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This survey article reflects the topological and inverse behaviour of generalized semi-infinite optimiza-
tion problems P(f, h, g, u, v), and presents the analytical methods. These differentiable problems admit
an infinite set Y (x) of inequality constraints y which depends on the state x. We extend investigations
from Weber [77] based on research of Guddat, Jongen, Rückmann, Twilt and others. Under suitable
assumptions on boundedness and qualifying conditions on lower y-stage and upper x-stage, we present
manifold, continuity and global stability properties of the feasible set M [h, g, u, v] and correspond-
ing structural stability properties of P(f, h, g, u, v), referring to slight data perturbations. Hereby, the
character of our investigation is essentially specialized by the linear independence constraint qualification
locally imposed on Y (x). The achieved results are important for algorithm design and convergence. Two
extensions refer to unboundedness and nondifferentiable max-min-type objective functions. In the course
of explanation, the perturbational approach gives rise to study inverse problems of reconstruction. We
trace them into optimal control of ordinary differential equations, and indicate related investigations
in heating processes, continuum mechanics and discrete tomography. Throughout the article, we realize
discrete-combinatorial aspects and methods.
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1. Introduction

Generalized semi-infinite (GSI) problems have the form

P(f, h, g, u, v)











Minimize f(x) on M [h, g], where

M [h, g] := {x ∈ IRn | hi(x) = 0 (i ∈ I),

g(x, y) ≥ 0 (y ∈ Y (x)) }.

The semi-infinite character comes from the perhaps infinite number of elements of Y (=
Y (x)) ([16], [54]), while the generalized character comes from the x-dependence of Y (·).
We suppose these index sets to be finitely constrained (F):

Y (x) = MF [u(x, ·), v(x, ·)] := { y ∈ IRq | uk(x, y) = 0 (k ∈ K),

v`(x, y) ≥ 0 (` ∈ L)} (x ∈ IRn).

Under suitable assumptions, the following fields of problems from science, engineering
and control lead to generalized semi-infinite (GSI) optimization: ◦ optimizing the layout
of a special assembly line, ◦ maneuverability of a robot, ◦ time minimal heating of a
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ball of an homogeneous material, ◦ approximation of a thermo-couple characteristic in
chemical engineering, ◦ robust optimization, ◦ structure and stability in optimal control
of ordinary differential equations. For motivation and references see, e.g., [77], [80]. In
future, GSI applications may also be expected in optimal experimental design ([12]).
Notation: h = (hi)i∈I , u = (uk)k∈K , v = (v`)`∈L, where hi : IRn → IR, i ∈ I :=
{1, . . . ,m}, uk : IRn × IRq → IR, k ∈ K := {1, . . . , r}, v` : IRn × IRq → IR, ` ∈ L :=
{1, . . . , s} (m < n; r < q). Let f : IRn → IR, g : IRn × IRq → IR, hi (i ∈ I), uk (k ∈
K), v` (` ∈ L) be continuously differentiable (C1). ByDf(x), DTf(x) we denote the row-
(column) vector of the first-order partial derivatives ∂

∂xκ
f(x), and Dxg(x, y), Dyg(x, y)

consist of ∂
∂xκ

g(x, y) and ∂
∂yσ

g(x, y). Let U ⊂ IRn, M [h, g] ∩ U 6= ∅, be some bounded,
open set.

Assumption AU : ∪x∈U Y (x) is bounded (hence, by continuity, compact).

In generalized semi-infinite optimization, the feasible set M [h, g] need not be closed ([33]).
The following assumption, however, ensures closedness:

Assumption BU : For all x ∈ U , the linear independence constraint qualification
(LICQ) is fulfilled for MF [u(x, ·), v(x, ·)], i.e., linear independence of

Dyuk(x, y), k ∈ K, Dyv`(x, y), ` ∈ L0(x, y)

(considered as a family), where L0(x, y) := { ` ∈ L | v`(x, y) = 0 } consists of active
indices. We shall realize strong Assumption BU to be a central condition of this article,
but also a structural frontier overcome by recent research.

