of it which can be connected by
Hamiltonian trajectories to a neighbourhood of the equilibrium point is. Closed curves on
this manifold therefore have zero Maslov index. The purpose of this paper is to explain
these terms, particularly Maslov index, and then show that, for manifolds of dimension
≤ 5, this implies local Lipschitz continuity of Day’s construction and hence a stationary
viscosity solution. The result for higher dimensions follows from an open conjecture on
the form of so-called non-folded singularities on the Lagrangian manifold.

To end this introduction, we mention one of the other major approaches to defining unique
generalised solutions to HJB equations, namely idempotent analysis. This is based on the
observation that HJB equations become linear when considered with respect to the arith-
metic operations of (max,+) rather than (+,×), see [27, 20, 21, 19] for instance. This
observation arose out of the study of logarithmic limits of short wave length asymptotic
solutions to quantum tunnelling equations. It lead to the construction of quantum tun-
nelling canonical operators, usually based on heat transforms. We indicate in this paper
the connection between Day’s construction and the logarithmic limit of a quantum tun-
nelling canonical operator based on the Laplace transform. In particular we define an
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orientation on M which allows the correct choice of ‘side’ of the Laplace transform at any
point.

The contents of the paper are as follows. The next section introduces the required back-
ground on Lagrangian manifolds, HJB equations and Day’s construction. Section 3 then
introduces the Maslov index. Section 4 explores the connection with idempotent solu-
tions. Section 5 presents the main results of the paper - namely that vanishing Maslov
index implies local Lipschitz continuity of Day’s construction and, further, that the local
Lipschitz constant can be expressed as some uniform power of a local bound on M where
the power depends on dimM . It follows that Day’s construction is a viscosity solution.
Lastly Section 6 covers some examples and areas for further work.

2. Lagrangian manifolds and HJB equations

This section reviews Day’s proposed construction of viscosity solutions to HJB equations.
It starts with a very brief survey of the required elements of symplectic geometry. There
are many references in the literature for this material. Day himself gives a nice introduc-
tion in Sections 1 and 2 of [11]. Another control theoretic perspective is given in [32, 33].
More detailed expositions from the perspectives of classical mechanics or geometry can
be found in, for instance, [3, 25, 28, 31].

Define phase space to be the real 2n-dimensional vector space with coordinates (x, p)
where x ∈ Rn and p ∈ Rn. (Much of the following applies to general symplectic spaces
but our ultimate applications all live in R2n.) On phase space there exists a canonical
two-form ω = dp∧ dx. Let φ : M → R2n be an n-dimensional submanifold of phase space
on which the restriction of the canonical two-form vanishes, i.e.

φ∗(dp ∧ dx) ≡ 0.

Then M is said to be a Lagrangian submanifold of phase space. This means that the one
form pdx is locally exact on M .

Let I denote a subset of the set {1, . . . , n} and Ī denote its compliment. Let xI denote
the set of coordinates {xi : i ∈ I} and pĪ denote the set {pk : k ∈ Ī}. Then it follows
from the Lagrangian property that, at any point on M , there exists a collection of indices
I such that (xI , pĪ) form a local system of coordinates on M - see Section 2.1 of [28]
or Proposition 4.6 of [25]. This means that M can be covered by an atlas of so-called
canonical coordinate charts UI in each of which its immersion into phase space is given
by the relations

xĪ = xĪ
(

xI , pĪ
)

pI = pI
(

xI , pĪ
)

. (1)

Furthermore, it follows from the Lagrangian property that in each coordinate neighbour-
hood UI , there exists a function SI(x

I , pĪ) satisfying the equation

dSI = φ∗
(

pIdx
I − xĪdpĪ

)

(2)

- see again Section 2.1 of [28] or Theorem 4.21 of [25]. (For brevity we cease, from now
on, to distinguish between forms defined on M and forms defined on all of phase space.)
The above equation means that M can be locally represented in the form

xĪ = −∂SI

∂pĪ
pI =

∂SI

∂xI
. (3)
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SI is called a generating function for M .

Now consider a C2 real valued Hamiltonian function H(x, p) defined on phase space.
Associated with H is a Hamiltonian vector field XH defined by the relation

i(XH)ω = dH

or in coordinate terms

Úx =
∂H

∂p
Úp = −∂H

∂x
.

It follows again from the Lagrangian property that if H is constant on M then the vector
field XH is tangent to M , i.e. M is invariant with respect to the Hamiltonian flow
corresponding to H.

This is the principle reason why Lagrangian manifolds are so important. They are formed
by collections of Hamiltonian trajectories or characteristic curves for the HJB equation

H(x, ∂S/∂x) = 0 (4)

where ∂S/∂x denotes the vector of partial derivatives of S with respect to x. Suppose
H(x, p) = 0 on M . Then, on any of the specific coordinate neighbourhoods UI where
I = {1, . . . , n}, it follows from the relation (3) above that the local solution to (4) is given
by the relevant SI , up to an additive constant. Note that a HJB equation of the form

H(t, x, ∂S/∂x) = −∂S/∂t (5)

can be transformed into one of the form (4) by taking t and −H to be canonical coor-
dinates. This is equivalent to considering the Lagrangian manifold traced out in R2n+2

phase space by the evolution under the Hamiltonian flow of the Lagrangian manifold given
by the initial condition.

The solution given by the above method of characteristics is only local. Day’s construction
attempts to extend it beyond the coordinate neighbourhood in which it is defined. He
makes the following basic hypotheses in order to obtain his construction.

Hypotheses 2.1. (Day)

1. M is a Lagrangian submanifold of R2n.

2. H is a C2 real valued function on R2n with H(x, p) = 0 for all (x, p) ∈ M .

3. pdx is globally exact on M .

4. M is locally bounded.

5. M covers an open region Ω of state space Rn and has no boundary points over Ω.

The technical reasons for making these assumptions can be found in [11]. We only repeat
the following comments for later use. Firstly, note that by the term submanifold, we mean
that M is embedded rather than just immersed. Also, note that by boundary points we
mean points in M̄\M , where M̄ denotes the closure of M . Then, from Hypothesis (5)
and the fact that M is embedded in R2n, it follows that if xn → x ∈ Ω with (xn, pn) ∈ M
for each n and pn → p ∈ Rn, then (x, p) ∈ M and (xn, pn) → (x, p) in the topology of M .

Secondly, Hypothesis (4) means that for each x0 ∈ Ω there exists a δ > 0 and K < ∞
such that |p| ≤ K for all (x, p) ∈ M with x ∈ Bδ(x0).
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Lastly, the fact that M is Lagrangian means that the one-form pdx is closed when re-
stricted to M . It thus defines a cohomomology class [φ∗(pdx)] ∈ H1(M). Hypothesis (3)
says that this class is trivial, or equivalently that there exists a function S(x, p) defined
globally on M which satisfies dS = pdx. For our analysis later on, it is useful to express
this in terms of the local generating functions on canonical coordinate neighbourhoods
UI defined above. Let ΦI denote the restriction of S to UI . Then the generating function
SI(x

I , pĪ) is defined as

SI = ΦI − xĪpĪ .

It follows that this function SI satisfies (2).

Conversely, we can express Hypothesis 2.1(3) in terms of the local generating functions
SI . Let UI and UJ be any two canonical coordinate charts with a non-trivial intersection.
Let I1 = I ∩ J , I2 = I\J , I3 = J\I and I4 = {1, . . . , n}\(I ∪ J). Then Hypothesis 2.1(3)
is equivalent to the equation

SI − SJ = pI2x
I2 − pI3x

I3 (6)

holding in UI ∩ UJ . For then if the functions

ΦI = SI + xĪpĪ (7)

are defined in each of the respective charts UI , it follows from (6) that they agree on
pairwise intersections. Thus they glue togther to give a smooth function S defined on the
whole of M which coincides with ΦI on each UI and which satisfies on each chart

dS = dΦI = pdx. (8)

Equation (6) is the reformulation in Cech cohomology of the requirement that the class
[pdx] be trivial. It is known in quantummechanics as Maslov’s first quantization condition.
We will return to this point below.

Given the existence of a smooth function S(x, p) defined globally on M and satisfying
dS = pdx, Day then proposes the following function

W (x) = inf{S(x, p) : p such that (x, p) ∈ M} (9)

as a viscosity solution. Note that by Hypothesis 2.1(4), the infimum in (9) is achieved for
every x ∈ Ω - see [11], Section 2.1.2. In Theorem 3 of [11] he proves the following.

Theorem 2.2. (Day) If H(x, p) is convex in p for each x and if W (x) is (locally) Lips-
chitz continuous in Ω, then W is a viscosity solution of H(x, ∂W (x)/∂x) = 0 in Ω.

He also shows in Theorem 1 of the same paper that without the Lipschitz condition, W
is a lower semi-continuous viscosity supersolution. Note, as already pointed out in the
Introduction, in a finite time variational setting, the Lipschitz continuity of (9) would
follow easily from that of the corresponding initial condition. However, our interest in
the viscosity solution defined by (9) is that its definition is independent of any variational
interpretation. In particular, it is applicable to the study of stationary solutions corre-
sponding to stable or unstable Lagrangian manifolds of hyperbolic equilibrium points.
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3. Maslov index

This paper will show that the Lipschitz continuity required in Theorem 2.2 follows if,
amongst other conditions, all closed curves on the Lagrangian manifold M have Maslov
index zero. We now define what is meant by the Maslov index.

The simplest definition involves the points on the Lagrangian manifold M at which the
projection of M onto state space Rn is singular. Note, for later reference, that the images
in state space of such singular points are called caustic points. Let Σ denote the set
of singular points on M . It is shown in [1] that, in the generic case, Σ is an (n − 1)-
dimensional two-sided cycle in M - see also, for instance, Appendix 11 of [3] or Theorem
7.6 of [25]. The generic case can always be achieved by an arbitrarily small deformation
in the class of Lagrangian manifolds. This means that a positive and a negative side of
Σ can be consistently defined. The definition of the orientation goes as follows. Recall
from above the notion (1) of canonical coodinate charts on M . In the neighbourhood
of a simple singular point on Σ (i.e. one at which the rank of the projection onto state
space drops by 1), a canonical system UI can be chosen, where I = {1, . . . ,Ýı, . . . , n} for
some i ∈ {1, . . . n}, where ^ denotes omission. This means that M is represented in a
neighbourhood of the singular point in the form

xi = xi(xI , pi) pI = pI(x
I , pi).

Singular points near the given one are then defined by the condition ∂xi/∂pi = 0. For
M in general position (i.e. up to a small deformation), this derivative changes sign on
passing from one side of Σ to the other in the neighbourhood of the given simple singular
point. The positive side of Σ is then taken to be the side where this derivative is positive.
It is shown in [1] that this definition is independent of the chosen coordinate system.

Given this orientation of Σ, the Maslov index of a curve γ on M is then defined to be

ind(γ) = ν+ − ν− (10)

where ν+ is the number of points where γ crosses from the negative to the positive side
of Σ and ν− is the number of points where γ crosses from the positive to the negative
side of Σ - see for instance Appendix 11 of [3] or Definition 7.7 of [25]. This definition
assumes that the endpoints of γ are non-singular and that γ only intersects Σ transversely
in simple singular points. It is then extended to any curve on M by approximating such
a curve with one of the form γ - it can be shown that the definition is independent of
the approximating curve. As an example, the Maslov index of the circle x2+ p2 traversed
anti-clockwise in 2-dimensional phase space is -2.

For those readers familiar with the Morse index from calculus of variations, it may help
to note that the Maslov index is related to the Morse index as follows. An extremal for
a variational problem with Hamiltonian H corresponds to a phase curve in R2n phase
space. As described above for equation (5), this can be lifted to a phase curve lying
on an (n + 1)-dimensional Lagrangian manifold in R2n+2 phase space by considering its
evolution in time under the Hamiltonian flow. The Morse index of the extremal is equal to
the Maslov index of the corresponding phase curve on the (n+1)-dimensional Lagrangian
manifold - see [1], Theorem 5.2 or Appendix 11 of [3].

The definition in (10) is sufficient to allow us to use the concept of Maslov index in the
proofs of this paper. However, it is worth noting that, in [1], Arnold actually proves
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that there is a 1-dimensional cohomology class g∗ on M such that, for a closed curve γ
on M , the evaluation of g∗ on γ is equal to ind(γ) defined above. Again, a summary
can be found in Appendix 11 of [3]. This class g∗ is called the Maslov class of M . It
is constructed as the pull-back of a generator of cohomology on the universal bundle on
a Grassmanian manifold. It is thus a characteristic class on M . This means that if M1

and M2 are Lagrangian manifolds, F : M1 → M2 is a smooth map and g1, g2 denote the
Maslov classes on M1 and M2 respectively, then g1 = F ∗(g2). Much of the work in Section
5 is aimed at proving that the Maslov index is also preserved under pull-back for certain
types of non-closed curves.

The Maslov class can also be defined in terms of Cech cohomology - see Definition 7.4 of
[25] and Section 2.3 of [28].

4. Idempotent Solutions

The principal application of the Maslov index has been to the construction of global
asymptotic solutions to linear PDEs arising in mathematical physics. This has lead to
the development of the idempotent analytic approach to solving HJB equations. A number
of authors, e.g. [18], have considered the connections between viscosity and idempotent
solutions to HJB equations. In this section we give a brief introduction to idempotent
analysis with the aim of showing that Day’s construction has already been used to obtain
idempotent solutions to certain forms of stationary HJB equations. This holds out the
possibility of showing a connection between viscosity and idempotent solutions in the
stationary case.

The vanishing (mod 2) of the Maslov class is called the second Maslov quantization
condition. The first quantization condition has already been introduced above in equation
(6) - namely the vanishing of the class [pdx]. These two conditions appear as obstructions
to the existence of global asymptotic solutions to linear pseudodifferential equations of
the form

ih
∂ψ

∂t
= H

(

x,−ih
∂

∂x

)

ψ, ψ(x, 0) = exp

(

i

h
S0(x)

)

φ0(x) (11)

as h → 0. The construction of a local asymptotic solution is obtained by the famous
Wentzel, Kramers and Brillouin (WKB) method. This involves looking for a solution of
the form

ψ(x, t) = exp

(

i

h
S(x, t)

)

φ(x, t).

