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Theoretical and experimental studies of noncooperative games increasingly recognize Nash equilibrium
as a limiting outcome of players’ repeated interaction. This note, while sharing that view, illustrates and
advocates combined use of convex optimization and differential equations, the purpose being to render
equilibrium both plausible and stable.
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1. Introduction

While economics has grown game-theoretic, the demanding nature of the central solution
concept has increasingly been recognized. That concept, the Nash equilibrium, captures,
in one shot, rationality, optimality and foresight. But, precisely by achieving so much, it
cries out for justification in dynamic terms. Indeed, legitimacy for making Nash equilibria
key items of inquiry can only be produced by dynamics which eventually converge to
such focal points. It is unsatisfactory to study stability after equilibrium reigns without
exploring first what process brought that distinguished state into being. Common and
unifying features of such processes are that players

• have imperfect foresight, knowledge, or understanding of possibilities, intentions, and
consequences, yet

• steadily seek to improve own payoff.

Thus real, repeated play is likely to unfold with manifold imperfections in the short run.
To analyze possible long-run convergence this paper advocates use of convex analysis, dif-
ferential equations, and (stochastic) approximation. After defining the infinitely repeated
stage game in Section 2, I synthesize some generic instances and indicate extensions. For
the sake of illustration the classical Cournot oligopoly will come on stage time and again.
Since the main concerns of this paper are with modelling, some technicalities get limited
attention.

2. The Stage Game

There is a finite, fixed set I of economic agents who play the same game repeatedly. At
every stage individual i ∈ I seeks to maximize - or merely improve - his payoff πi(xi, x−i) ∈
R∪{−∞} with respect own strategy xi ∈ Ei. Here Ei is a Euclidean space, endowed with
inner product 〈·, ·〉i , and x−i stands for the strategy profile (xj)j 6=i implemented by i’s
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rivals. The value −∞ accounts for constraints if any. A point x = (xi) is then declared a
Nash equilibrium iff each xi ∈ argmaxπi(·, x−i); that is, iff for all i

0 ∈ mi(x) :=
∂

∂xi

πi(x). (1)

Here ∂
∂xi

denotes the partial superdifferential operator of convex analysis, namely:

gi ∈
∂

∂xi

πi(x) ⇔ πi(Ýxi, x−i) ≤ πi(xi, x−i) + 〈gi, Ýxi − xi〉i ,∀Ýxi ∈ Ei.

I henceforth take existence of at least one Nash equilibrium for granted and posit that
each payoff πi(xi, x−i) be concave in own variable xi.

Ever since von Neumann’s first study [30] there has been some predilection with finite-
strategy games.1 That restriction seems not fully fortunate though. First, it often entails
approximations. Second, apart from facilitating learning schemes [5], [32], it can hardly
generate smooth dynamics. Third, it seems a paradox that although players are com-
monly supposed to respond optimally, they make virtually no use of optimization theory
or methods. By contrast, the classical Cournot oligopoly [9], featuring a continuum of
strategies and no approximation, begs for calculus, optimality conditions, dynamics, and
convex analysis. So, to illustrate and motivate use of such analysis, I shall often activate,
here below, that workhorse model of applied game theory.

The Cournot oligopoly goes as follows: Firm i ∈ I produces quantity xi ∈ R of one
and the same perfectly divisible, homogeneous good to obtain a profit

πi(x) = P (a)xi − ci(xi)

which incorporates a convex cost function xi 7→ ci(xi) ∈ R∪{+∞} and a smooth price
curve a 7→ P (a). Specifically, P (a) is the price at which consumers will demand the ag-
gregate quantity a :=

∑

i∈I xi. Assuming concavity of individual objectives - and suitable
differentiability as well - a Cournot-Nash equilibrium obtains iff for all i

0 ∈ mi(x) := P (a) + P ′(a)xi − ∂ci(xi), (2)

∂ denoting here the customary subdifferential of convex analysis.2

3. Parametric Interaction

Motivated by (2) suppose optimality condition (1) assumes the form

0 ∈ mi(xi, a), (3)

featuring an endogenously determined parameter a that belongs to a nonempty compact
convex set A ⊂ Rn. We posit that a results from a continuous aggregation mechanism
x 7→ a = Ax ∈ A, maybe nonlinear and/or unknown. Also suppose that each inclusion (3)

1Then payoff πi(x) becomes multilinear and equals −∞ whenever xi falls outside the probability simplex
of mixed strategies.
2Note that (2) fits the parametrized variational inclusions studied in [8].
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has a parameter-dependent, continuous solution a 7→ xi(a). Taken together these solutions
admit common observation of a new aggregate outcome, called f(a), via the following
string:

a ∈ A 7→ [xi(a)] =: x(a) 7→ Ax(a) =: f(a) ∈ A. (4)

Consequently, a steady state prevails iff a = f(a). That is, any fixed point of f, in
confirming expectations, supports a Nash equilibrium.