Under both assumptions we start our continuity and stability research. Using differential
topology ([25], [29]), they admit local linearization of Y (x) (x ∈ U) by finitely many C1-
diffeomorphisms φj

x : Vj → Sj (j ∈ J) in such a way that the image sets Zj of indices
are x-independent squares (in a linear subspace). Herewith, P(f, h, g, u, v) becomes
locally (in U) equivalently expressed as an ordinary semi-infinite optimization problem
POSI(f, h, g

0, u0, v0), where MOSI [h, g
0] ∩ U = M [h, g] ∩ U , f being unaffected ([75],

[77]).

On the upper stage of variable x, we shall use a constraint qualification, too. This cq
geometrically means the existence of an (at M [h] = h−1({0})) tangential, “inwardlyÔ
pointing direction at x:

Definition. We say that the extended Mangasarian-Fromovitz constraint qual-
ification (EMFCQ) is fulfilled at a given x ∈ M [h, g], if the conditions EMF1, 2 are
satisfied:

EMF1. Dhi(x), i ∈ I, are linearly independent.

EMF2. There exists an “EMF-vectorÔ ζ ∈ IRn such that

Dhi(x) ζ = 0 , for all i ∈ I,

Dxg
0
j (x, z) ζ > 0 , for all z ∈ IRq, j ∈ J, with (φj

x)
−1(z) ∈ Y0(x),

where Y0(x) := { y ∈ Y (x) | g(x, y) = 0 } consists of active indices. EMFCQ is said to
be fulfilled for M [h, g] on U , if EMFCQ is fulfilled for all x ∈ M [h, g] ∩ U .
For further information and versions of EMFCQ see [23], [29], [33], [35], [49], [65], but
also [11] ([27]).
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Let a local minimizer Ýx of P(f, h, g, u, v) be given and EMFCQ be fulfilled at Ýx. Then,
we can state the existence of Lagrange multipliers λi, µκ such that the conditions

Df(Ýx) =
∑

i∈I
λiDhi(Ýx) +

∑

κ∈{1,...,Ýκ}
µκDxg

0
jκ(Ýx, z

κ) ,

µκ ≥ 0 (κ ∈ {1, . . . , Ýκ})

are satisfied, referring to ordinary semi-infinite (OSI) data ([23], [75], [77]). Now, we
call Ýx a G-O Kuhn-Tucker point. Here, the points zκ ∈ Zjκ are suitable active indices.

Below, Zj
0(x) stands for the set of z ∈ Zj being active for g0j (x, ·). Referring to all the

given GSI data, a further evaluation yields the following Kuhn-Tucker conditions
with corresponding Lagrange multipliers λi, µκ, ακ,k, βκ,` ([75], [77]):

KT1. Df(Ýx) =
∑

i∈I
λiDhi(Ýx) +

∑

κ∈{1,...,Ýκ}
µκDxg(Ýx, y

κ)−

−
∑

k∈K
ακ,kDxuk(Ýx, y

κ) −
∑

`∈L0(Ýx,y
κ)

κ∈{1,...,Ýκ}

βκ,`Dxv`(Ýx, y
κ),

KT2. µκ, βκ,` ≥ 0 (` ∈ L0(Ýx, y
κ), κ ∈ {1, . . . , Ýκ}).

Again, the yκ ∈ Y0(Ýx) are active. Now, we call Ýx a G Kuhn-Tucker point. Under general
assumptions, the necessary optimality condition KT1, 2 was for the first time proved
by Jongen, Rückmann and Stein ([33]). Note, that the linear combination KT1 contains
the derivatives of all the defining functions. The foregoing conditions can also be stated
as growth (angular) conditions over tangent cones (see [42], [75], [77]), estimating scalar
products against 0. They give rise to deduce first-order sufficient optimality conditions
(for further information see [65]). In fact, let LICQ be satisfied at a given point Ýx
as an element of M [h], and M [h] ∩ U be star-shaped with star point Ýx. Moreover,
g0j (·, z) (z ∈ Zj, j ∈ J) be quasi-concave and f be pseudo-convex on M [h] ∩ U . This

means the following implications for all x ∈ M [h] ∩ U ([24], [42]):

g0j (x, z) ≥ g0j (Ýx, z) =⇒ Dxg
0
j (Ýx, z) (x− Ýx) ≥ 0,

Df(Ýx) (x− Ýx) ≥ 0 =⇒ f(x) ≥ f(Ýx) .