The asymptotic phase S is the solution of the characteristic HJB equation

∂S

∂t
+H

(

x,
∂S

∂x

)

= 0, S(x, 0) = S0(x)

corresponding to (11). The function φ(x, t) is the solution of a so-called transport equa-
tion. This representation only holds up to the first focal point of the Hamiltonian flow
corresponding to H with respect to the initial manifold M0 = {x, ∂S0/∂x} in phase space.

It is extended to a global representation as follows. Consider another canonical coordi-
nate chart UI on the Lagrangian manifold M formed by the evolution of M0 along the
Hamiltonian flow given by H. Let SI denote the generating function of M in UI . Let
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Ýp = −ih∂/∂x. Then there is a 1/h-Fourier transform in x and p on phase space that takes
the pseudolinear equation (11) to one for which

ψI(x
I , pĪ , t) = exp

(

i

h
SI(x

I , pĪ , t)

)

φI(x
I , pĪ , t)

is the local WKB solution. This is transformed back to a solution in coordinates
{x1, . . . , xn, t} by an inverse 1/h-Fourier transform. The construction of a global asymp-
totic solution on Rn×R then involves showing that the various representations are asymp-
totically equal on intersections UI ∩ UJ . The integrals involved in the inverse transforms
are asymptotically expanded using the method of stationary phase, which involves the
square root of the Jacobian of the change of coordinates between UI and UJ . The first
quantization condition guarantees that the phases SI and SJ glue together into a global
asymptotic phase. The second quantization condition guarantees that the branches of the
complex square root function can be chosen such that the arguments of the square root
cancel out globally on M . Details can be found, for instance, in Section 4.1 of [28]. The
whole proceedure can be formulated without reference to Cauchy problems in terms of
the so-called Maslov canonical operator. This maps functions ψ defined on M0 globally
to Rn and gives an asymptotic Green’s function for equation (11).

The above method is typically applied to the Schrodinger equation

ih
∂ψ

∂t
=

(

−h2

2
∆ + V (x)

)

ψ.

The connection with optimisation is via the search for the low level asymptotic eigenfunc-
tions of the Schrodinger operator. This leads to the study of the large time asymptotics
of the equation

h
∂u

∂t
=

(

h2

2
∆− V (x)

)

u, (12)

i.e. to the study of asymptotic quantum tunnelling solutions - see [12], Section 1 or [26].
The logarithmic asymptotics of this equation also turn up in the study of large deviation
problems in probability. The canonical operator giving the globally asymptotic (as h → 0)
solution of (12) is called the tunnelling canonical operator. It gives asymptotic solutions
in which the principal term is of the form exp(−S(x, t)/h) where the entropy S is the
generalised solution to the characteristic HJB equation

∂S

∂t
+

1

2

(

∂S

∂x

)2

− V (x) = 0, S(x, 0) = S0(x). (13)

This S is therefore also the generalised solution to an optimisation problem.

The tunnelling canonical operator differs from the Maslov canonical operator in that,
in the neighbourhood of a focal point, the transformation between canonical charts on
the Lagrangian manifold M corresponding to (13) is achieved by translating along the
Hamiltonian flow given by HI = (1/2)Σi∈Ip

2
i where I ⊂ {1, . . . , n}. The corresponding

transformation of the solution to (12) is therefore obtained by applying the solving oper-
ator for the heat equation. The resulting asymptotic integral expansion uses the Laplace
method. This is simpler than the method of stationary phase. At any given point x, it
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identifies the branch of M on which the generating function S takes its minimum value
over all the branches projecting onto x, rather than summing the contribution from all
the branches as in the stationary phase method. The first Maslov quantization condition
is still required to ensure the existence of a globally defined entropy S on M . The second
quantization condition is not needed, however, as the Jacobian entering into Laplace’s
method is assumed to be positive and so there are no problems in taking its square root.

The logarithmic limit as h → 0 of the asymptotic solution to (12) gives the so-called
idempotent generalised solution to (13). This takes the form of a resolving operator Rt

such that S(x, t) = RtS0(x) is the generalised solution to (13) where Rt is defined on the
set of functions bounded from below by the formula

RtS0(x) = inf
ξ
(S0(ξ) + S(t, x, ξ)). (14)

Here S(t, x, ξ) is the value of the cost functional, for the variational problem corresponding
to (13), along the minimising extremal starting at ξ at time −t and ending at x at time
0. The operator Rt is linear with respect to the arithmetic operations (min,+), i.e.

Rt(min(S1, S2)) = min(RtS1, RtS2),

Rt(λ+ S(x)) = λ+RtS(x), λ ∈ R.

This is what is meant by an idempotent solution to (13). The fact that it is obtained
by a linear resolving operator over an appropriate space allows the usual apparatus of
analysis, i.e. weak solutions, distributions, Green’s functions, convolutions, etc. and the
corresponding numerical approximation schemes, to also be carried over to this space in
order to find generalised solutions to HJB equations. A good review of this can be found
in the introductory paper by Gunawardena in the volume [19]. A simple example is given
in [27] of the 1-dimensional heat equation with a small parameter h which shows how the
‘min’ superposition law for the entropies arises from the log limit of the normal linear
superposition law for solutions of the heat equation as h → 0.

The connection between idempotent solutions and Day’s construction (9) can now be
stated. See Section 5 of [12] for more details. Suppose that in equation (13), the potential
V is a smooth nonnegative function with a bounded matrix of second derivatives. Suppose
also that V (x) → ∞ as |x| → ∞ and that V (x) is zero at just a finite number of points
ξ1, . . . ξl at each of which the matrix of second derivatives of V is non-singular. As already
mentioned above, for the variational problem

J(c(.)) =

∫ 0

−t

(

1

2
Úc2(τ) + V (c(τ))

)

dτ

corresponding to (13), let S(t, x, ξ) denote the value of the cost functional along the
minimising extremal starting at ξ at time −t and ending at x at time 0. The cost
functional takes its minimum value on a smooth curve. Now define

Sk(x) = inf{S(t, x, ξk) : t > 0} = lim
t→∞

S(t, x, ξk)

and
S(x) = min{Sk(x) : k = 1, . . . , l}.
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It is pointed out in Proposition 1 of [12] that Sk(x) and S(x) are stationary idempotent
solutions of (13). Furthermore, it is shown in Proposition 3 that Sk(x) is the generating
function for the essential parts of the unstable Lagrangian manifold through (ξk, 0). Note
for later reference that a non-essential point r on a Lagrangian manifold is one for which
there is another point on the Lagrangian manifold with the same projection onto state
space and at which the generating function has a lower value than at r. Thus it can
be seen that the construction (9) considered by Day is already known to give stationary
idempotent solutions and to relate them to the corresponding unstable manifold for the
Hamiltonian flow when V satisfies the above assumptions.

In the same way as mentioned in the Introduction for viscosity solutions, the Lipschitz
continuity of finite time idempotent solutions to the Cauchy problem (13) follows from the
resolving operator representation (14) and the Lipschitz continuity of the initial condition
S0. However, this argument again fails to work for stationary idempotent solutions to (13).
If it can be shown that Day’s construction (9) is locally Lipschitz continuous then it will
follow that, for the particular form of potential V considered here, stationary idempotent
solutions to (13) coincide with stationary viscosity solutions.

We end this discussion of canonical tunnelling operators and idempotent solutions with the
following remark. Recall from above that in the definition of the standard canonical tun-
nelling operator, the transformation between different canonical charts on the Lagrangian
manifold defining the entropy is achieved with heat transforms. Day’s construction (9)
can be considered as the logarithmic limit of a canonical tunnelling operator. However
in this case the transition between local representations for the entropy is achieved via
the relation (6). This can be viewed as the logarithmic limit of a 1/h-Laplace trans-
form. In other words, the corresponding canonical tunnelling operator is constructed
using Laplace transforms instead of heat transforms. The need to take account of the
one-sidedness of the Laplace transform manifests itself in the discussion in Section 1.4
and Section 5 of [11] concerning time-reversals, ‘forward-backward’ transformations and
the question of whether the corresponding variational problem involves an inf or a sup
type cost functional. We deal with this point in the next section by slightly rephras-
ing Day’s construction (9) to include the necessary orientation information to allow the
correct choice of ‘side’ of the Laplace transform at any point.

5. Lipschitz Continuity

In this section we show that Day’s construction (9) gives a viscosity solution on Lagrangian
manifolds of dimension ≤ 5 if, amongst other conditions, the Lagrangian manifold has
zero Maslov index on closed curves.

By Theorem 2.2, it is sufficient to show that W is locally Lipschitz in Ω. Furthermore,
by other results of Day, we only need to show that this holds at certain points of Ω. To
see this, recall from Section 2 that a point x ∈ Ω is called a caustic point if there exists a
point (x, p) ∈ M at which the projection π|M onto state space is singular. Recall also the
definition of a non-essential point on M made at the end of the previous section. Since
Hypothesis 2.1(4) guarantees that S achieves its minimum in (9), an essential caustic point
x ∈ Ω can be defined to be a caustic point for which π is singular at every (x, p) ∈ M at
which S achieves its minimum over x. Denote the set of essential caustic points by C∗.
This is, of course, a subset of the set of caustics in Ω. It is shown in Theorem 2 of [11]
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that

Theorem 5.1. (Day) W defined by (9) is continuous in Ω\C∗ and locally Lipschitz in
the interior of Ω\C∗.

So we can concentrate our attention on the set C∗ of essential caustic points in Ω. We
start by formally stating the hypotheses under which we will work. These will be assumed
to hold in addition to those already assumed by Day and listed above in Hypotheses 2.1.
The same notation applies as there. In the following, for any (x, p) ∈ M , let γp denote
the integral curve corresponding to H which passes through (x, p), i.e. the integral curve
for the canonical equations

Úx = ∂H/∂p, Úp = −∂H/∂x (15)

where H is the Hamiltonian function referred to in Hypotheses 2.1(2). From the fact that
M is Lagrangian and H is constant on M , it follows that γp lies on M . The term phase
flow corresponding to H refers to the transformation of phase space given by the solution
to (15). Also, in the following let Σ denote the set of singular points for π|M on M .

Hypotheses 5.2.

1. The Maslov index of any closed curve on M is zero.

2. There exists a neighbourhood U ⊂ M on which the projection π|M onto state space
is non-singular and such that π(U) ⊂ Ω.

3. For any point (x, p) ∈ M lying over x ∈ Ω, the integral curve γp passes through U
and intersects Σ at most once between (x, p) and U .

4. For any x ∈ Ω downstream of U , let (x, p∗) ∈ M be a point at which S(x, .)
achieves its minimum over all p such that (x, p) ∈ M . Then the integral curve
γp∗ does not intersect Σ between (x, p∗) and U . Similarly, for x ∈ Ω upstream of
U , let (x, p∗) ∈ M be a point at which −S(x, .) achieves its minimum over M .
Then γp∗ does not intersect Σ between (x, p∗) and U . The notions of upstream and
downstream will be defined shortly.

5. For any x ∈ Ω and any (x, p), (x, q) ∈ M which lie over x, let s and t respectively
denote the parameterisations of γp and γq given by the phase flow corresponding to
H. Then traversing both γp and γq in the direction of increasing s and t, respectively,
corresponds to travelling either away from U towards both (x, p) and (x, q) or away
from both (x, p) and (x, q) towards U .

6. H(x, p) is convex in p for each x ∈ Ω.

Some comments about the above are in order. As with Day’s hypotheses, they are at-
tempts to extract the geometrical essence of the problem independent of any variational
interpretation. We examine each of the hypotheses in turn in the context of two main
classes of Lagrangian manifolds.

The first class is those arising from finite time variational problems where, if M0 denotes
the Lagrangian manifold corresponding to the initial or final cost term, then M is the
(n+1)-dimensional Lagrangian manifold traced out in R2n+2 phase space by the evolution
of M0 along the Hamiltonian flow. This M is clearly simply connected. The fact that
H = 0 on M follows, as mentioned above after equation (5), from the technique used to
extend phase space from 2n to (2n+ 2) dimensions.



D. McCaffrey, S. P. Banks / Lagrangian Manifolds, Viscosity Solutions and ... 197

As already noted, the Lipschitz property is easily established in the finite time case via
other arguments. However, this is not the case for the second class of manifolds, namely
those arising as stable or unstable Lagrangian manifolds of hyperbolic equilibrium points
of Hamiltonian systems. These are the manifolds in which we are primarily interested
and they correspond to stationary solutions to HJB equations arising from infinite time
variational problems. Stable and unstable manifolds are not in general simply connected.
However, as shown in Section 5 of [11], it is easy to construct large portions of them which
are, as follows. Let x = 0, p = 0 be a hyperbolic equilibrium point for the dynamics given
by (15) and let M+ denote the associated stable manifold. Let Ω be an open region in
state space containing 0 with the following properties:

(a) Ω is covered by M+ - i.e. for every x ∈ Ω there is some (x, p) ∈ M+ and

(b) Ω is forward invariant for (15) - i.e. for every (x, p) ∈ M+ with x ∈ Ω, if γp denotes
the integral curve for (15) with γp(0) = (x, p), then π(γp(t)) ∈ Ω for all t ≥ 0.

Then the required Lagrangian manifold M is the submanifold of M+ consisting of those
(x, p) ∈ M+ with x ∈ Ω. This M is clearly simply connected since it can be pulled back
onto a simply connected neighbourhood of (0, 0) onM+. As noted in [32], M is Lagrangian
since the canonical two-form ω is invariant under the phase flow and all vector fields on
M vanish as the phase flow converges to (0, 0). Similarly, H = 0 on M since H is constant
on phase curves and these all converge to (0, 0) at which H = 0.

For the the unstable manifold M− associated with (0, 0), the same construction gives a
simply connected Lagrangian submanifold M provided the region Ω is backward invariant
for (15).

We can now look at the reasonableness of the above hypotheses in the context of these
two classes of Lagrangian manifolds. Note first that Hypothesis 5.2(1) is equivalent to
the vanishing of the Maslov class g∗ ∈ H1(M,R). This will clearly be satisfied if M is
simply connected, which is true for both classes of examples.