In many instances, aggregation like (4) may simplify play, reduce the complexity of strate-
gic interaction, and lower the perceived dimensionality. To wit, instead of players having
to learn about each other, they need only form predictions about the parameter a. While
still out of equilibrium, such predictions are likely to be wrong - and refuted by observa-
tions. Whenever so, they had better be improved. One way of intentional improvement
is modelled next. It involves a sequence of step sizes sk ∈ (0, 1] that tend to zero, but so
slowly that

∑

sk = +∞. Agents will

start at an initial point a0 ∈ A determined by guesswork, accident, or historical factors
not elaborated here;
update the current prediction ak iteratively at stages k = 0, 1, ... by the mean-value rule

ak+1 := (1− sk)a
k + skf(a

k); (5)

continue until convergence (if ever).

Evidently, sk strikes a balance between the state ak, which prevails at stage k, and the
fresh observation f(ak). In other words, compromise (5) reflects on-going learning. The
requirement that

∑

sk = +∞ ensures that learning never comes to a halt. Property
sk → 0+ accounts for increasing experience or maturation as k → +∞. 3

Theorem 3.1 (Global convergence to equilibrium). Suppose f maps a compact
convex set A ⊂ Rn continuously into itself. Also suppose the flow Úa = f(a) − a has
unique integral curves, and that each minimal invariant set must be an isolated point.
Then, for arbitrary initial a0 ∈ A, process (5) converges to a fixed point of f.

Proof. Let L denote the nonempty set of accumulation points of the sequence
{

ak
}

. By
the Limit Set Theorem in [4] L is compact, connected, invariant under Úa = f(a)− a, and
does not contain a proper attractor. But then, by assumption, L reduces to a singleton
whence there is convergence.

Pemantle [31], in exploring stochastically perturbed versions of (5), provides conditions
under which linearly unstable equilibria almost surely cannot be limit points; see also [5].
David and Jonathan Borwein show that given n = 1, that is, if A ⊂ R, then a constant
step size could be applicable:

Proposition 3.2 (One-dimensional convergence with constant step sizes [6]).
Suppose f is Lipschitz with modulus L, i.e., |f(a)− f(a′)| ≤ L |a− a′| for all a, a′ ∈
A ⊂ R. Also suppose that sk ≡ s ∈ (0, 2

L+1
). Then the sequence

{

ak
}

generated by (5)
converges to a fixed point of f.

3Earlier studies of (5) include [21], [24], [25]. Multi-valued mappings a À f(a) may also be accommodated;
see e.g. [13]. Format (5) is the one which dominates in studies of so-called fictitious play [7], [22], [32].



432 S. D. Fl̊am / Convexity, Differential Equations and Games

Example 3.3 (One-dimensional interaction, repeated Cournot play [13]).
Suppose each oligopolist i ∈ I knows the price curve P (·) albeit nothing about his rivals.
But presumably he is able to solve (2) for the unknown xi = xi(a), depending continuously
on the predicted aggregate supply a. That supply belongs to a nonempty compact interval
A ⊂ R. If A is invariant under a 7→

∑

i xi(a) =: f(a), and f has isolated fixed points,
then (5) converges to a rational-expectation, market-clearing, aggregate demand a = f(a)
which complies with Cournot-Nash equilibrium.

Continuous dependence can here be derived via an auxiliary problem [28], namely: Since
P ′(a) < 0, maximization of the strictly concave, coercive objective

∑

i∈I

{

pxi +
p′

2
x2
i − ci(xi)

}

, (6)

featuring short notation p = P (a), p′ = P ′(a), will produce a unique, continuously de-
pendent, optimal solution x(p, p′). Since a 7→ (p, p′) = [P (a), P ′(a)] is already presumed
continuous, the desired overall continuity follows by composition.