Then, Ýx turns out to be a local minimizer of P(f, h, g, u, v) ([75], [77]; cf. [38]). Concern-
ing structural frontiers in (F) nonconvex optimization see [37]. After this introduction of
basic conditions, we make the following convention for the ease of presentation. In fact,
as the theoretical treatment of the equality constraint functions is merely technical (cf.
[18], [56], [71], [77]), we may delete them (cf. also Figure 2 for indication of perturbed
sets (n− 1)-dimensional manifolds M [h]):

Convention. Until the end of Subsection 4.1 we assume: I = ∅, K = ∅.
Corresponding results for the cases I 6= ∅ or K 6= ∅ are the ones found straightforwardly
(see [77]). Before we introduce the second-order condition of strong stability we state
(under Assumptions AU , BU):

Lemma ([77]). Let Ýx ∈ M [g] ∩ U be given, and EMFCQ be fulfilled at Ýx. Then, Ýx is a
G-O Kuhn-Tucker point for P(f, g, v), if and only if the extended Mangasarian-Fromovitz

constraint qualification on M [(g,−f + f(Ýx))], called \EMFCQ, is violated at Ýx.

Proof. This result comes from Farkas’ Lemma on infinite systems ([23]; [71], [77]).
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We prepare our introduction of strong stability of a stationary point by assuming that
f, g, v are C2 and putting for any bounded open neighbourhood V ⊆ IRq of

⋃

x∈U
Y (x)

and any subset M ⊆ IRn :

norm[(f, g, v),M] :=

sup

{

sup
x∈M

{

|f(x)| +
n

∑

i=1

| ∂f
∂xi

(x)| +
n

∑

i=1
j=1

| ∂2f

∂xi∂xj

(x)|

}

,

sup
x∈M
y∈V

max
η∈{g}∪

{vν |ν∈L}

{

|η(x)| +
n

∑

i=1

| ∂η
∂xi

(x, y)| +
q

∑

j=1

| ∂η
∂yj

(x, y)|+

+
n

∑

i=1
j=1

| ∂2η

∂xi∂xj

(x)| +
n

∑

i=1

q
∑

j=1

| ∂2η

∂xi∂yj
(x)| +

q
∑

i=1
j=1

| ∂2η

∂yi∂yj
(x)|

}}

.

In F or OSI optimization we replace V by J, Y or disregard v, using notation
normF [·, ·], normOSI [·, ·] then. By continuity stated in Section 2, the next condition
is well-defined ([77]).

Definition. Suppose a point Ýxu ∈M [g]∩U for P(f, g, v) (of class C2), POSI(f, g
0, v0)

be locally (in U) representing P(f, g, v), and Ýxu be a G-O Kuhn-Tucker point of P(f, g, v).
Then, we say that Ýxu is (G-O) strongly stable, if for some ε > 0 with B(Ýxu, ε) ⊆ U
and for each ε ∈ (0, ε] there is some δ > 0 such that for each C2-function (f̃ , ˜g0)

with normOSI [(f − f̃ , g0 − ˜g0), B(Ýxu, ε)] ≤ δ the open ball B(Ýxu, ε) contains an ordinary

Kuhn-Tucker point Ýxd of P∗
OSI(f̃ ,

˜g0) := POSI(f̃ , ˜g0, v
0), which is unique in B(Ýxu, ε)

Referring to a G Kuhn-Tucker point Ýxu and to norm[(f − f̃ , g − g̃, v − ṽ), B(Ýxu, ε)], we
get the condition of (G) strong stability.

Here, “uÔ (and “dÔ) stands for (un)disturbed. For our preferred (G-O) strong stability
expressed by original GSI data, see [77]. In Section 3, we utilize an algebraical charac-
terization of strong stability in the way of Kojima ([40]) and Rückmann ([57]).