Hypothesis 5.2(2) is also natural for both classes. In the finite time case, U would be
given by a small time neighbourhood of M0 on M . In the infinite time case, U would be
a small neighbourhood of the equilibrium point on the stable or unstable manifold. The
fact that U has a non-singular projection onto state space follows from the assumptions
which guarantee that the equilibrium point is hyperbolic. These typically take the form
of assumptions on the linearised dynamics at the equilibrium point which guarantee the
existence of a local smooth solution to the infinite time variational problem.

Hypothesis 5.2(3) is again natural. In the finite time case, it follows from the fact that
every point on M will flow into or out of the initial manifold M0 under the Hamiltonian
flow. In the infinite time case, it follows from the definition of a stable or unstable
manifold. The requirement that γp intersects Σ at most once restricts attention to regions
of the manifold on which the Hamiltonian trajectories from U have passed through at
most one singularity. We will return to this in the final section of the paper.

There is some content in Hypothesis 5.2(4). It would follow from the differentiability of
the value function along an optimal state trajectory. This is well known for the finite time
case provided the optimal trajectory is unique - see for instance [7, 5]. Points at which
two optimal trajectories meet correspond to the formation of shocks in the evolution of
M viewed as the graph in phase space of the vector function p = p(t, x) - see Section
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4.2 of [11] and [6]. At such points, the value function is no longer differentiable and the
minimising point (x, p∗) in formula (9) jumps from one branch of M to another. The
results below show that the jump cannot occur at a singular point in the projection of
M onto state space. In the infinite time case, it would seem reasonable to expect this
hypothesis to be satisfied on some sizeable submanifold, constructed as above, of a stable
or unstable manifold. We leave for the future the question of deciding just how restrictive
this hypothesis is.

Hypothesis 5.2(5) rules out the possibility of reaching (x, p) from U by following the phase
flow in forward time along γp while reaching (x, q) by following it in reverse time along
γq. This means that all branches of M lying over the same point x ∈ Ω can be given the
same H-dependent ‘orientation’ with respect to U . This is the orientation referred to at
the end of the previous section in connection with the choice of the correct side in the
1/h-Laplace transform used to construct a canonical tunnelling operator. This hypothesis
allows us to make the following definition.

Definition 5.3. If the direction of travel along γp from U to (x, p) corresponds to follow-
ing the phase flow for H in forward time then we will say that x is downstream from U ,
otherwise x is upstream from U .

Lastly, we have included the convexity of H (already required by Theorem 2.2) as an
explicit hypothesis in 5.2(6) because it is central to the following arguments. We comment
in the final section about how the approach of this paper may be extended to cover the
case where H is neither convex nor concave.

There are two more hypotheses which we will require, one of so-called ‘transverse con-
nectivity’ and the other a compactness condition, but their statements require certain
technical notions to be developed later in this section. They will be stated after those
developments as Hypotheses 5.12 and 5.22. The first is a general position assumption and
so is not restrictive in the sense that the space of manifolds which satisfies it is dense in
the space of all Lagrangian manifolds. The second excludes certain cases which we con-
sider to be pathological. As with Hypothesis 5.2(4), we leave for the future the question
of deciding just how restrictive this exclusion is.

We now rephrase Day’s construction (9) to take account of the orientation given by
Hypothesis 5.2(5). The motivation for doing so is given by Example 4.1.1 of [11] in which
Day considers the variational problem

W (t, x) = inf
x(t)=x

{

Φ(x0) +

∫ t

0

L( Úx(s))ds

}

with convex integrand L. He applies his construction (9) on the (n + 1)-dimensional
Lagrangian manifoldM formed by the evolution of the initial manifold (x0, ∂Φ/∂x0) under
the Hamiltonian flow. The convex Hamiltonian onM is given by H+(t, x, σ, p) = σ+H(p)
whereH is the Legendre transformation of L and (t, σ) are the extra canonical coordinates
required to extend R2n phase space to R2n+2, as described after equation (5) above. On
M , H+ = 0, i.e. σ = −H. As is obvious from the variational interpretation, the function
defined by (9) gives a Lipschitz viscosity solution to H+ = 0 on the portion downstream
from the initial manifold, confirming Theorem 2.2. However, the function so defined is
discontinuous on the upstream portion of M .
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To obtain a viscosity solution on the upstream portion ofM using a variational argument,
the correct variational problem to consider would be

W (−t, x) = inf
x(−t)=x

{

Φ(x0) +

∫ −t

0

L( Úx(s))ds

}

= − sup
x(−t)=x

{∫ 0

−t

L( Úx(s))ds− Φ(x0)

}

where t > 0. So the cost functional is of supremum type, the value function to solve for
is ÝW = −W and it satisfies the final condition ÝW (0, x0) = −W (0, x0) = −Φ(x0), which
matches the initial condition for the downstream portion. Also, p = ∂W/∂x = −∂ ÝW/∂x
and σ = −H = ∂W/∂t = −∂ ÝW/∂t. Now to construct ÝW from M the analogue of formula
(9) would be

ÝW (x) = sup{S(x, p) : p such that (x, p) ∈ M}. (16)

It is clear from either a variational argument or from inspection of the pictures in Example
4.1.1 of [11] that ÝW is Lipschitz on the upstream portion of M . Since −H+(t, x, σ, p) = 0
is concave with respect to σ and p, the analogue of Theorem 2.2 says that ÝW is a vis-
cosity solution of −H+(t, x,−∂ ÝW/∂t,−∂ ÝW/∂x) = 0 on the upstream portion of M .
By Remark 1.4 of [9], this is equivalent to W = − ÝW being a viscosity solution of
H+(t, x,−∂W/∂t,−∂W/∂x) = 0 on the upstream portion of M .

So if H+(t, x, σ, p) = 0 on all ofM, then the appropriate equation to solve on the upstream
portion of M is H+(t, x,−∂W/∂t,−∂W/∂x) = 0 and the correct definition for a viscosity
solution on this portion of M is W = −sup{S(x, p)}, rather than equation (9). On the
downstream portion, the appropriate equation to solve is H+(t, x, ∂W/∂t, ∂W/∂x) = 0
and the correct definition for a viscosity solution is given by (9). Given that Hypothesis
5.2(5) allows a consistent definition on M of the notions of upstream and downstream,
we are thus motivated to redefine Day’s construction (9) as follows.

Definition 5.4. If x ∈ Ω is downstream of U then define

W (x) = inf{S(x, p) : p such that (x, p) ∈ M}, (17)

while if x is upstream of U then define

W (x) = − sup{S(x, p) : p such that (x, p) ∈ M}
= inf{−S(x, p) : p such that (x, p) ∈ M}. (18)

This is the sense in which, viewing the above construction as the logarithmic limit of
a canonical tunnelling operator based on a 1/h-Laplace transform, then the orientation
given by Hypothesis 5.2(5) enables a coherent choice of side in the transform.

It is clear, from the discussion preceding the above definition, that Theorems 2.2 and
5.1 apply in the same way to W defined by (17) and (18) as to W defined by (9). It
is also clear that if, in Hypothesis 5.2(6), H is assumed to be concave instead of convex
and if, in Hypothesis 5.2(4), the reference to ‘minimum’ is replaced by ‘maximum’, then
all the results of this paper still apply provided (i) inf is replaced by sup and S by −S
in formulae (17) and (18) and (ii) the appropriate equations to solve are taken to be
H(x, ∂W/∂x) = 0 upstream and H(x,−∂W/∂x) = 0 downstream. This is equivalent to
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reversing time and swapping the definitions of which portions of M are upstream and
downstream. It is well known in the literature on control and viscosity solutions that
reversing time corresponds to solving the equation −H = 0 instead of H = 0, and thus
concave Hamiltonians are converted into convex ones. This is used by Day in Section 5
of [11] in order to convert the supremum cost functional and concave Hamiltonian for an
L2-gain problem into an infimum cost functional and convex Hamiltonian to which the
construction (9) can be applied. It is interesting to note that this observation is natural
from the perspective of symplectic geometry. This is because, as noted above, (t,−H)
are the pair of symplectic coordinates used to embed R2n phase space into R(2n+2) phase
space. So if time is reversed, i.e. its sign is changed, then the sign of H must be changed
as well in order to preserve the orientation of the canonical 2-form ω = dy ∧ dx− dH ∧ dt
on R(2n+2).

The next step is a key use of the convexity ofH to show that the Maslov index is monotonic
along any of the Hamiltonian integral curves lying on M .

Lemma 5.5. For x ∈ Ω and any (x, q) ∈ M , let γq denote the integral curve for H which
lies on M and which connects the point (x, q) to U . Consider the direction of travel along
γq which corresponds to following the phase flow for H in forward time. Then the Maslov
index is non-decreasing along γq, with respect to this direction of travel.

Proof. Recall that H(x, p) is assumed to be C2. Further, since it is convex in p for all x,
it follows that at any x and p, the Hessian of H with respect to p is positive semi-definite,
i.e. for any h, Ýx, Ýp ∈ Rn,

hT ∂
2H

∂p2
|Ýx,Ýp h ≥ 0.

Let Σ denote the set of singular points on M and let (Ýx, Ýp) be a point of intersection of
γq with Σ. Recall from the definition of the Maslov index (10) that, up to an arbitrarily
small deformation in the class of Lagrangian manifolds, we can assume that γq intersects
Σ transversely in a simple singular point. Thus, in the neighbourhood of (Ýx, Ýp), points
on Σ are defined by the condition ∂xi/∂pi = 0 for some i ∈ {1, ..., n}. Let ei denote the
standard basis vector with a 1 in the ith position and zeros elsewhere and let t denote the
parameterisation of γq given by the solution of Úx = ∂H/∂p, Úp = −∂H/∂x. Then at (Ýx, Ýp)

d

dt

∂xi

∂pi
=

∂

∂pi

dxi

dt
=

∂2H

∂p2i
= eTi

∂2H

∂p2
ei ≥ 0,

i.e. at (Ýx, Ýp) the dervative ∂xi/∂pi cannot decrease. Since (Ýx, Ýp) is a point of transversal
intersection with Σ, this derivative has to change sign. Therefore it must go from negative
to positive. It follows that the Maslov index of γq with the given orientation must increase
by +1 at (Ýx, Ýp).

Corollary 5.6. Suppose x ∈ Ω is downstream of U and (x, q) ∈ M . Then the Maslov
index of γq is 0 or +1 when traversed from U to (x, q). In particular, if (x, p∗) ∈ M is
the point at which S(x, .) achieves its minimum over all p such that (x, p) ∈ M , then the
Maslov index of γp∗ equals 0. Conversely, if x ∈ Ω is upstream of U , then the Maslov
index of γq is 0 or −1 when traversed from U to (x, q) and, if (x, p∗) ∈ M is the point
at which −S(x, .) achieves its minimum over all p such that (x, p) ∈ M , then the Maslov
index of γp∗ equals 0.
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Proof. The Maslov index of any curve lying in U is zero and γq intersects Σ at most once
between U and (x, q). Furthermore, γp∗ does not intersect Σ between U and (x, p∗).

The main result of this section is to show that, what we will call, folded singularities on
M cannot be minimising points for S downstream of U (or −S upstream of U). The main
tool used to prove this will be the Maslov index. These arguments, as with all the above
references to Maslov index, make use of the notion of transversality or general position,
i.e. they hold up to an arbitrarily small perturbation of M within the class of Lagrangian
manifolds. In particular, we will make extensive use of specific assumptions about the
transversality of a connecting curve between points (x, p) and (x, q) on M . For clarity,
we state these assumptions explicitly.

Definition 5.7. A regular curve segment in state space is an embedding b : [0, 1] → Rn

such that the closed curve {b(s) : s ∈ [0, 1]} has no self-intersections. In particular,
b(0) 6= b(1).

Definition 5.8. Let M be a Lagrangian manifold in R2n phase space and let (x, p) and
(x, q) be points on M lying over the same point x in Rn state space. Then (x, p) and
(x, q) are said to be connected over a regular curve segment in state space if there exists
an embedded curve β : [0, 1] → M such that

1. β(0) = (x, p) and β(1) = (x, q),

2. β has no self-intersections and

3. the projection π({β(t) : t ∈ [0, 1]}) of β onto state space coincides with the image of a
regular curve segment b in state space, i.e. π({β(t) : t ∈ [0, 1]}) = {b(s) : s ∈ [0, 1]}.

Definition 5.9. Suppose (x, p) and (x, q) ∈ M are connected over a regular curve seg-
ment b in state space. So there exists some s ∈ [0, 1] such that b(s) = x. We can choose
an open interval I of R containing [0, 1] and extend b to an embedding b : I → Rn

such that the image b(I) is contained in Ω and has no self-intersections. Then (x, p)
and (x, q) are transversely connected over a regular curve segment in state space if
for all t ∈ [0, 1], the maps b and π|M are transverse at π(β(t)). This means that if
Ýx = π(β(t)) = b(s) for some s ∈ [0, 1] and if U1 denotes a small neighbourhood of β(t) on
M then TÝx(π|U1(M)) + TÝx(b(I)) = Rn.

Definition 5.10. M is said to have the property that all its branches are transversely
connected over regular curve segments in state space if the property holds for any pair
(x, p) and (x, q) ∈ M .

Example 5.11. Suppose M is the Lagrangian manifold traced out in extended R4 phase
space by an initial manifold M0 = {x, ∂S0/∂x} in R2 phase space under the Hamiltonian
flow corresponding to the finite time Cauchy problem

H(x, ∂S/∂x) = −∂S/∂t, S(x, 0) = S0(x).

Then all branches on M are transversely connected over regular curve segments in state
space.

Proof. If (x, p), (x, q) ∈ M then, since the 2nd coordinate x2 in state space is time t, it
follows that (x, p) and (x, q) are simultaneous. So they can be connected by a curve of
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simultaneous points on M . Since the Hamiltonian flow has everywhere a unit component
in the time direction, (x, p) and (x, q) are transversely connected.

In the general case, which includes higher dimensions and infinite time problems, trans-
verse connectivity can be achieved in the same way as other transversality conditions, i.e.
by an arbitrarily small perturbation within the class of Lagrangian manifolds. Thus, the
following hypothesis is not restrictive in that it is satisfied by a space of manifolds which
is dense in the space of all Lagrangian manifolds.

Hypothesis 5.12. All branches of M are transversely connected over regular curve seg-
ments in state space.