Still with A ⊂ R equation (5) also fits well to models concerned with price predictions;
see [1], [12]. We next let A ⊂ R2.

Proposition 3.4 (Convergence with two-dimensional interaction). Suppose A ⊂
R2 is nonempty compact convex and that f : A → A is C1 with isolated fixed points and
divf := ∂f1

∂a1
+ ∂f2

∂a2
6= 2. Then, for arbitrary initial a0 ∈ A, process (5 ) converges to a fixed

point of f.

Proof. By the Bendixon-Poincaré theorem Úa = f(a) − a accumulates to a fixed point
of f, or to a periodic solution (possibly a limit cycle) [29]. The latter possibility is
excluded, however, by Green’s theorem. This shows that minimal invariant sets are
isolated singletons, and then Theorem 3.1 applies.

Example 3.5 (Two-dimensional interaction; repeated Cournot play [17]).
We continue with the Cournot oligopoly. But more realistically than in Example 3.3, sup-
pose now that each producer knows neither the price curve P (·) nor his rivals. Everybody
then forms a belief a := (p, p′) ∈ R2 about the upcoming price p = P (

∑

xi) > 0 and the
associated slope p′ = P ′(

∑

xi) < 0. Consequently, x(a) = x(p, p′) is the unique solution
of (6). Under appropriate hypotheses the implicit function theorem certifies that

∑

xi(a)
becomes C1 whence so is f(a) := [P, P ′] (

∑

xi(a)). One may argue, or reasonably assume,
that a higher predicted price a1 := p, inspires increased supply

∑

xi(a) and thereby lower
realized price f1(a), i.e.

∂f1
∂a1

≤ 0. Similarly, assuming P ′(·) concave, a flatter price curve
(that is, a more moderate slope a2 := p′) incites greater supply and thereby smaller real-
ized p′, i.e. ∂f2

∂a2
≤ 0. Taken together the last two inequalities largely suffice for divf < 2.

Proposition 3.4 seemingly applies to fictitious play of 2× 2 games; see [5], [7], [14], [22],
[32]. But smoothness is then absent. That much studied instance attests to the need for
a qualitative theory of planar vector fields with discontinuous right hand side.

When A ⊂ Rn with n ≥ 3, matters become more difficult. But sometimes a 7→ f(a) has
monotonicity properties caused by substitution or complementarity. The following is a
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well known result in that vain:

Proposition 3.6 (Convergence under monotone interaction). Suppose f : A → A
⊂ Rn is strictly monotone in the sense that

〈f(a)− f(ā), a− ā〉 ≤ ‖a− ā‖2 − µ(‖a− ā‖) (7)

where µ : R+ → R+ is continuous, increasing, vanishes only at 0, and ā is any fixed point
of f . Then f has a unique fixed point to which (5) converges.

Proof. Existence of two distinct fixed points ā, a ∈ A would contradict (7). So let ā be
the unique fixed point, Úa = f(a) − a, and L(t) := ‖a(t)− ā‖2 /2. Then inequality ÚL =
〈a− ā, f(a)− a〉 ≤ −µ(‖a− ā‖) implies a(t) → ā. Invoke Theorem 3.1 to conclude.

Example 3.7 (Cournot play with many commodities). In (1) suppose xi ∈ Rn.
This means that each firm can produce n homogeneous goods - to be sold at common
markets. Suppose now that the Ôprice slopeÔ P ′(

∑

xi) is a constant, known, symmetric,
negative definite n × n matrix, denoted −S. Then, regarding the upcoming price vec-
tor p ∈ Rn as the aggregate parameter a, solutions x = (xi) to (1) coincide with those
of p ∈ ∂ [ci(xi) + 〈xi, Sxi〉i /2] ,∀i ∈ I. Thus, letting C∗

i denote the Fenchel conjugate
of xi 7→ ci(xi) + 〈xi, Sxi〉i /2, it holds that xi = xi(p) ∈ ∂C∗

i (p) for all i. This implies,
quite naturally, that aggregate supply increases with more favorable price predictions,
i.e. 〈

∑

i xi(p)−
∑

i xi(Ýp), p− Ýp〉 ≥ 0. It seems reasonable therefore, in this context, to
assume by Ôthe law of demandÔ that f(p) := P (

∑

xi(p)) is decreasing, that is, inequality
〈f(p)− f(Ýp), p− Ýp〉 ≤ 0 (or a good approximation) should be satisfied. The upshot is
that (7) holds with a = p and µ(r) = r2.