In the proofs of the following results, we may focus on the main underlying OSI ideas,
and on the essential GSI items arising additionally to methods and results from OSI
optimization. Note, that in virtue of our Assumptions AU ,BU the OSI theory applies,
whereby the finitely many functions v0` are affinely linear now. By those additional items
we introduce inverse problems being a central line of interpretation throughout in our
article.

2. Stability of the Feasible Set

The following theorems underline the importance of EMFCQ for concluding that M [g, v]
:= M [g] is a topological manifold with boundary, that it behaves continuous and stable
under perturbations of our defining C1-functions. With these perturbations we remain
inside of suitable open neighbourhoods of (g, v) in the sense of strong or Whitney
topology C1

S which respects asymptotic effects (for topologies Ck
S, k ∈ IN ∪ {∞},

cf. [25], [29]). We call a given M ⊆ IRn a Lipschitzian manifold (with boundary)
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of dimension κ, if for each x ∈ M there are open neighbourhoods W1 ⊆ IRn of x,
W2 ⊆ IRn of 0n, and a bijective ϕ : W1 → W2, ϕ(x) = 0n, with Lipschitzian continuity
of ϕ, ϕ−1 such that ϕ carries M ∩W1 to the relatively open set ({0n−κ} × IRκ) ∩W2

or to the set ({0n−κ} × {w ∈ IR |w ≥ 0} × IRκ−1) ∩ W2 with (relative) boundary. So,
Lipschitzian manifolds can locally be linearized, however, without preserving “angularsÔ
in the boundary. According to our Convention (Section 1), we shall focus on the case
κ = n. In F optimization, that preservation is given by the stronger condition LICQ,
using C1-smooth linearizing “chartsÔ. Herewith, we find qualified versions of the following
topological results for Y (x), too ([28], [77]).

Manifold Theorem. ([77]) Let EMFCQ be fulfilled in U for M [g]. Then, there is an
open neighbourhood W ⊆ IRn of U such that M [g]∩W is a Lipschitzian manifold (with
boundary) of dimension n (in general, n − m). Moreover, then we can represent the
(relative) boundary:

(∂M [g]) ∩W = {x ∈ W | min
y∈Y (x)

g(x, y) = 0 }.

Proof. Assumption BU supplies diffeomorphisms φj
x for all x of some open neighbour-

hood W of U . These φj
x guarantee that the insight from [35] on OSI optimization can

be carried over for our GSI problem.

For properties upper and lower semi-continuity, continuity (in Hausdorff metric),
genericity (implying density) and transversality (absense of tangentiality), considered
for functions or sets next, we refer to [4], [25], [29], [35], [77].

Continuity Theorem. ([76], [77]) Let EMFCQ be fulfilled in U for M [g]. Moreover, let
the closure W ⊆ IRn of some open set W ⊆ U be representable as a feasible set from F
optimization which fulfills LICQ, and let its boundary ∂W transversally intersect M [g].
Then, there is an open C1

S-neighbourhood O ⊆ (C1(IRn+q, IR))s+1 of (g, v) such that
MW : (g̃, ṽ) 7→ M [g̃, ṽ] ∩W, is upper and lower semi-continuous at all (g̃, ṽ) ∈ O.
If, moreover, W is bounded, then O can be chosen so that O is mapped to Pc(IR

n) by
MW , and MW is continuous.

Proof. These assertions are consequences of the continuous dependence of the OSI func-
tional data g0, v0 on the GSI data g, v and, then, of [35], Theorem 2.2. We apply this
theorem on MOSI [g

0, v0] := MOSI [g
0]. In the proof of Genericity Theorem below, we

investigate this continuous dependence ΨR : (g̃, ṽ) 7→ (g̃0, ṽ0).