We saw in Section 3 how the Maslov index behaves on closed curves under pull-back.
We now examine how it behaves on transverse connecting curves under pull-back. By
definition, these are not closed. The pull-back we consider is into a two dimensional
phase space. We aim, eventually, to evaluate S along the pulled back connecting curve in
this 2-dimensional phase space.

Lemma 5.13. Let (x, p) and (x, q) ∈ M be transversely connected over a regular curve
segment in state space. With the notation of the preceding definitions we can consider
I ⊂ R to be embedded in the s-coordinate axis (i.e. the state coordinate) in R2 phase
space with symplectic coordinates (s, r). Let b∗(β) denote the pull-back under b of the
curve β from R2n phase space into R2 phase space. Then b∗(β) is a Lagrangian sub-
manifold of R2. Furthermore, if β1 is any sub-segment of β and ind denotes the Maslov
index, then ind(b∗(β1)) = ind(β1), where the indices are calculated with respect to some
parameterisation of β1 and the corresponding induced parameterisation on b∗(β1).

Proof. Given the smooth map b : I → Rn and the curve β on M lying over {b(s) : s ∈
[0, 1]} ⊂ Rn, the pull-back b∗(β) in R2 phase space is defined as the submanifold

{

(Ýs, Ýr) : Ýr = Ýp
dx

ds
|Ýx, Ýx = b(Ýs) and (Ýx, Ýp) ∈ β ⊂ R2n

}

of R2. Note that this is well defined since for any given (Ýx, Ýp) ∈ β, there is a unique
Ýs such that Ýx = b(Ýs) and the corresponding Ýr such that (Ýs, Ýr) ∈ b∗(β) is then fixed by
Ýr = Ýp(dx/ds) |Ýx. Now it follows, by transversality, that b∗(β) is Lagrangian (see for
example Proposition 3.3.11 of [31]).

Next, consider a point (Ýx, Ýp) on β which does not lie on the singular locus ΣM for the
projection of M onto Rn state space. Then in a neighbourhood of (Ýx, Ýp) on M , M can
be parameterised by x, i.e. it can be expressed in the form {(x, p(x)) : x ∈ open set
in Rn} for some smooth vector function p of x. Now, as noted above, there is a unique
(Ýs, Ýr) = b∗(Ýx, Ýp). Then in a neighbourhood of (Ýs, Ýr) on b∗(β), we see that b∗(β) can be
expressed in the form {(s, p(b(s))(db/ds)|b(s)) : s ∈ open set in R}. In other words, b∗(β)
can be parameterised by s and so (Ýs, Ýr) is not a point of intersection of b∗(β) with Σb∗(β),
the singular locus for the projection of b∗(β) onto R state space.

Conversely, suppose (Ýx, Ýp) on β is a point of intersection with ΣM . Then π|M is singular
at (Ýx, Ýp). But, by transversality, if U1 denotes a small neighbourhood of (Ýx, Ýp) on M , then
TÝx(π|U1(M)) + TÝx(b(I)) = Rn. Since dimTÝx(b(I)) = 1, the rank of π|M must drop by only
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1 at (Ýx, Ýp) and, furthermore, the direction in which π|M becomes singular must lie along
the tangent to b at Ýx = b(Ýs). Thus, if πR2 denotes the projection of (s, r)-phase space
onto (s)-state space and if (Ýs, Ýr) = b∗(Ýx, Ýp), then πR2|b∗(β) is singular at (Ýs, Ýr). So (Ýs, Ýr) is
a point of intersection of b∗(β) with Σb∗(β). A similar transversality argument shows that
the orientation of both ΣM and Σb∗(β) as cycles in their respective Lagrangian manifolds
are the same.

Now consider the parameterisation of β given by t, i.e. the smooth map β : t 7−→
(x(t), p(t)). Since b is injective, this induces a smooth parameterisation of b∗(β), namely

t 7−→ (s(t), r(t)) =

(

b−1(x(t)), p(t)

(

db

ds

)

|b(s)=x(t)

)

. (19)

Furthermore, since rankβ = 1 for all t, it follows that the rank of the above map onto
b∗(β) is also equal to 1 for all t. To see this, note that if dx/dt 6= 0, then ds/dt 6= 0 since
b−1 is an injective map from {b(s) : s ∈ [0, 1]} ⊂ Rn to [0, 1].

Conversely, if dx/dt = 0, then dp/dt 6= 0, since rankβ = 1. We also have db/ds 6=
0 since rankb = 1 for all s. Now, since β lies on M , a vector tangent to β is also
tangent to M . Then, from the fact that dx/dt = 0, it follows that M has a tangent
vector v = (dx/dt, dp/dt) at (x(t), p(t)) which has null projection onto state space. In
other words, π|M is singular in a neighbourhood of (x(t), p(t)) on M . By the transverse
connectivity condition, the rank of π|M can only drop by one and, as above, the direction
in which it becomes singular lies along (db/ds)|x(t). So we can find vectors wi = (wxi, wpi),
i = 1, ...n − 1 spanning the remaining (n − 1)-dimensions of the tangent space to M at
(x(t), p(t)), such that each wxi 6= 0 and is orthogonal to (db/ds)|x(t) in state space. Now,
if ω = dp ∧ dx denotes the canonical two form in R2n, then for each i = 1, ..., n− 1,

ω(v, wi) = (dp/dt).wxi − (dx/dt).wpi = 0

since v and wi are tangent vectors to a Lagrangian manifold. But then, since dx/dt = 0, it
follows that dp/dt, considered as a vector in Rn, is orthogonal to each wxi, i = 1, ..., n−1.
It follows that dp/dt is colinear with (db/ds)|x(t), considered as vectors in Rn. Thus,

dr

dt
=

dp

dt
.

(

db

ds

)

|x(t) 6= 0

as required.

So now, with respect to these parameterisations of both β and b∗(β) by t, it follows
from paragraphs two and three of this proof that any subsegment β1 of β intersects the
singular cycle ΣM the same number of times with the same orientation as the pulled-
back subsegment b∗(β1) intersects Σb∗(β). The Maslov indices of the subsegment and its
pull-back are therefore equal.

In order to evaluate S along the pulled back connecting curve b∗(β), we need to establish
conditions under which there exists a symplectic diffeomorphism from a 2-dimensional
neighbourhood V1 of b∗(β) in R2 onto a 2-dimensional neighbourhood V2 of β in R2n.
This is done in the next three lemmas.
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Lemma 5.14. Let (x, p) and (x, q) ∈ M be transversely connected over a regular curve
segment in state space. With the notation of the preceding lemma, let βt for t ∈ (0, 1]
denote an initial open segment of β, i.e. βt = {β(τ) : τ ∈ (0, t]}. Suppose that for all
t ∈ (0, 1], ind(βt) is equal to either 0 or -1. Then b∗(β) has no self-intersections in R2.
In particular, for the points (x, p) = β(0) and (x, q) = β(1), b∗(x, p) 6= b∗(x, q).

Proof. Suppose there exists a point (Ýs, Ýr) of self intersection on b∗(β). Then there exist
distinct points (Ýx, Ýp1) and (Ýx, Ýp2) on β with Ýx = b(Ýs) and

Ýr = Ýp1
dx

ds
|Ýx= Ýp2

dx

ds
|Ýx .

The points (Ýx, Ýp1) and (Ýx, Ýp2) on β are parameterised by t, say (Ýx, Ýp1) = β(t1) and (Ýx, Ýp2) =
β(t2) for t1 < t2 ∈ [0, 1]. So, if we let b∗(β)(t) denote the parameterisation of b∗(β) with
respect to t given in (19), then (Ýs, Ýr) = b∗β(t1) = b∗β(t2). Now, it was shown in the proof
of the previous lemma that this parameterisation of b∗(β) has rank 1 for all t. So b∗(β)(t)
cannot ‘double back’ on itself in R2, i.e. using the notation of equation (19), there is no
point on b∗(β) at which ds/dt = dr/dt = 0. It follows that the image {b∗β(t) : t ∈ [t1, t2]}
is a closed curve in R2 formed by the intersection of b∗(β) with itself at the point (Ýs, Ýr).

We can assume, up to an arbitrarily small perturbation, that b∗(β) intersects itself trans-
versely at points such as (Ýs, Ýr). So these points are isolated on b∗(β). There are thus
finitely many such points since b∗(β) is compact.

Consider now the set of all pre-image points of (Ýs, Ýr), i.e. the set of points on β defined
by

ϕ(Ýs, Ýr) = {(Ýx, Ýp) ∈ β : Ýx = b(Ýs), Ýr = Ýp(dx/ds) |Ýx}.

Let the elements of ϕ(Ýs, Ýr) be ordered by the parameterisation of β with respect to t.
It follows, from the fact that the parameterisation b∗(β)(t) has rank 1 for all t, that the
elements of ϕ(Ýs, Ýr) are isolated on β. So, since β is compact, there are only finitely many
of them.

Let t1(Ýs, Ýr) be the value of t on the first occasion that b∗β(t) passes through (Ýs, Ýr). Then
the point (Ýx, Ýp1) = β(t1(Ýs, Ýr)) is the minimal element of ϕ(Ýs, Ýr). Similarly, let t2(Ýs, Ýr) be
the value of t on the second occasion that b∗β(t) passes through (Ýs, Ýr). Then (Ýx, Ýp2) =
β(t2(Ýs, Ýr)) is the second element of ϕ(Ýs, Ýr).

Now define a function f from the set of self intersection points on b∗(β) into the interval
[0, 1] by f(Ýs, Ýr) = t2(Ýs, Ýr). Since this function is bounded below and its domain is finite,
it must achieve a minimum value at some point of self intersection on b∗(β). Denote this
point by (Ýv, Ýu). It follows that, in terms of the parameterisation of b∗(β) with respect to
t, t2(Ýv, Ýu) is the first time at which b∗(β) intersects itself and it does so at the point (Ýv, Ýu).

Thus, the initial segment of b∗(β) from t = 0 up to t = t1(Ýv, Ýu) does not intersect itself.
By the previous lemma, the Maslov index of this segment is equal to the Maslov index of
the corresponding initial segment βt1(Ýv,Ýu) of β. By hypothesis this is either 0 or -1.

Furthermore, the segment of b∗(β) from t = t1(Ýv, Ýu) up to t = t2(Ýv, Ýu) is a simple closed
curve in R2 with no self intersections. The Maslov index of this segment must therefore
be ±2.
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Now the Maslov index of the initial segment of b∗(β) from t = 0 up to t = t2(Ýv, Ýu) must
equal the sum of the indices of the segments from t = 0 up to t = t1(Ýv, Ýu) and t = t1(Ýv, Ýu)
up to t = t2(Ýv, Ýu). But it also must equal the index of the corresponding initial segment
βt2(Ýv,Ýu) of β which, again by hypothesis, is either 0 or -1. No such combination is possible.
This contradiction shows that there are no points of self intersection on b∗(β).

Lemma 5.15. Let (x, p) and (x, q) ∈ M be transversely connected over a regular curve
segment in state space and, with the notation of the preceding lemmas, suppose that for
all t ∈ (0, 1], ind(βt) = 0 or -1. Then the natural map, which we denote by ϕ, from
b∗(β) → β is a smooth embedding of b∗(β) as a submanifold of R2n.

Proof. Consider a point (s, r) ∈ b∗(β). Then by definition of b∗, there exists a point
(x, p) ∈ β such that x = b(s) and r = p(dx/ds) |b(s). Then ϕ is defined as the map
(s, r) → (x, p). By the previous lemma, ϕ is well defined. It is clearly smooth and it
is onto β by definition of b. To see that it is injective, suppose (s, r) and (v, u) both
map onto (x, p). Since b has no self intersections and x = b(s) = b(v), it follows that
s = v. Then, since r = p(dx/ds) |b(s) and u = p(dx/ds) |b(v), it follows that r = u. So
ϕ is a diffeomorphism onto β. Its differential is therefore a monomorphism of bundles
dϕ : T (b∗(β)) → TR2n. ϕ is thus a smooth embedding b∗(β) → β ⊂ R2n.

Lemma 5.16. Let (x, p) and (x, q) ∈ M be transversely connected over a regular curve
segment in state space and suppose that for all t ∈ (0, 1], ind(βt) = 0 or -1. Then, with
the notation of the preceding lemmas, there exists a 2-dimensional neighbourhood V1 of
b∗(β) in R2 and a 2-dimensional neighbourhood V2 of β in R2n such that ϕ can be extended
to a diffeomorphism Ýϕ : V1 → V2. Furthermore, if ω1 = dr ∧ ds and ω2 = dp ∧ dx are
the canonical two-forms on R2 and R2n phase space, then Ýϕ∗(ω2|V2) = ω1|V1 , i.e. the pull-
back under ϕ of the symplectic structure on R2n restricted to V2 is equal to the symplectic
structure on R2 restricted to V1.

Proof. Since ϕ : b∗(β) → β ⊂ R2n is an embedding, its differential dϕ is a monomorphism
of bundles T (b∗(β)) → TR2n. This can be decomposed into a composition,

T (b∗(β)) → ϕ∗(TR2n) → TR2n.

The factor bundle ϕ∗(TR2n)/T (b∗(β)) is called the normal bundle to the embedding ϕ and
is denoted ν(b∗(β)). The space of this bundle has dimension 2n. If we consider the restric-
tion ϕ∗(TR2n) of the tangent bundle TR2n to the submanifold b∗(β), then it decomposes
into an orthogonal direct sum of two bundles

ϕ∗(TR2n) = T (b∗(β))⊕ T (b∗(β))⊥

where ⊥ denotes the orthogonal complement. It follows from the definition above that
there is an isomorphism

χ : ν(b∗(β)) ' T (b∗(β))⊥ ⊂ TR2n.

Now let ξ ∈ ν(b∗(β)) be an arbitrary vector at the point (s, r) ∈ b∗(β). Then χ(ξ) is
a vector in R2n based at the point (x, p) ∈ β, where x = b(s) and r = p(dx/ds) |b(s).
Furthermore, χ(ξ) is not tangent to β at (x, p). Let v ∈ R2n be the end point defined by
this vector. Then this defines a map

ψ : ξ → v : ν(b∗(β)) → R2n.
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This is analogous to the definition of the standard exponential map associated with a
Riemannian metric in differential geometry. It is trivial to check that the differential
of this map is an isomorphism for all null vectors ξ ∈ ν(b∗(β)). Thus there exists a
neighbourhood W ⊂ ν(b∗(β)) of the null section b∗(β) which is mapped diffeomorphically
by ψ onto a neighbourhood X ⊂ R2n of the submanifold β. It is clear that the restriction
of ψ to the null section b∗(β) coincides with ϕ.