4. Non-parametric Interaction

Nash equilibrium leaves the impression that each player foresees perfectly and responds
optimally. Must human-like, rational agents really acquire both these faculties? This
section argues that in some instances neither is ever needed. To show this repeated play
is modelled here in various ways as processes driven by noncoordinated pursuit of better
payoff.

For simplicity take πi(xi, x−i) to be differentiable in xi and sufficiently smooth. I begin
by considering a first-order gradient process:

Proposition 4.1 (Convergence of a gradient method). Suppose there is ball B a-
round a point x̄ such that the standard inner product 〈x− x̄,m(x)〉 is negative and upper
semicontinuous on B¿x̄. Then, solution trajectories of

Úxi = mi(x),∀i ∈ I,

emanating from any initial point x(0) ∈ B, will converge to x̄, this point being a Nash
equilibrium.

Proof. The function L(t) := 1
2
‖x(t)− x̄‖2 becomes Lyapunov provided x(0) ∈ B. Indeed,

omitting explicit mention of time, ÚL = 〈x− x̄, Úx〉 = 〈x− x̄,m(x)〉 ≤ 0 with strict inequal-
ity when x 6= x̄. Thus ‖x(t)− x̄‖ tends monotonically downwards to a limit r ≥ 0. There-
fore, r ≤ ‖x(t)− x̄‖ ≤ ‖x(0)− x̄‖ for all t ≥ 0. Let µ := max {〈x− x̄,m(x)〉 : r ≤ ‖x− x̄‖
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≤ ‖x(0)− x̄‖} . If r were positive, the upper semicontinuity of 〈x− x̄,m(x)〉 would entail
ÚL ≤ µ < 0, whence the absurdity L(t) ↘ −∞. Thus r = 0, and the last assertion follows
immediately.

Example 4.2 (Gradient play of Cournot oligopoly [10]). Suppose P (a) = P (0) −
Sa for positive constants P (0) and S. Then, with differentiable convex cost ci, monotonic-
ity obtains because

〈m(x)−m(Ýx), x− Ýx〉 = −S
{

(a− Ýa)2 + ‖x− Ýx‖2
}

−
∑

i

[∂ci(xi)− ∂ci(Ýxi)] [xi − Ýxi] .

Gradient dynamic enjoys many appealing properties: It is decentralized and proceeds
in parallel; it is easy to discretize and implement; it can incorporate constraints and
nonsmooth data [3], [10], [11], [15], [16]. At times, however, such dynamics do not quite
satisfy natural expectations: First, the monotonicity assumption 〈x− x̄,m(x)〉 ≤ 0 may
fail, and second, convergence often comes slowly, if at all. These features lead me to
consider briefly a method that uses not only m but derivatives of m as well. Specifically,
let

Úxi = mi(x) + λi Úmi(x) for all i ∈ I. (8)

(8) incorporates some extrapolation via the term Úmi(x) = m′
i(x) Úx. Such behavior mirrors

that player i moves in the direction mi(x) of steepest payoff ascent, modified somewhat by
how rapidly that direction changes. Note how little information or expertise the concerned
parties need to keep process (8) going. It suffices that every individual i continuously
observes and appropriately reacts to ÔhisÔ current data xi, mi, and Úmi. The numbers
λi are positive and typically rather large. Intuitively, a large λi serves to mitigate the
slowdown of gradient dynamics near stationary points.

Proposition 4.3 (Convergence of an extrapolative system). Suppose the trajecto-
ry x(t), t ≥ 0, solves (8) in a domain where m′(x) is non-singular. Then, if all λi

are sufficiently large, any accumulation point x̄ of x(t) must be a Nash equilibrium. In
particular, if x̄ is an isolated solution to (1), then x(t) → x̄.

Proof. For completeness we reproduce the argument in [35]. Denote by λ the diagonal
matrix having λi along the diagonal in block i. Then, with short notation m = m(x),m′ =
m′(x), system (8) can be rewritten as

Úx = m+ λm′ Úx, that is, Úx = [I− λm′]
−1

m.