In [77], also a global version and a version on (x̃, ṽ) 7→ Y ṽ(x̃) are presented for the previous
result. The following theorem refers to the straightforward generalization ELICQ of
LICQ which is a stronger condition than EMFCQ ([35], [71], [77]). (The double usage of
F should not cause confusion. For a global result see [77].) We emphasize that, here,
genericity is obtained in a restricted (relative) sense where, in particular, Assumption
BU is supposed. However, the important structure of the feasible set without this strong
assumption on the lower stage where, e.g., MFCQ or no constraint qualification is satisfied,
leads to the basically new phenomena (re-entrant corner points and local non-closedness,
respectively). This generic structure is discussed in detail by O. Stein; see the deep
research [64] written under the aspect of marginal functions and evaluating a codimension
formula.
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Genericity Theorem. ([77])

(a) Let C∞ := (C∞(IRn×IRq, IR))s+1 be endowed with the C∞
S -topology. Furthermore,

let its subspace C∞
loc of all (g, v) ∈ C∞ with validity of Assumptions AU ,BU be

endowed with the C∞
S -relative topology.

Then, there exists a generic subset E ⊆ C∞
loc such that ELICQ is satisfied for each

(g, v) ∈ E.
(b) Let C1 := (C1(IRn × IRq, IR))s+1 be endowed with the C1

S-topology. Furthermore,
let its subspace C1

loc of all (g, v) ∈ C1 with validity of AU ,BU be endowed with the
C1

S-relative topology.
Then, there exists an open and dense subset F ⊆ C1

loc such that EMFCQ is satis-
fied for each (g, v) ∈ F . The set F can just be defined by the fulfillment of EMFCQ.

Outline of proof. The first insight on the desired subset E of C∞-functions follows
from the OSI result [35], Theorem 2.4, that applies Multi-Jet Transversality Theorem
([25], [29]) and additional reflections. For that theorem our v0 is kept fixed, focussing
topological interest on g0; here, the role of some constant set Y is played by the union of
the sets Zj (j ∈ J). Without loss of generality, J consists of a singleton. Now, we can
state that there is a generic set EO of OSI data functions g0, which (by definition of
genericity) is the intersection of countably many open and dense subsets EO,ν (ν ∈ IN).

However, for the back-tracing of the OSI genericity (or, below, openess and density)
to GSI optimization, we utilize that the problem representation is continuous. In fact,
by Implicit Function Theorem in Banach Spaces ([29], [47]), the inserted local coordinate
transformations continuously depend on (g̃, ṽ). Let us regard this continuous dependence
(representation) as a function ΨR locally mapping (g̃, ṽ) ∈ C∞ into the space of all C∞-
functions (g̃0, ṽ0). Using ΨR we find E as the intersection of the countably many open

sets Eν := Ψ−1
R (EO,ν) (ν ∈ IN).

Next, let (g, v) ∈ C∞
loc be given. After sufficiently slight perturbations this function

still remains in C∞
loc. Let also some ν ∈ IN be given. In the OSI problem, how-

ever, we consider separate (de-coupled) perturbations g0j → ˜g0j (j ∈ J) (before we really
turn to one single inequality j). Therefore, the “problem representationÔ ΨR is not
surjective. Actually, as for some x ∈ U and two (or more) different j1, j2 ∈ J the sets

(φj1

x )−1(Zj2

0 (x)), (φj2

x )−1(Zj2

0 (x)) might have a nonempty intersection, these perturbations
cannot always be traced back to a perturbation g → g̃ of the given GSI problem. The
following perturbational technique, however, will help to get rid with such a difficulty,
and it finally guides us to the asserted density.

By definition of φj
x (j ∈ J) (linearization) the implicitly disturbed sets ˜Zj can be cho-

sen as Zj. Moreover, because of the locally finite covering structure underlying ΨR,
no difficulty arises. In view of that locally “fixedÔ v0, we delete v0 in the definition
of ΨR. So, we get a mapping called Ψ∗