We can now construct Ýϕ as the restriction of ψ to a certain line sub-bundle of ν(b∗(β)).
To do this, recall first that b∗(β) is a curve in R2 phase space with standard symplectic
coordinates (s, r) where the interval I defining the domain of the curve b : I → Rn is
embedded in the s-coordinate axis. The canonical 2-form on this space is ω1 = dr ∧ ds.
At any point (s, r) ∈ b∗(β), let e1 denote the unit tangent to b∗(β) in the direction of
increasing t, where b∗(β) is parameterised by t. Then there exists a unique unit vector
e2 ∈ R2 such that ω1(e2, e1) = +1.

Similarly, the restriction of the canonical 2-form ω2 =
∑n

i=1 dpi ∧ dxi on R2n to the
neighbourhood X of β defines a symplectic structure on ν(b∗(β)). At the point (s, r) ∈
b∗(β), there is a unique unit vector Ýe2 in the tangent space to the fibre of ν(b∗(β)) at (s, r)
such that ω2(Ýe2, e1) = +1, i.e. the plane spanned by e1 and Ýe2 is a non-null 2-subplane
of the tangent space to the fibre of ν(b∗(β)) at (s, r) ∈ b∗(β).

The restriction of ψ to the symplectic line sub-bundle of ν(b∗(β)) defined by Ýe2 gives a
diffeomorphism onto a 2-dimensional neighbourhood V2 of β in R2n.

On the other hand, the argument used to construct ψ can be applied to the identification
of e2 with Ýe2 to produce a diffeomorphism from the same line sub-bundle of ν(b∗(β)) onto
a neighbourhood V1 of b∗(β) in R2.

The appropriate composition of one of these diffeomorphisms with the inverse of the other
is the required map Ýϕ.

The fact that Ýϕ preserves the symplectic structure at points (s, r) on b∗(β) follows from

Ýϕ∗

(

n
∑

i=1

dpi ∧ dxi

)

=
n

∑

i=1

dpi ∧
(

dxi

ds

)

|b(s)ds

= d

(

n
∑

i=1

pi

(

dxi

ds

)

|b(s)

)

∧ ds

= dr ∧ ds.

That Ýϕ preserves the symplectic structure at other points of V1 follows from the above
canonical identification of symplectic basis vectors in R2 and T (ν(b∗(β))) and from the
identification, already used in the construction of ψ, of a vector in one of these spaces
with its respective end point in V1 or V2.

So we have now established the existence of a symplectic diffeomorphism from a 2-
dimensional neighbourhood V1 of b∗(β) in R2 onto a 2-dimensional neighbourhood V2

of β in R2n. The required condition is that any initial open segment on β has Maslov
index 0 or -1. Clearly, the same results would have been obtained under the alternative
condition that any initial open segment has index 0 or +1. We will see later on that the
first of these conditions holds downstream and the second upstream on M . We can now
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evaluate S along the pull back b∗(β) of the transverse connecting curve between (x, p)
and (x, q).

Proposition 5.17. Let (x, p) and (x, q) ∈ M be transversely connected over a regular
curve segment in state space by a curve β on M with β(0) = (x, p) and β(1) = (x, q).
Suppose, with the notation of the preceding lemmas, that for all t ∈ (0, 1], ind(βt) = 0 or
-1. Let S denote the smooth function defined globally on M by dS = pdx. Then S(x, p)
is not a minimising value for S(x, Ýp) over all Ýp such that (x, Ýp) ∈ M. Similarly, if for all
t ∈ (0, 1], ind(βt) = 0 or +1, then −S(x, p) is not a minimising value for −S(x, Ýp) over
all Ýp such that (x, Ýp) ∈ M.

Proof. Suppose ind(βt) = 0 or -1. The same argument works for the other case. Let
(x(t), p(t)) = β(t) for t ∈ [0, 1]. So (x(0), p(0)) = (x, p) and (x(1), p(1)) = (x, q). Then,
for t ∈ (0, 1],

S(x(t), p(t)) =

∫

βt

pdx+ S(x, p)

where βt = {β(τ) : τ ∈ (0, t]} ⊂ M is the initial open segment of β from (x, p) to
(x(t), p(t)). Now, by the previous lemmas, β ⊂ V2 = Ýϕ(V1) where V1 is a neighbourhood
of b∗(β) in R2. So, since βt = ϕ(b∗(βt)),

S(x(t), p(t))− S(x, p) =

∫

b∗(βt)

Ýϕ∗(pdx) =

∫

b∗(βt)

rds.

Again, by the previous lemmas, the curve b∗(β) is a Lagrangian submanifold in R2 with
no self intersections. In addition, for any t ∈ (0, 1], the initial open segment b∗(βt) is
Lagrangian with no self intersections and Maslov index either 0 or -1. Also, since the
start and end points of β have the same x-coordinates in R2n phase space, the start and
end points of b∗(β) have the same s-coordinate in (s, r) phase space. Furthermore, s
cannot be constant on b∗(β) since then x is constant on β which contradicts transverse
connectivity over state space.

Let (s, r(0)) be the initial point of b∗(β) and let (s(t), r(t)) be the point corresponding to
(x(t), p(t)) on β. At the end point of b∗(β) we have s(1) = s. So there exists at least one
t ∈ (0, 1] such that s(t) = s. Let t1 be the first such t ∈ (0, 1]. So t1 is also the parameter
value of the first time that x(t) = x on β for t ∈ (0, 1].

Now, by the transversality condition, singularities in the projection of b∗(β) onto the s-
axis can be assumed to be isolated on b∗(β). So either at (s, r(0)) itself, or at a point
arbitrarily close to it on b∗(β) if (s, r(0)) is singular, the tangent vector to b∗(β) with
respect to the parameterisation by t has a non-zero s-component. We now show that if
the sign of this component is negative then r(t1) < r(0). Otherwise, if it is positive then
r(t1) > r(0).

To see this, suppose it is negative. Now at t1 the point (s(t1), r(t1)) on b∗(β) has s(t1) = s
again. So the s-component of the tangent vector to b∗(β) must have changed sign from
negative to positive at some point (s(τ1), r(τ1)) on b∗(βt1) for τ1 ∈ (0, t1). Let this be the
first such point on b∗(βt1). Then this point is the first singular point for the projection of
b∗(βt1) onto the s-axis.

Now, by transversality of β, we can assume that this is a simple singular point at which
b∗(β) intersects Σb∗(β) transversely. So ind(b∗(βt)) must change by ±1 at t = τ1. Since
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(s(τ1), r(τ1)) is the first singular point on the initial open segment b∗(βt1), it follows that
ind(b∗(βt)) = 0 for t < τ1. Then, from the hypothesis, ind(b∗(βt)) = −1 for t ∈ (τ1, τ1+ δ)
for some δ > 0. So, from the definition of Maslov index (10), the r-component of the
tangent to b∗(βt1) must be negative at τ1.

If (s(τ1), r(τ1)) is the only such singularity on b∗(βt1), i.e. the only point at which the
s-component of the tangent vector changes sign, then since the initial closed segment
{(s, r(0))} ∪ b∗(βt1) has no self intersections, it follows that r(t1) < r(0).

Otherwise, let τ2 ∈ (0, t1) be the parameter value of the next such singularity on b∗(βt1).
At this point, the s-component of the tangent must change sign from positive to negative.
Since the Maslov index has to change by ±1, the only possibility allowed by the hypothesis
is that it increases by +1 from -1 to 0. So the r-component of the tangent again must be
negative at τ2.

Now, s(τ2) < s since t1 is the first time on (0, 1] at which s(t) = s. Also, at τ2 the
s-component of the tangent to b∗(βt1) goes negative again. So there must exist at least
one more singular point in the projection of b∗(βt1) onto the s-axis. A repetition of the
above argument shows that the r-component of the tangent must again be negative at
this singular point. Again, if this is the last such singular point before t1, then since
{(s, r(0))} ∪ b∗(βt1) has no self intersections, it follows that r(t1) < r(0).

Now b∗(βt1) is compact and, as noted above, singular points on b∗(βt1) can be assumed
to be isolated. So there are only finitely many singular points on b∗(βt1). So the above
argument can be repeated a finite number of times to show that r(t1) < r(0).

The same argument also shows that r(t1) > r(0) if the s-component of the tangent vector
to b∗(β) is positive at (s, r(0)), or at a point arbitrarily close to it on b∗(β) if (s, r(0)) is
singular.

So now consider the value of S(x(t1), p(t1)). By the definition of t1, we have x(t1) = x
and t1 is the smallest t ∈ (0, 1] such that x(t) = x on β. Now, from above,

S(x, p(t1))− S(x, p) = S(x(t1), p(t1))− S(x, p) =

∫

b∗(βt1 )

rds.

Let l denote the straight line segment in (s, r)-phase space from (s(t1), r(t1)) = (s, r(t1))
to (s, r(0)). Since s is constant on l, we have

∫

l

rds = 0.

So if C denotes the closed curve from (s, r(0)) to (s, r(t1)) and back to (s, r(0)) formed
by b∗(βt1) ∪ l then C has no self intersections and

S(x, p(t1))− S(x, p) =

∮

C

rds =

∫ ∫

A

dr ∧ ds

where A is the region of (s, r)-phase space bounded by C.

Now, consider the s-component of the tangent vector to b∗(β) with respect to the param-
eterisation by t. If this is negative at (s, r(0)), or at a point arbitrarily close to it on b∗(β)
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in the case where (s, r(0)) is singular, then from above r(t1) < r(0). Thus C is traversed
anti-clockwise. Conversely, if it is positive at (s, r(0)), or at a point arbitrarily close to
it on b∗(β), then r(t1) > r(0) and again C is traversed anti-clockwise. In either case, the
oriented area of A is negative and so

S(x, p(t1)) < S(x, p),

i.e. there exists a point (x, p(t1)) ∈ M at which the value of S is less than at (x, p). So
(x, p) is not a minimising point for S(x, Ýp) over all Ýp such that (x, Ýp) ∈ M.

We now formalise the definition of a common type of singularity in the projection of M
onto state space. Our aim is to show that a singular point of this type can be transversely
connected to another point on M by a curve which satisfies the conditions of the previous
proposition.

Definition 5.18. A folded singularity (x, p) ∈ M is a singular point in the projection
π : M → Rn such that

1. there exists a smooth curve α : [−1, 1] → M such that α(0) = (x, p) and π(α(t)) =
π(α(−t)) for all t ∈ (0, 1].

2. the locus {π(α(t)) : t ∈ (0, 1]} defines a straight line in state space

3. let e = π(α(1)) − π(α(0)) = π(α(1)) − x, i.e. the vector which lies on the above
defined straight line in state space and ‘points’ away from x into π(M). Then for
any sequence pm ∈ Rn such that (x− 1

m
e, pm) ∈ M for all m, pm 9 p as m → ∞.

Lemma 5.19. Let (x, p) ∈ M be a folded singularity. Then there exists a distinct point
(x, q) ∈ M for some q ∈ Rn. It thus follows that (x, p) and (x, q) can be transversely
connected over a regular curve segment in state space by a curve β on M.

Proof. From the definition of a folded singularity, let e = π(α(1))− x and consider the
point x − se for any s ∈ (0, 1]. Since the region Ω of state space covered by M is open
and since x ∈ Ω, we can assume that x− se ∈ Ω for all s < ε for some sufficiently small
ε > 0. Then since M covers Ω, there exists for each s ∈ (0, ε] a value q(s) ∈ Rn such that
(x−se,q(s)) ∈ M. Furthermore, if x is downstream of U, then we can chose q(s) such that
(x − se,q(s)) is a minimising point for S(x − se,Ýq) over all Ýq such that (x − se,Ýq) ∈ M.
Similarly, if x is upstream, then we can chose (x − se,q(s)) to be a minimising point for
−S(x − se,Ýq). Then by Lemma 1 of [11], the sequence q( 1

m
), m > 1

ε
, m ∈ N is bounded

and for any limit point q, the point (x, q) lies on M. Chose one such limit point for a
convergent subsequence (x − 1

m
e,q( 1

m
)). Then by the definition of a folded singularity,

p 6= q. So, by our transversality or general position assumption that all branches of M
can be transversely connected over regular curve segments in state space, it follows that
(x, p) and (x, q) can be so connected.

Lemma 5.20. With the notation of the previous lemma, in a small neighbourhood of a
folded singularity (x, p) on M, β can be assumed to coincide with one branch of the curve
α appearing in the definition of the folded singularity.

Proof. Consider all points on β which lie over x, including (x, p) and (x, q). Denote these
points by (x, pλ) for λ ∈ Λ. The aim is to apply at each (x, pλ) an arbitrarily small
deformation to β which
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1. is in a direction orthogonal to β and along M and which preserves the condition of
transversality of β

2. is such that the deformed curve, which we denote by Ýβ, still passes through each
(x, pλ)

3. is such that all the branches of Ýβ for λ ∈ Λ project onto the same deformation Ýb of
the regular curve segment b in state space

4. is such that the vector e appearing in the definition of the folded singularity is
tangent to Ýb at x.

Recall that, by definition, e is tangent at x to the curve {π(α(t)) : t ∈ (0, 1]} in state
space and so this last requirement will ensure that Ýβ coincides with one branch of α at
(x, p).

Let U1 be a neighbourhood of (x, p) on M. Then, by the definition of a folded singularity,
e /∈Tx(π|U1(M)). Also, by transversality, the rank of π drops by at most 1 at (x, p). It
follows that

Tx(π|U1(M)) + span(e) = Rn.

Let Uλ be a neighbourhood of (x, pλ) on M and let f denote a tangent vector at x to the
curve b in state space. Now, for each λ, the projected curve π|Uλ

(β) coincides with the
locus of the curve b in state space. So, for each λ, a vector which is tangent to π|Uλ

(β)
at x must lie in span(f). Note that, for those λ for which π|Uλ

is non-singular at (x, pλ),
any vector in span(f) is tangent to π|Uλ

(β) at x. However, for those λ for which π|Uλ
is

singular at (x, pλ), only one direction in span(f) will give a well defined tangent to π|Uλ
(β)

at x.