Let L(t) := ‖m(x(t))‖2 /2 and observe that

ÚL = 〈m,m′ Úx〉 =
〈

m,m′ [I− λm′]
−1

m
〉

=
〈

m,λ−1λm′ [I− λm′]
−1

m
〉

.

At this point use the matrix identity [I− λm′]−1 − λm′ [I− λm′]−1 = I to get ÚL =
〈

m,λ−1
{

−I+ [I− λm′]−1}m
〉

. Thus, for λ sufficiently large m(x) 6= 0 ⇒ ÚL < 0.

Process (8) is not straightforward to discretize, and constraints are not quite easy to
account for; see [18], [19]. More convenient in both regards is another procedure, inspired
by an important, recent paper of Attouch et al. [2]. To convey the main idea assume first
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that each payoff function πi be finite-valued. This means that there are no constraints.
The approach is then motivated as follows: Whenever player i - and others similarly - sees
Úxi 6= mi(x), he attempts to restore equality by way of suitable acceleration/retardation
ẍi = mi(x) − Úxi. Broadly speaking, if mi(x) exceeds xi in some coordinate, then that
velocity component should increase. The resulting motion defines a differential system

ẍ = m(x)− Úx (9)

which has each Nash equilibrium as a rest point. It also retains the merit of being
decentralized and simple.

Given this motivation I step back now and reintroduce constraints of the following sort:
For each i suppose xi ∈ Xi ⊆ Ei where Xi is nonempty closed convex. Suppose that
agent i, while using strategy xi ∈ Xi, worries about feasibility as follows. Whatever be
his contemplated rate of change - that is, his desired velocity - vi, its normal component, if
any, must be suppressed. Otherwise that component would lead outsideXi. Consequently,
what should be retained of the proposed vi is only its tangential part. Formally, let PTixi

denote the orthogonal projection onto the tangent cone Tixi := clR+(Xi − xi), and posit

Úxi := PTixi
[vi] for all i. (10)

This operation bends (projects) any tentative velocity vi onto the local tangent cone Tixi

so as to avoid straying out ofXi.
4 In sum, projection takes care of feasibility but leaves the

dynamics of vi unspecified. For such specification I imitate (9) and posit that vi evolves
according to

Úvi = PTixi
[mi(x)]− PTixi

[vi] for all i. (11)

Since Tx = Πi∈ITixi is the tangent cone of the product set X := Πi∈IXi at x = (xi), the
differential equations (10), (11) can be assembled into system form

Úx = PTx [v]
Úv = PTx [m(x)]− PTx [v]

}

(12)

By a solution to this system is understood an absolutely continuous profile [x(t), v(t)] ,
t ≥ 0, that satisfies (12) almost everywhere. Since Tx is empty whenever x /∈ X, it goes
without saying that x(·) must be viable in the sense that x(t) ∈ X for all t ≥ 0. The total
energy

E(t) := ‖v(t)‖2 /2−
∫ t

0

〈

PTx(τ) [m(x(τ))] , Úx(τ)
〉

dτ (13)

is defined as the sum of kinetic and potential energy. The latter is a line integral

∫ x(t)

x(0)

〈PTxm(x), dx〉 =
∫ t

0

〈

PTx(τ) [m(x(τ))] , Úx(τ)
〉

dτ., (14)

calculated along the path of play.

The next result spells out the stability often inherent in (12). By incorporating constraints
it extends Theorem 3.1 in Attouch et al. (2000). For simple notations and statements,
when 1 ≤ p ≤ ∞, let Lp := Lp(R+,E) be the space of (equivalence classes of) measurable
functions 0 ≤ t 7→ x(t) ∈ E := ΠiEi such that

∫∞
0

‖x(t)‖p dt < +∞. In particular, x ∈ L∞

iff x is essentially bounded on R+.
4Clearly, given continuous time, projection is required only when xi resides at the boundary of Xi.
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Proposition 4.4 (Asymptotic stability and convergence of constrained play).
Consider the second-order process (12) with m(·) Lipschitz continuous on bounded sets.
Suppose the potential energy