R. First of all, we add to g one j-independent,
arbitrarily C∞

S -small positive function g in an arbitrarily small neighbourhood of the

compact set
⋃

x∈M [g]∩U
(φj1

x )−1(Zj1

0 (x)) ∩ (φj2

x )−1(Zj2

0 (x)), making active indices y inactive

there. Then, g∗ := g + g is a globally defined C∞-function. Now, for each ν ∈ IN we

find a (componentwise) arbitrarily C∞
S -close approximation (˜gν0, ˜vν0) ∈ EO,ν of (g0, v0),

where the approximation ˜gν0 coincides with g∗0 := Ψ∗
R(g

∗, v) in ∪j∈JZ
j. Here, we may
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choose the C1-function ˜vν0 := v0. Hence, that perturbed function ˜gν0 is continuously

back-tracable under Ψ∗
R
−1 to one C∞-function g̃ν , i.e., {(g̃ν , v)} = Ψ∗

R
−1({˜gν0}). So

we are in a position to state, that (g, v) can arbitrarily well be C∞
S -approximated by

(g̃, ṽ) := (g̃ν , v) ∈ Eν . This means that Eν is dense, too. Altogether, we have shown that
E is generic.
Preparation: This (relative) genericity implies (relative) density ([29]), because of the
“C∞

S -openessÔ of both LICQ and (y-) boundedness. Now, we use the implication of EM-
FCQ by ELICQ, and the C1

S-density of C∞(IRk, IR) in C1(IRk, IR) (k ∈ IN). Moreover,
we take account of our preparation and of the perturbational “C1

S-openessÔ of EMFCQ.

We underline “FÔ or “GSI openÔ properties: LICQ and EMFCQ remain preserved under
sufficiently slight data perturbation.

Next, we refer to the same underlying dimensions n, q in x- or y-space, and the number
s of functions v`. Two feasible sets M [g1, v1], M [g2, v2] are called (topologically)
equivalent, notation: M [g1, v1] ∼M M [g2, v2], if there is a homeomorphism ϕM :
IRn → IRn such that

ϕM(M [g1, v1]) = M [g2, v2].

The given feasible set M [g] (= M [g, v]) is called (topologically) stable, if there is an
open C1

S-neighbourhood O of (g, v) such that for each (g̃, ṽ) ∈ O we have M [g, v] ∼M

M [g̃, ṽ] (see [18], [35], [71], [77]). Let us make the boundedness (hence, compactness)
assumption that M [g] lies in U0.

Stability Theorem. ([76], [77]) The feasible set M [g] ⊂ U is topologically stable, if
and only if EMFCQ is fulfilled for M [g].

Proof. We trace back to the OSI situation again, given by [35], Theorem 2.3, now. As
being the case in the proof of Genericity Theorem, technical items arise (furthermore,
if I 6= ∅). These difficulties can be overcome: In Section 3 we prove Characterization
Theorem on the lower level sets of the whole GSI optimization problem; that theorem
implies our Stability Theorem. We note that under our overall boundedness assumptions,
M [g] is a lower level set of P(f, g, v) for a sufficiently high f -level. Already to point out
the essential ideas for the sufficiency part, “⇐=Ô, proved in a constructive way, and
for the necessity part, “=⇒Ô, proved in an indirect way, we look at Figures 2.1, 2.2,
respectively. For both parts differential topology and Morse theory are helpful. While
for the necessity part some algebraic topology ([28], [63]) is essential to evaluate unstable
situations by a finite counting argument, for the sufficiency part flows ([2]) are important.
In the latter part, we homeomorphically map the feasible set M [g] onto the feasible set
M [g̃] by steering the boundary ∂M [g] onto ∂M [g̃] along an EMF-vector field. Herewith,
we have constructed a suitable transformation ϕM .

Remark. The previous result exploits transversality by applying Implicit Function The-
orem. While in the necessity part this inverse aspect consisted of suitable perturbations,
in the sufficiency part we locally had “fullÔ perturbations. The same will be observed
in Section 3, where the main result again identifies topological and analytical conditions.
The analytical ones have an algebraical or discrete-combinatorial nature.
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M[g,v]

M[g,v]˜ ˜

↩ζ↩

Figure 2.1: Proof of sufficiency part, Stability Theorem

M[g,v]˜˜
M[g,v]˜̃ ˜̃

Figure 2.2: Proof of necessity part, Stability Theorem

3. Structural Stability and its Characterization

3.1. Structural Stability of the Problem

Under Assumptions AU , BU , we still refer to the bounded set M [g], but additionally take
f into consideration. The structure of the entire problem P(f, g, v) is established by all
the lower level sets

Lτ (f, g, v) := {x ∈ IRn | x ∈ M [g, v], f(x) ≤ τ } (τ ∈ IR).