Now, by transversality, at each λ

Tx(π|Uλ
(M)) + span(f) = Rn

i.e. if π|Uλ
is singular at (x, pλ) then the rank of π drops by 1 in the direction spanned

by f. If π|Uλ
is non-singular, then the above equation holds trivially. Thus, in each

neighbourhood Uλ, we can find a deformation of β which, when projected onto state
space, takes f into e. These deformations satisfy the above four requirements.

Having established the existence of the point (x, q), we now deal with the possibility that
π|M is singular at (x, q). Note, there may be more than one point (x, q) corresponding
to (x, p) which can be constructed, as in the above lemmas, as the limit of a sequence of
minimising points for S or −S on M . The following applies to any such point.

Lemma 5.21. With the notation of the previous two lemmas, the point (x, q) ∈ M is
either such that π|M is non-singular at (x, q) and indγ(x,q) = 0, or is such that, given
some arbitrarily small ε > 0, β can be extended by an amount ε beyond (x, q) to a point
(Ýx, Ýq) = β(1 + ε) ∈ M such that indγ(Ýx,Ýq) = 0. Here γ(x,q) (respectively γ(Ýx,Ýq)) denotes the
integral curve for H which lies on M and which connects the point (x, q) (respectively
(Ýx, Ýq)) to U .

Proof. If (x, p) lies downstream of U, then, by construction, (x, q) is the limit of a
sequence of minimising points (x(m), q(m)) = (x − 1

m
e,q( 1

m
)) for S at each of which

indγ(x(m),q(m)) = 0, where the index is calculated with respect to traversing γ from U to
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(x(m), q(m)). If (x, p) lies upstream, then the same argument works with S replaced by
−S. Denote the path defined by this sequence of points on M by C. The vector e is tan-
gent to the projection of C onto state space and so, by the previous lemma, the smooth
continuation of C on M beyond the point (x, q) coincides with β. By the transversality
of β, if C intersects the singular cycle Σ at (x, q), then it must do so in an isolated simple
singular point. In this case, we can take the point (Ýx, Ýq) to be (x(m0), q(m0)) form0 > 1/ε.

Conversely, if C does not intersect Σ at (x, q), i.e. π|M is non-singular at (x, q), then C
does not meet Σ in a small neighbourhood of (x, q) on M either. This follows again by the
transversality of β and its extension over b(I). There is thus a segment C ′ of the curve C
from (x, q) to some (x(m0), q(m0)) for sufficiently large m0 such that the indC ′ = 0. Now,
by construction, ind(−γ(x(m0),q(m0))) = 0, where the minus sign indicates that the curve
is traversed in reverse, i.e. from (x(m0), q(m0)) to U . Also, if C ′′ denotes the connecting
curve in U between the starting points of γ(x,q) and γ(x(m0),q(m0)), then indC ′′ = 0. Now,
by hypothesis, the closed curve

γ(x,q) ∪ C ′ ∪ (−γ(x(m0),q(m0))) ∪ C ′′

on M has Maslov index zero. Hence, indγ(x,q) = 0 as required.

We have shown in the previous lemma that, by the construction of (x, q) as the limit of a
sequence of minimising points on M, it follows that (x, q) (or a point close to it) lies on a
branch of M on which indγ(x,q) = 0, and further that this holds for each such (x, q). Now
for each (x, q), the corresponding connecting curve β coincides with one or other branch of
the curve α appearing in the definition of (x, p). We will see in the proof of the next lemma
that one of these branches can be identified with zero and the other with non-zero Malsov
index. Our eventual aim is to show that if the folded singularity (x, p) is downstream, then
S(x, q) < S(x, p) for at least one (x, q), and conversely −S(x, q) < −S(x, p) upstream. In
order to do this we need to know that for this (x, q), the corresponding β coincides with
the branch of α identified with non-zero index. This requires the following hypothesis to
be satisfied by M.

Hypothesis 5.22. Let (x, p) be any folded singularity on M downstream of U. Then
there exists at least one point (x, q) ∈ M constructed, as in the previous three lemmas,
as the limit of a sequence of minimising points for S on M, with the following property.
Let β be the transverse connecting curve between (x, p) and (x, q) on M and let b be the
corresponding regular curve segment in state space. Then b can be extended at both ends
in such a way that, outside of a compact interval on b containing x, b is covered by a
corresponding extension of β on M consisting of minimising points for S. Conversely, if
(x, p) is upstream then the same condition holds with S replaced by −S.

This is the last hypothesis that we require. The consequences of it not holding will be seen
in the proof of the next lemma - essentially every extension of b is covered by an infinite
sequence of folded singularities. We consider this case to be somewhat pathological and
thus have excluded it from the present analysis by imposing the above hypothesis. As with
Hypothesis 5.2(4), we leave for the future the question of deciding just how restrictive it
is.

The consequence of the above hypothesis being satisfied is that the corresponding con-
necting curve β satisfies a certain local property which, in rough terms, can be stated as
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follows. If β leaves (x, p) to the left, when viewed in R2 phase space under the pull-back
b∗, then it must approach (x, q) from the left, and vice versa. A more precise statement
would be that the s-component of the tangent to b∗(β) has opposite signs at b∗((x, p)) and
b∗((x, q)). However, this is not quite true as the s-component is zero at b∗((x, p)). Also,
π|M can be singular at (x, q), in which case, as in the previous lemma, we have to consider
a point (Ýx, Ýq) close to (x, q) on β at which indγ(Ýx,Ýq) = 0. We formalise this property in the
following definitions and then deal with these technicalities in the following lemma. The
name we give to this property reflects the fact that it follows from M being regular over
b outside of a compact interval on b containing x.

Definition 5.23. Suppose (x, p) ∈ M is a folded singularity and let (x, q) ∈ M be
a point constructed, as above, as the limit of a sequence of minimising points for S
or −S on M . Let β : [0, 1] → M and b : I → Rn denote the transverse connecting
curve and corresponding regular curve segment in state space. So β(0) = (x, p), β(1) =
(x, q) and, for a given choice of parameterisation, there exists s ∈ [0, 1] such that b(s) =
π(β(0)) = π(β(1)). Then β is said to be ‘regular at the boundary’ if one or other of the
following conditions holds true. On the one hand, suppose that π(β(ε1)) = b(s − ε2) for
some arbitrarily small ε1, ε2 > 0. Then we can find ε3, ε4, ε5 > 0 such that either (i)
π(β(1−ε3)) = b(s−ε4) if π|M is non-singular at (x, q) or otherwise (ii) π(Ýx, Ýq) = b(s+ε5)
where (Ýx, Ýq) is the point refered to in the previous lemma. On the other hand, suppose
that π(β(ε1)) = b(s+ ε2). Then either (i) π(β(1− ε3)) = b(s+ ε4) if π|M is non-singular
at (x, q) or otherwise (ii) π(Ýx, Ýq) = b(s− ε5).

Definition 5.24. Suppose for every folded singularity (x, p) ∈ M that the connecting
curve to at least one of the points (x, q) ∈ M is regular at the boundary. Then M is said
to be regular at the boundary.

Lemma 5.25. A Lagrangian manifold satisfying the above hypotheses is regular at the
boundary.

Proof. Let (x, p) ∈ M be a folded singularity and suppose x lies downstream of U. The
same argument works upstream. Let α denote the curve appearing in the definition of
the folded singularity. Let (x, q) ∈ M be any point constructed, as in the above lemmas,
as the limit of a sequence of minimising points for S on M . Let β : [0, 1] → M denote
the transverse connecting curve on M from (x, p) to (x, q) and let b : I → Rn denote
the corresponding regular curve segment in state space. Note we have π({α(t) : t ∈
[−1, 1]}) ⊂ π({β(τ) : τ ∈ [0, 1]}) = {b(s) : s ∈ [0, 1]}. Then, by the previous lemma,
either π|M is non-singular at (x, q) and indγ(x,q) = 0 or β can be extended to a point
(Ýx, Ýq) = β(1 + Ýε) ∈ M at which indγ(Ýx,Ýq) = 0, for some arbitrarily small Ýε > 0. Since, in
the first case, we can find an open ball onM centred on (x, q) on which π|M is non-singular,
we can assume in this case also that β can be extended to a point (Ýx, Ýq) = β(1 + Ýε) at
which indγ(Ýx,Ýq) = 0, with Ýε small enough to ensure β does not intersect Σ between β(1)
and β(1 + Ýε).

Consider now one particular (x, q) and the corresponding curves β and b. One branch of
α coincides with β and, by transversality of β, α intersects Σ transversely in a simple
singular point at (x, p). So the Maslov index of α must change by ±1 on passage through
(x, p). Chose an arbitrarily small ε > 0 and consider indγα(t) for t ∈ (−ε, ε), where the
index is calculated with respect to traversing γ from U to α(t). Note, consistent with the
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notation in the previous lemma, γα(t) denotes the integral curve for H which lies on M
and connects the point α(t) to U . By Corollary 5.6, the only possibilities for indγα(t) are
0 or +1. Let αt denote the segment of α from α(−ε) to α(t). Now, indαt only changes
at t = 0 and it does so by ±1. So, since the closed curves γα(−ε) ∪ αt∪ −γα(t) ∪ Ct on
M all have Maslov index zero for some connecting curves Ct in U, it follows that indγα(t)
is constant on each branch of α. So the parameterisation t of α can be chosen such that
indγα(t) = 0 for −ε ≤ t < 0 and indγα(t) = +1 for 0 < t ≤ ε.

Suppose first that β coincides with the branch {α(t) : t ∈ [−ε, 0)} on which indγα(t) = 0,
i.e. parameterise β by τ ∈ [0, 1] so that for τ ∈ (0, ε] there exists some t ∈ [−ε, 0) such
that β(τ) = α(t). Then indγβ(ε) = 0. Let β̃ denote the segment of β from β(ε) through

β(1) = (x, q) and onto β(1 + Ýε) = (Ýx, Ýq). Now the closed curve γβ(ε) ∪ β̃ ∪ −γ(Ýx,Ýq) ∪ C on
M has Maslov index zero, for some connecting curve C in U. Since the first, third and
fourth terms in this union have index zero, it follows that indβ̃ = 0. A repetition of the
argument used in the proof of Proposition 5.17 then shows that the s-component of the
tangent to b∗(β) has the same sign at b∗(β(ε)) and b∗(β(1 + Ýε)). Note, in applying this
argument, that if β̃τ denotes the segment of β from β(ε) to β(τ), then the requirement
that indβ̃τ = 0 or +1 follows from Corollary 5.6 and consideration of the closed curve
γβ(ε) ∪ β̃τ ∪ −γβ(τ) ∪ Cτ on M for some connecting curve Cτ in U.

Since π(β(0)) = π(β(1)) = b(s0) for some s0 ∈ [0, 1], it follows that the s-component
of the tangent to b∗(β) must change sign an even number of times and at least twice
between β(ε) and β(1 + Ýε). Furthermore, we can find points β(t1) and β(t2) on β for
some t1, t2 ∈ (0, 1] at which two of these sign changes occur such that, if π(β(ti)) = b(si)
for some si ∈ [0, 1], i = 1, 2, then s1 ≤ s0 ≤ s2. Now each of these points at which the
sign changes corresponds to a transverse intersection of β with Σ in a simple singular
point. Further, such a singular point is clearly a folded singularity on M . We can also
assume that, in fact, s1 < s0 < s2. For otherwise, it must be the case that π|M is singular
at (x, q) and then the construction, in the proof of the previous lemma, of the point
(Ýx, Ýq) = β(1 + Ýε) requires the s-component of the tangent to b∗(β) to have opposite signs
at b∗(β(ε)) and b∗(β(1 + Ýε)), contrary to the deduction of the previous paragraph.

Now, let π(β(ε)) = b(s3) for some s3 and suppose that s3 < s0, i.e. at the folded
singularity (x, p), the projection of M onto state space lies to the left of s0 on b. A similar
argument will hold if s3 > s0. Then β must pass through a folded singularity β(t2) for
some t2 ∈ (0, 1] whose projection b(s2) lies to the right of s0 on b, i.e. s0 < s2. Also, at
β(t2) the projection of M onto state space lies to the left of s2 on b. Further, the argument
used in the proof of Proposition 5.17 shows that β approaches this singularity via points
β(τ) at which indγβ(τ) = +1 for τ ∈ (t2 − ε̄, t2), for some ε̄ > 0. By Corollary 5.6, these
cannot therefore be minimising points for S on M. Thus, if βt2 denotes the segment of
β up to, but not including, β(t2) then this particular extension of b to the right of s0 is
covered by a curve βt2 on M which does not consist of minimising points for S. There are
potential minimising points lying over this extension of b, namely β(τ) for τ ∈ (t2, t2 + ε̄)
at which indγβ(τ) = 0, but these points lie beyond the folded singularity β(t2) on β.

This argument can be repeated to show that further extensions of b to the right, formed
by projecting extensions of this particular β, must pass through a sequence π(β(tλ)) of
projections of folded singularities. Further, on the approach to each π(β(tλ)), b is covered
by an extension of β on M which does not consist of minimising points for S until after
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it has passed through β(tλ). Then, since the projections of folded singularities on b
are isolated, it follows that for this particular (x, q) we cannot find an extension of b
satisfying Hypothesis 5.22. The same conclusion holds for any other (x, q) for which the
corresponding β coincides with the branch of α on which indγα(t) = 0.

In order to satisfy this hypothesis, there must therefore exist at least one (x, q) for which
the corresponding β coincides with the branch {α(t) : t ∈ (0, ε]} on which indγα(t) = +1.

Then indγβ(ε) = +1. Again, let β̃ denote the segment of β from β(ε) to β(1 + Ýε) = (Ýx, Ýq)

and consider the closed curve γβ(ε)∪ β̃∪−γ(Ýx,Ýq)∪C on M. Since the third and fourth terms

in this union have index zero and the first has index +1, it follows that indβ̃ = −1. The
argument of Proposition 5.17 then shows that the s-component of the tangent to b∗(β)
has opposite signs at b∗(β(ε)) and b∗(β(1 + Ýε)). Thus this particular β is regular at the
boundary. Since (x, p) was arbitrary, it follows that M is regular at the boundary.