∫ t

0

〈

PTx(τ) [m(x(τ))] , Úx(τ)
〉

dτ

is bounded above along any solution trajectory.5 Then,

• from any admissible initial state [x(0), v(0)] ∈ X × E there emanates an infinitely
extendable, feasible solution 0 ≤ t 7→ [x(t), v(t)] ∈ X × E of (12);

• the total energy E(t) converges monotonically downwards to a limiting finite level
E(∞) and v ∈ L∞, Úx ∈ L∞ ∩ L2;

• it holds that Úx, Úv ∈ L∞ and, provided limt→+∞ PTx(t) [m(x(t))] exists, all points
Úx(t), Úv(t), PTx(t) [m(x(t))] tend to 0 as t → +∞, this saying that every cluster point
of x(t), t ≥ 0, is a Nash equilibrium.

Since no player acts continually, it is mandatory to recast (12) in discrete time. As
discretization we propose

xk+1 := P
[

xk + skv
k
]

vk+1 := vk + P
[

xk + skm(xk)
]

− P
[

xk + skv
k
] (15)

Here P is short notation for the orthogonal projection onto X, and sk, k = 0, 1, . . . are
the step sizes mentioned earlier. Evidently, in our context, (15) amounts to a much
decentralized system in which, iteratively at stages k = 0, 1, .., each individual i updates
his strategy and velocity by the rule

xk+1
i := Pi

[

xk
i + skv

k
i

]

vk+1
i := vki + Pi

[

xk
i + skmi(x

k)
]

− Pi

[

xk
i + skv

k
i

]

Here Pi denotes orthogonal projection onto Xi. The initial points (x0
i , v

0
i ), i ∈ I, are

determined by accident or historical factors better discussed in each particular setting.

Theorem 4.5 (Convergence of discrete-time, constrained, repeated play).
Suppose system (12) has unique solution trajectories. Then, under the hypotheses of
Proposition 4.4 and the assumption thatm(·) has isolated roots, any bounded discrete-time
trajectory (xk, vk) generated by (15) must be such that xk converges to a Nash equilibrium.

For proof of Proposition 4.4 and Theorem 4.5 see [20].

5. Concluding Remarks

Noncooperative game theory cannot - and quite reasonably, does not - claim that real,
human-like players, when facing unfamiliar situations, will settle in Nash equilibrium
right away. That theory rather invites two questions: First, save a unique solution, which

5In the unconstrained case, the potential energy becomes upper bounded when m = P ′ for some differ-
entiable, upper bounded potential P : E → R; see [26], [27].
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principle can select a specific equilibrium? Second, what plausible sort of process could
eventually bring the parties there?

The literature already offers several models of learning to play Nash over time.6 Common
to these is the prime position - and somewhat overwhelming attention - given to finite-
strategy games and best responses. By contrast, this paper used continuous strategy
spaces and quite often dispensed with best responses. In applying differential equations
(and related approximation theory) it subscribes to a tradition that goes back to Brown
(1951) and Rosen (1965). That tradition is also eminently pursued in [23] and [37].

References

[1] Z. Artstein: Irregular cobweb dynamics, Economic Letters 11 (1983) 15–17.

[2] H. Attouch, X. Goudou, P. Redont: The heavy ball with friction method I, The continuous
dynamical system: Global exploration of the local minima of a real-valued function by
asymptotic analysis of a dissipative dynamical system, Communications in Contemporary
Mathematics 2 (2000) 1–34.

[3] J. P. Aubin, A. Cellina: Differential Inclusions, Springer-Verlag, Berlin (1984).

[4] M. Benaim: A dynamical approach to stochastic approximations, SIAM Journal of Control
and Optimization 34 (1996) 437–472.

[5] M. Benaim, M. W. Hirsch: Mixed equilibria and dynamical systems arising from fictitious
play in perturbed games, Games and Economic Behavior 29 (1999) 36–72.

[6] D. Borwein, J. Borwein: Fixed point iterations for real functions, Journal of Mathematical
Analysis and Applications 157 (1991) 112–126.

[7] G. W. Brown: Iterative solutions of games by fictitious play, in: Activity Analysis of
Production and Allocation, T. J. Koopmans (ed.), J. Wiley, New York (1951).

[8] A. L. Dontschev, R. T. Rockafellar: Ample parametrization of variational inclusions,
manuscript, april (2000).

[9] A. Cournot: Recherches sur les principes mathématiques de la théorie des richesses (1838).
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