We observe this structure under data perturbation and define structural stability. Here,
descent has to be preserved, if the level varies. Let us still assume that the defining
functions are C2. Then, this global stability can essentially be characterized by EMFCQ
of M [g] and by strong stability of all considered stationary points.

Two problems P(f 1, g1, v1), P(f 2, g2, v2) (with defining C2-functions) are called struc-
turally equivalent:

P(f 1, g1, v1) ∼P P(f 2, g2, v2),

if there are continuous functions ϕP : IR × IRn → IRn and ψ : IR → IR with the three
properties E1, 2, 3 (see Figure 3.1):

E1. ϕP,τ : IRn → IRn is a homeomorphism, where ϕP,τ (x) := ϕP(τ, x), for every τ ∈ IR.

E2. ψ : IR → IR is a monotonically increasing homeomorphism.

E3. ϕP,τ (L
τ (f 1, g1, v1)) = Lψ(τ)(f 2, g2, v2) for all τ ∈ IR.

Considering the first problem as undisturbed and the second one as slightly disturbed, we
arrive at structural stability ([17], [32], [36], [71], [77]; cf. also [2], [8], [29], [61]):
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τψ M[g ] L (f ,g ,v )1

M[g ]2

ψ(τ)

ψ(τ)

2 2 2
L (f ,g ,v )1

P

τψ

f 1 f 2

ϕ τψ

11

,

Figure 3.1: Structural equivalence (under bird’s-eye view below)

P(f, g, v) (with defining C2-functions) is called structurally stable, if there exists a
C2

S-neighbourhood O of (f, g, v) such that for each (f̃ , g̃, ṽ) ∈ O
P(f, g, v) ∼P P(f̃ , g̃, ṽ).

3.2. Characterization Theorem

Under Assumptions AU , BU we state:

Characterization Theorem (or Structural Stability Theorem; [77]). Let M [g] ⊂ U hold
for problem P(f, g, v) (with defining C2-functions).
Then, P(f, g, v) is structurally stable, if and only if the three conditions C1, 2, 3 are
fulfilled:

C1. EMFCQ holds for M [g].

C2. All the G-O Kuhn-Tucker points x of P(f, g, v) are (G-O) strongly stable.

C3. For each two different G-O Kuhn-Tucker points x1 6= x2 of P(f, g, v) the corre-
sponding critical values are different (separate), too: f(x1) 6= f(x2).

In this main result, we could also make a further assumption, excluding certain inequality
constraints z from the relative boundary ∂Zj (j ∈ J). Then we could identify the G-O
Kuhn-Tucker points by some G Kuhn-Tucker points. However, for validity of Characteri-
zation Theorem, this is not necessary ([77]).

3.3. Proof of Characterization Theorem

Preparations.

For preparation, let us recall the proof of Genericity Theorem, taking into account the
parametrical dependences on the defining data (g̃, ṽ). Now, we make again applications
of Implicit Function Theorem in Banach spaces, such that, in particular, we state a contin-
uous dependence of (g̃0, ṽ0) on (g̃, ṽ). Consequently, small perturbations on the data of
P(f, g, v) cause slight perturbations on the data of POSI(f, g

0, v0). The inverse problem
arises: Can small perturbations of the OSI data be reconstructed under the problem rep-
resentation from slight perturbations of the given GSI problem ? We give a conditionally
positive answer. However, this answer will be fitting for the perturbational argumentations
on Characterization Theorem:
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Item 1. For representing OSI problem(s), ṽ0 is of special linearly affine form and, under
sufficiently small perturbations of the GSI problem, we may treat them as fixed. Hence,
besides the perturbations f → f̃ , for POSI(f, g

0, v0) we are concerned with g0 → ˜g0

only. We therefore introduce the simplifying notation P∗
OSI(f, g

0) := POSI(f, g
0, v0).