Lemma 5.26. Let (x, p) ∈ M be a folded singularity and (x, q) ∈ M be a point which
can be connected to (x, p) by a transverse connecting curve β on M which is regular at
the boundary. Then we can assume without loss of generality that (x, q) is in fact a
non-singular point for π|M .

Proof. Suppose π|M is singular at (x, q) and that x lies downstream of U. The same
argument works upstream. Then, with the notation of Definition 5.23 and a particular
choice of parameterisation s of b, suppose that π(x, p) = π(x, q) = b(Ýs) and

π(β(ε1)) = b(Ýs− ε2) (20)

for some Ýs ∈ [0, 1]. It follows from regularity at the boundary that π(Ýx, Ýq) = b(Ýs+ε5). Now
(Ýx, Ýq) = β(1+ε) for some ε > 0, i.e. (Ýx, Ýq) lies on the extension of β beyond (x, q) = β(1).
By transversality, β intersects Σ in a simple singular point at (x, q). The sign of the
s-component of the tangent vector to b∗(β) in R2 phase space must therefore change sign
at (x, q). It follows that

π(β(1− ε3)) = b(Ýs+ ε4). (21)

Thus, since b has no self intersections and π{β(t) : t ∈ [0, 1]} = {b(s) : s ∈ [0, 1]}, it follows
from (20) and (21) that there must exist some Ýt ∈ (0, 1) such that π(β(Ýt)) = b(Ýs) = x and
also such that there exist arbitrarily small εi > 0 satisfying

π(β(Ýt− ε6)) = b(Ýs− ε7) (22)

and
π(β(Ýt+ ε8)) = b(Ýs+ ε9). (23)

Now, by transversality of β, the rank of π|M at β(Ýt) can drop by at most 1 in the direction
tangent to b. Thus, from (22) and (23), π|M is non-singular at β(Ýt). We can thus take
(x, q) to be the point β(Ýt) without loss of generality.

We can now prove the main result of this paper.

Theorem 5.27. Suppose (x, p) is a folded singularity on M . If x is downstream of U
then (x, p) cannot be a minimising point for S(x, Ýp) over all (x, Ýp) ∈ M. Conversely, if
x ∈ Ω is upstream, then (x, p) cannot be a minimising point for −S.
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Proof. Suppose x lies downstream of U. The same argument works upstream. Let α
denote the curve appearing in the definition of the folded singularity. Then, by the
previous lemma, (x, p) can be transversely connected via a curve β on M to a point
(x, q) ∈ M at which π|M is non-singular. Furthermore, β is regular at the boundary and
coincides with one branch of α. Our aim is to show that any initial open segment of β
has index 0 or −1.

Now, as shown in the proof of Lemma 5.25, indγα(t) is constant on each branch of α and
the parameterisation t of α can be chosen such that indγα(t) = 0 for −ε ≤ t < 0 and
indγα(t) = +1 for 0 < t ≤ ε. Furthermore, since β is regular at the boundary, the same
proof shows that it must coincide with the branch {α(t) : t ∈ (0, ε]}.
Let βτ denote the open segment of β from β(0) = (x, p) to β(τ). Then, since the singular
point (x, p) can be assumed by transversality to be isolated on β, we can assume that βτ

does not intersect Σ for τ ∈ (0, ε]. Thus indβτ = 0 for τ ∈ (0, ε].

Now for τ ∈ (ε, 1], let β̃τ denote the open segment of β from β(ε) to β(τ). Consider the
closed curve γβ(ε) ∪ β̃τ ∪ −γβ(τ) ∪ Cτ on M for some connecting curve Cτ in U. By the
choice of the branch of α, there exists some t ∈ (0, ε] such that β(ε) = α(t). So the Maslov
index of the first term in this union is +1. The fourth term has index 0 and, by Corollary
5.6, the third term has index 0 or −1. Thus, since the total closed curve must have index
zero, it follows that indβ̃τ = 0 or −1 for τ ∈ (ε, 1]. Hence indβτ = 0 or −1 for τ ∈ (0, 1],
i.e. any open initial segment of β has index 0 or −1. It then follows from Proposition
5.17 that S(x, q) < S(x, p). So (x, p) is not a minimising point for S.

Corollary 5.28. The set of essential caustics C∗ only contains projections of non-folded
singularities for π|M , i.e. given any x̄ ∈ C∗ there exists some p̄ ∈ Rn such that (x̄, p̄) ∈
M is a non-folded singularity for π|M and S or −S achieves its minimum at (x̄, p̄),
depending on whether x̄ is upstream or downstream. Then, furthermore, for any x in a
small neighbourhood of x̄, there is a point (x, p) ∈ M which lies in a small neighbourhood
of (x̄, p̄) on M, i.e. on the same branch of M as (x̄, p̄).

Proof. From the definition of a folded singularity, it follows that if (x̄, p̄) ∈ M is a non-
folded singularity, then given any sequence xn → x̄ in Rn, we can find a corresponding
sequence pn in Rn such that (xn, pn) ∈ M for all n and (xn, pn) → (x̄, p̄) as n → ∞.

Recall from Section 2 that, at any point (x, p) ∈ M, we can chose a collection of indices
I ⊆ {1, . . . , n} such that in a neighbourhood of (x, p) the generating function for M is of
the form SI(x

I , pĪ), where Ī denotes the complement of I. Furthermore, if ΦI = SI+xĪpĪ ,
then the function S appearing in the definitions (17) and (18) of W is given by S = ΦI

in the neighbourhood of M on which SI is defined.

Now, if π|M is non-singular at (x1, p1) ∈ M then I = {1, . . . , n} and so SI is a function
of x alone. Then from the definition (3) of the generating function SI , there exists some
δ > 0 such that the set of (x, p) with x ∈ Bδ(x1) and p = ∂SI/∂x defines a neighbourhood
of (x1, p1) on M and S = SI in this neighbourhood.

Let x0 be an interior point of Ω\C∗ and suppose x0 is downstream of U. The same
argument works upstream with S replaced by −S. Then from the Hypothesis 2.1(4)
of local boundedness, there is a Kx0 < ∞ and a δx0 > 0 such that |p| ≤ Kx0 for all
(x, p) ∈ M with x ∈ Bδx0

(x0). Then it is shown in the proof of Theorem 2 of [11] that this
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same Kx0 is the Lipschitz constant which applies in the local Lipschitz property for W at
x0. The proof of this fact starts by taking δx0 small enough to ensure Bδx0

(x0) ⊆ Ω\C∗.
Then any x1 ∈ Bδx0

(x0) is not in C∗. So π|M is non-singular at some minimising point
(x1, p1) ∈ M for S(x1, .) and so, if SI denotes the generating function for M at this point,
thenW (x1) = S(x1) = SI(x1). Then, for any x2 ∈ Bδ(x1) ⊆ Bδx0

(x0), |∂SI(x2)/∂x| < Kx0

and so

W (x2) ≤ SI(x2)

≤ SI(x1) +Kx0 |x2 − x1|
= W (x1) +Kx0 |x2 − x1| . (24)

An argument using the convexity of Bδx0
(x0) then shows that the above holds for all x1,

x2 ∈ Bδx0
(x0). Interchanging x1 and x2 leads to

|W (x1)−W (x2)| ≤ Kx0 |x1 − x2|

for all x1, x2 ∈ Bδx0
(x0), which is the local Lipschitz property.

Now let x1 ∈ C∗ and again suppose x1 is downstream of U. Then there exists some non-
folded singularity (x1, p1) ∈ M at which S(x1, .) achieves its minimum. For some strict
subset I ⊂ {1, . . . , n}, let SI denote the generating function for M in a neighbourhood of
(x1, p1) and let ΦI = SI + xĪpĪ denote the restriction of S to this neighbourhood. Then,
from the previous corollary, there is a δ = δ(x1) > 0 such that for all x ∈ Bδ(x1), there
exists p such that (x, p) lies on the branch of M defined by SI , i.e. such that

xĪ = −∂SI

∂pĪ
pI =

∂SI

∂xI

holds true at (x, p). Now, consider the function Wx1(x) defined in Bδ(x1) by replacing S
by ΦI in (17). Then clearly W (x1) = S(x1, p1) = Wx1(x1) and W (x) ≤ Wx1(x) for x ∈
Bδ(x1). Similarly, if x1 is upstream then Wx1 is defined by replacing S by ΦI in (18).
Then we make the following conjecture regarding the local functions Wx1 .

Conjecture 5.29. For each x1 ∈ C∗, the function Wx1 is continuous in Bδ(x1). Fur-
thermore, for a given Lagrangian manifold M, there is a single integer m ≥ 1 with the
following property: for any x1 ∈ C∗ and for any K ∈ (1,∞) such that |p| ≤ K for all
(x, p) ∈ M with x ∈ Bδ(x1), the inequality

Wx1(x2) ≤ Wx1(x1) +Km |x2 − x1|

holds true for all x2 ∈ Bδ(x1).

We show first that it follows from this conjecture that W is, in fact, locally Lipschitz
continuous in the whole of Ω. We then finish the section by showing that such a value m
does exist for Lagrangian manifolds of dimension ≤ 5.

Theorem 5.30. W is locally Lipschitz continuous at every point in Ω.

Proof. This is a generalisation of Theorem 2 of [11] and its proof. Note, this theorem is
stated above as Theorem 5.1. We show first that W is continuous in Ω. Let x1 ∈ Ω and
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suppose x1 is downstream of U. If x1 /∈ C∗ then the proof of Theorem 2 of [11] shows that
W is continuous at x1. Conversely, if x1 ∈ C∗ then, as above, there exists a continuous
function Wx1 of x defined in the open ball Bδ(x1) such that W (x1) = S(x1, p1) = Wx1(x1)
and W (x) ≤ Wx1(x) for x ∈ Bδ(x1), where (x1, p1) ∈ M is some non-folded singularity at
which S(x1, .) achieves its minimum. Hence

lim sup
x→x1

W (x) ≤ Wx1(x1) = W (x1)

showing that W is upper-semicontinuous at x1. Since it shown in Theorem 1 of [11] that
W is lower semicontinuous in general, it follows that W is continuous at x1. If x1 is
upstream of U, then the above argument can be repeated with S replaced by −S. Note,
the same comment applies to the proof of lower semicontinuity in Theorem 1 of [11], viz.
replacing S by −S in the proof of that theorem shows that W is lower semicontinuous at
any x upstream of U.

We now prove the local Lipschitz property. Suppose x0 ∈ Ω and, as above, chose some
Kx0 < ∞ and δx0 > 0 such that |p| ≤ Kx0 for all (x, p) ∈ M with x ∈ Bδx0

(x0). Let
B = Bδx0

(x0). Note that B is convex and consider any x1 ∈ B. If x1 /∈ C∗ then as above
in (24), there exists Bδ(x1) ⊆ B such that for any x2 ∈ Bδ(x1),

W (x2) ≤ W (x1) +Kx0 |x2 − x1| .

Conversely, if x1 ∈ C∗ then from the conjecture we can find a ball Bδ(x1) ⊆ B and a
continuous function Wx1 defined on Bδ(x1) such that for all x2 ∈ Bδ(x1),

W (x2) ≤ Wx1(x2)

≤ Wx1(x1) + (Kx0)
m |x2 − x1|

= W (x1) + (Kx0)
m |x2 − x1| .

Since m ≥ 1 and Kx0 can be chosen, if necessary, to be ≥ 1, we thus have that for any
x1 ∈ B there exists Bδ(x1) ⊆ B such that

W (x2) ≤ W (x1) + (Kx0)
m |x2 − x1| (25)

for any x2 ∈ Bδ(x1). The argument used in the proof of Theorem 2 of [11] can now be
applied to show that (25) holds for x2 along any ray from x1 up to ∂B. Since B is convex,
this means (25) holds for all x1, x2 ∈ B. Interchanging x1 and x2 allows us to conclude
that

|W (x1)−W (x2)| ≤ (Kx0)
m |x1 − x2|

for all x1, x2 ∈ B. Thus W is locally Lipschitz at x0.

We have seen above in (24) that at points in the interior of Ω\C∗, the local Lipschitz
constant for W is determined by the local bound on M. It is now clear from the preceding
proof that at points in the closure of C∗, the value m in the conjecture defines the degree
to which the local Lipschitz constant can grow in relation to the local bound on M .

Corollary 5.31. W is a viscosity solution of H(x, ∂W (x)/∂x) = 0 for all x ∈ Ω down-
stream of U and a viscosity solution of H(x,−∂W (x)/∂x) = 0 for all x ∈ Ω upstream of
U .
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Proof. Follows from the previous result and Theorem 2.2.

We now show that the above conjecture is true for Lagrangian manifolds of dimension
≤ 5. For manifolds of these dimensions in general position, the caustics or, more precisely,
the singularities of the projection onto state space have been classified by Arnold - see
Section 11 of [2] or Appendix 12 of [3]. This classification takes the form of a generating
function SI(x

I , pĪ) for M in the neighbourhood of the corresponding singularity. Each
singularity is labelled by a corresponding simple Lie group. For a Lagrangian manifold M
in general position of dimension n ≤ 5, all singularities in the projection of M onto state
space can be reduced by a Lagrangian equivalence to one of the following normal forms.
For n = 1 there is a single type of singularity labelled A2. For n = 2 there is, in addition,
a type labelled A3. For n = 3 there are, in addition, types labelled A4 and D4. For n = 4
there are, in addition, types labelled A5 and D5. For n = 5 there are, in addition, types
labelled A6, D6 and E6.

For all the singularities of typeAk, the generating function is of the form Sn−1(x2, ..., xn, p1)
and the manifold is given by

x1 = −∂Sn−1

∂p1
pi =

∂Sn−1

∂xi

(26)

for i = 2, ..., n. Note, we are now using the notation xi and pi to denote the coordinate
values of a point (x, p) in Rn, rather than to denote distinct points in Rn. The function S
appearing in the definitions (17) and (18) of W is then given by S = Sn−1 + x1p1 in the
neighbourhood of the singularity.

For the singularities of types Dk and Ek, the generating function is of the form
Sn−2(x3, ..., xn, p1, p2) and the manifold is given by

xj = −∂Sn−2

∂pj
pi =

∂Sn−2

∂xi

(27)

for j = 1, 2 and i = 3, ..., n. The function S is then given by S = Sn−2 + x1p1 + x2p2 in
the neighbourhood of the singularity.

Note that the sign convention used here is the opposite of that used by Arnold. Note
also that the generating function need not depend on every xi argument. For instance,
a singularity of type A3 has a generating function which depends only on x2 and p1. If
n > 2, then in a neighbourhood of a singularity of type A3, pi = 0 on M for i > 2.

It can easily be verified that, of the above list, singularities of types A2, A4, A6, D
+
4 , D

+
6

and E6 are all folded. Note D4 and D6 are given respectively by generating functions

Sn−2 = ±p21p2 ± p32 + x3p
2
2

and
Sn−2 = ±p21p2 ± p52 + x5p

4
2 + x4p

3
2 + x3p

2
2.

D+
4 and D+

6 denote the versions of these two singularities in which the first two terms in
the respective generating function have the same sign.

The remaining singularities A3, A5, D
−
4 , D5 and D−

6 are all non-folded. Note, in this list,
D−

4 and D−
6 denote the versions of the above two generating functions in which the first
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two terms have opposite signs. For n ≤ 5, the set of essential caustics C∗ can thus only
contain projections of these types of singularities. In each case, the function S, defined
as above by Sn−1 + x1p1 or Sn−2 + x1p1 + x2p2 in a neighbourhood of the singularity, is a
polynomial in x and p. The largest total degree of these polynomials is six.

Let the singularity be denoted (Ýx, Ýp) and let SI denote the corresponding normal form
generating function Sn−1 or Sn−2. Then, since (Ýx, Ýp) is non-folded, there is a δ > 0 such
that for all x ∈ Bδ(Ýx), there exists at least one p such that (x, p) lies on one of the
branches of M defined in a neighbourhood of (Ýx, Ýp) by SI . The values of S(x, p) over these
branches give rise to a multi-valued function of x in Bδ(Ýx). If Ýx is downstream of U, then
the minimum of these values at any given x ∈ Bδ(Ýx) defines the function WÝx(x) described
in the above conjecture. If Ýx is upstream, then the minimum of the values of −S(x, p)
over these branches defines WÝx(x) at any x ∈ Bδ(Ýx).

The defining relations (26) or (27) for M allow us to express the polynomial S of x and p
as a multi-valued algebraic expression in x alone, i.e. depending on powers and roots of
x. On any single branch of M in a neighbourhood of (Ýx, Ýp), this gives rise to a well defined
algebraic function of x. Since the generating functions for each of the above listed types of
non-folded singularities give rise to only finitely many branches of M in a neighbourhood
of (Ýx, Ýp), it follows that WÝx is the minimum of a finite number of algebraic functions of x.
WÝx is thus clearly continuous in Bδ(Ýx).

For any given type of non-folded singularity, the value m required by the above conjecture
is obtained by using the relations (26) or (27) to express S as a polynomial in xi and pj
of maximum degree 1 in any of the xi terms. The corresponding value of m is then the
highest degree of the pj terms. We can in fact obtain a different m for each dimension n
of M from one up to five as follows.

For n = 1 there are no non-folded singularities and so m = 1.

For n = 2, there is only one type of non-folded singularity, viz. A3. This has generating
function

Sn−1 = ±p41 + x2p
2
1

and from (26) it follows that, in a neighbourhood of such a singularity,

x1 = ∓4p31 − 2x2p1.

Thus

Sn−1 = −1

4
x1p1 +

1

2
x2p

2
1

and

S =
3

4
x1p1 +

1

2
x2p

2
1.

Thus, for manifolds of dimension 2, we can take m = 2 in the above conjecture.

For n = 3, there is only one type of non-folded singularity, viz. D−
4 . This has generating

function
Sn−2 = ±p21p2 ∓ p32 + x3p

2
2.

Using (27) we get that

S =
2

3
x1p1 +

2

3
x2p2 +

1

3
x3p

2
2
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and so, for manifolds of dimension 3, we can take m = 2 again.

For n = 4, there are two types of non-folded singularity, viz. A5 and D5. Repeating the
above analysis yields a value of m = 4 for A5 type singularities and m = 3 for D5 type
singularities. Thus, for manifolds of dimension 4, we can take m = 4.

Lastly, for n = 5, there is only one type of non-folded singularity, viz. D−
6 , for which a

repeat of the above analysis yields a value of m = 4. Thus, for manifolds of dimension 5,
we can again take m = 4. The results of the last five paragraphs can be summarised as
follows.

Theorem 5.32. Given any n ≤ 5, consider the corresponding value of m from the above
analysis, i.e. m = 1 for n = 1, m = 2 for n = 2 or 3 and m = 4 for n = 4 or 5. Let M be
a Lagrangian manifold of dimension n. Then at any x0 ∈ Ω, if K is a local bound on M
at x0, then Km is a local Lipschitz constant for W at x0, where W is the function defined
in (17) and (18). Recall that a local bound on M at x0 is a value K ∈ (1,∞) such that
|p| ≤ K for all (x, p) ∈ M with x ∈ Bδ(x0) for some δ.

6. Examples and further work

We defined, after Hypotheses 5.2 in the previous section, two mains classes of examples of
Lagrangian manifolds. The first arose from the evolution of an initial Lagrangian manifold
under the phase flow corresponding to a finite time variational problem. We saw that all
the requirements of Hypotheses 2.1 and 5.2 are natural in this case. In particular, the
requirements that the form pdx be globally exact on M and that the Maslov class be zero
on M follow from the fact that M is simply connected. The results of the previous section
then clearly explain in geometrical terms the often observed fact that a viscosity solution
to the associated HJB equation is obtained by taking the minimum of the generating
function S over all branches of M. However, as already noted, this fact can be explained
in the finite time case by well-known variational arguments.

The second class of examples is more interesting. These arise as stable or unstable La-
grangian manifolds corresponding to infinite time variational problems. The description
of this class of examples in the previous section showed how to construct a simply con-
nected submanifold of a stable or unstable manifold. Thus the requirements that the form
pdx be globally exact on M and that the Maslov class be zero on M are satisfied, while
the other requirements of Hypotheses 2.1 and 5.2 are reasonable to ask for.

We give two simple examples in this second class. These illustrate, firstly, the types of
conditions required to guarantee that a stable or unstable Lagrangian manifold exists,
secondly how the orientation introduced in the previous section allows a consistent con-
struction of a viscosity solution both upstream and downstream and, thirdly, the types of
extra conditions required to deduce that this solution is in fact the value function for the
infinite time variational problem. These two examples also motivate a brief discussion of
how to deal with non-convex Hamiltonians.

The first example of L2-gain problems in non-linear systems theory has been dealt with
in detail by Day in Section 5 of [11]. This involves solving −H(x, ∂ϕ/∂x) = 0 where H is
the Hamiltonian

H(x, p) = max
w∈Rm

{

pT (f(x) + g(x)w) +
1

2
|h(x)|2 − 1

2
γ2 |w|2

}

. (28)
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Appropriate local controllability and observability conditions guarantee a hyperbolic equi-
librium for the Hamiltonian dynamics and thus the existence of a stable Lagrangian man-
ifold M+. Day then considers a simply connected submanifold M of M+ lying over a
region Ω in state space which is forward invariant for the phase flow corresponding to
H, as described after Hypotheses 5.2 in the previous section. If S is the function defined
on M by dS = pdx then by Corollary 5.31 above, V (x) = sup{S(x, p) : p such that
(x, p) ∈ M} is a viscosity solution of −H(x, ∂ϕ/∂x) = 0. Note that the Hamiltonian here
is concave and all of M is upstream of U, so formula (18) applies with inf replaced by sup
and S replaced by −S and with upstream and downstream swapped round in Corollary
5.31. Note also that in [11], the local Lipschitz continuity required to deduce that V is
a viscosity solution was assumed as a hypothesis. Here, we obtain it from the results of
the previous section using the fact that M is simply connected and under the assumption
that it satisfies the rest of Hypotheses 2.1, 5.2 and 5.22 and that dimM ≤ 5.

The value function for this problem is called the available storage φa and is characterised
as the minimal non-negative viscosity supersolution of (28). Day addresses the question of
whether V = φa by restricting the set of disturbance inputs over which the cost functional
is evaluated to those for which corresponding controlled trajectories remain in Ω if they
start in Ω. With this restriction he shows, in Theorem 4 of [11], that V = φa if and only
if V (x) ≥ 0 for all x ∈ Ω.

The second example can be thought of as either the other half of an H∞ control problem
with null disturbance or the limit of an H∞ problem as the attenuation bound tends to
infinity. It is the infinite time optimal regulator problem

ÝV (ξ) = inf
u(.)∈U

sup
T>0

∫ T

0

1

2

(

|h(x(t))|2 + u(t)T r(x(t))u(t)
)

dt (29)

subject to Úx = f(x) + g(x)u, x(0) = ξ, limt→∞ x(t) = 0. The value function ÝV satisfies
the HJB equation H(x,−∂ ÝV /∂x) = 0, where H is given by

H(x, y) = max
u∈Rm

{

yT (f(x) + g(x)u)− 1

2
|h(x)|2 − 1

2
uT r(x)u

}

. (30)

Suppose there is an equilibrium at x = 0 and that the linearisation of (29) at x = 0
is stabilizable and detectable. Then the equilibrium is hyperbolic and so there exists a
stable Lagrangian manifold M+. As above, take a simply connected submanifold M of
M+ lying over a region Ω in state space which is forward invariant for the phase flow
corresponding to H. Note that H in (30) is convex and all of M is upstream of U. Thus
if we assume that M satisfies Hypotheses 2.1, 5.2 and 5.22 and that dimM ≤ 5, then by
Corollary 5.31, the function V (x) = inf{−S(x, y) : y such that (x, y) ∈ M} given by (18)
is a viscosity solution of H(x,−∂V/∂x) = 0, where S(x, y) is the function defined on M
by dS = ydx. Note, as above, that most of these hypotheses follow from the fact that M
is simply connected by construction.

To prove that V = ÝV requires a proof that the set U of admissable controls is non-empty.
An appealing candidate is the ‘feedback’ control

Ýu(x) = r−1(x)gT (x)Ýy
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where Ýy is such that (x, Ýy) ∈ M is a minimising point for −S(x, .) on M. A proof that
this control is asymptotically stable has to deal with the fact that it is potentially multi-
valued, since there may exist more than one minimising point over a given x. We defer
discussion of this to a future paper for reasons of space. However, given this then similar
arguments to those used by Day in the L2-gain case show that, if V (x) > 0 for 0 6= x ∈ Ω,
then V = ÝV and, furthermore, the above feedback gives the optimal control.

To finish we make two general comments about the results of the previous section and
directions for further work. First, the restriction to Hamiltonians which are either convex
or concave excludes many questions of current interest in the field of non-linearH∞ control
and differential games. Further, when studying the evolution of viscosity or idempotent
solutions to HJB equations, the combined effect of Hypotheses 5.2 is, in a sense, to
restrict attention to neighbouring regions of state space which are separated by no more
than one set of caustics. A useful way of studying a non-convex Hamiltonian may be to
restrict attention to charts on the associated Lagrangian manifold on which H is either
convex or concave and then use an analysis similar to that of the previous section of
this paper to study the evolution of the solution from one chart to another. What we
have in mind is the logarithmic limit of a canonical tunnelling operator as described at
the end of Section 4, with the transition between charts achieved by the log limit of a
1/h-Laplace transform. The switch from convex to concave is related to the orientation
given in the previous section and to the correct choice of side of the Laplace transform. A
non-convex H can be viewed as a linear PDE with non-constant coefficients in a (min,+)
or (max,+) sense and the restriction to charts on which H is either convex or concave
suggests a form of localisation over either (min,+) or (max,+). The problem is then to
glue together these local linear germs of solutions. This is analogous to the solution of
conventional linear PDEs with non-constant coefficients by localisation in a ring of analytic
functions. The second Maslov quantisation condition enters into the global analysis of
the Maslov canonical operator but not so far, in the literature, into the global analysis of
canonical tunnelling operators, perhaps because the focus in this case has been on convex
Hamiltonians. The results of the previous section indicate that the second quantisation
condition is the one required to ensure that these local (max,+) and (min,+) linear germs
can be glued together in the log limit in a way which is consistent with the choice of side
of the Laplace transform and the orientation of M and such that the resulting generalised
solution is locally Lipschitz. To illustrate how this would work, consider the following
simple type of nonconvex Hamiltonian which arises in nonlinear H∞ control

H(x, p) = max
u

min
w

{pT (f(x) + g(x)u+ h(x)w)

−1

2
|l(x)|2 − 1

2
uT r(x)u+

1

2
γ2 |w|2}

=
1

2
pTg(x)r(x)−1g(x)Tp− 1

2γ2
pTh(x)h(x)Tp+ pTf(x)− 1

2
|l(x)|2 .

This case is simple because the max and min separate. We can divide the region U of
Hypotheses 5.2 into two sub-regions U∨ and U∧ where x0 ∈ π(U∨) if H(x0, p) is convex in
p and x0 ∈ π(U∧) if H(x0, p) is concave in p. Consider any x ∈ Ω and any (x, p) ∈ M lying
over x and let γ(x,p) denote the phase curve corresponding to H which connects (x, p) to
U. If we assume that U∨ and U∧ are phase disjoint with respect to H in the sense that
phase curves which start in U∨ do not pass through U∧ and vice versa, then the various
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branches of M lying over x can be divided into two groups M∨
x and M∧

x as follows. If
γ(x,p) comes from U∨ then (x, p) ∈ M∨

x while if γ(x,p) comes from U∧ then (x, p) ∈ M∧
x .

Then we can define
V (x) = inf

(p:(x,p)∈M∨
x )

sup
(p:(x,p)∈M∧

x )

S(x, p).

An analysis similar to that of the previous section shows that V is a locally Lipschitz
viscosity solution of H(x, ∂V/∂x) = 0. The case where H does not separate is clearly
more involved.

The second comment is to note that, apart from the proof of Conjecture 5.29 for dimM ≤
5, none of the results of the previous section relied on the dimension of the Lagrangian
manifoldM. This conjecture seems reasonable for higher dimensions. The most important
item of future work is probably to find a proof of this.
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