Item 2. Subsequently, we mainly perform local perturbations for P∗
OSI(f, g

0). Hereby,
we treat the finitely many functions g0j (j ∈ J) separately in small disjoint open sets

V∗
j (j ∈ J) such that their perturbations g0j → ˜g0j can be reconstructed by one single

C2-function g̃ (given below). Therefore, we would need the perturbationally stable

Assumption F ∗. For all j1, j2 ∈ J, j1 6= j2, we have

⋃

x∈M [g]∩U0

(

(φj1

x )−1(Zj1

0 (x)) ∩ (φj2

x )−1(Zj2

0 (x))

)

= ∅ .

For the well-definedness (possibility) of this hardly controllable assumption we take into
account, that for any x ∈ M [g] ∩ U0 the sets Zjκ

0 (x) merely consist of active inequality
constraints z. Herewith, they are subsets of Zjκ (κ ∈ {1, 2}). While by definition for
some preimages (φj1

x )−1(Zj1) and (φj2

x )−1(Zj2) an overlapping must exist, their subsets

(φj1

x )−1(Zj1

0 (x)) and (φj2

x )−1(Zj2

0 (x)) need not necessarily intersect. In fact, here we are
back in the original coordinates of y where each element of the active subset Y0(x) may

be lying outside of (φj1

x )−1(Zj1) ∩ (φj2

x )−1(Zj2), i.e., (φj1

x )−1(Zj1

0 (x)) ∩ (φj2

x )−1(Zj2

0 (x)) is
empty.
We are going to exploit the condition of Assumption F∗ after perturbations. However,
if we may suitably choose our perturbed functions ˜g0, then Assumption F∗ is naturally
fulfilled (after perturbation), and we need not make it in the unperturbed situation. Now,

under problem representation and joined by v, this function g̃ generates ˜g0j locally in
V∗
j (j ∈ J). Then, for each j ∈ J , small perturbational (global) effects outside of

V∗
j (j ∈ J) have no influence. They can be ignored. The announced function is

g̃(x, y) :=

{

˜g0j (x, φ
j
x(y)), if y ∈ (φj

x)
−1(Zj) and (x, φj

x(y)) ∈ V∗
j , j ∈ J

g(x, y), else.

Item 3. Below we must consider a certain global perturbation of P∗
OSI(f, g

0) to receive
C∞-data or, finally, some (global) “open and denseÔ property. Therefore, we apply on
the one hand the perturbation technique from the proof of Genericity Theorem. On the
other hand, whenever it is possible to turn from the GSI problem to an OSI (or F)
one, then we are back in the situation of Item 2 in order to perform local perturbations.

For our proof of Characterization Theorem, the algebraical characterization of (G-O)
strong stability for a G-O Kuhn-Tucker point x is important. It was given by Rückmann
([57]) for OSI optimization and extended in [77] for our GSI one. Here, we assume
EMFCQ at x. That sophisticated characterization refers to (restricted) Hessians of La-
grange functions, and it bases on a case study referring to the reduction ansatz. This RA
demands strong stability in the sense of F optimization ([40]) for the local minimizers
of the problem from the lower (y-) stage. Herewith, RA admits local representation of
P(f, g, v) around Ýx by Implicit Function Theorem ([57], [77]; see [22], [82]). These cases
are:
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Case I: ELICQ and RA are fulfilled at Ýx.

Case II: EMFCQ – but not ELICQ – and GRA are fulfilled at Ýx.

Case III: EMFCQ – but not GRA – is fulfilled at Ýx.

In any case, we can also classify the type of the strongly stable stationary point x: While in
case I a saddle point, a local minimizer or local maximizer is detected by the “stationary
indexÔ of Ýx (a topological invariant), in cases II, III we have a strict local minimizer
throughout ([77]; cf. [41], [57], [71]).

Proof of Characterization Theorem.

Sufficiency Part.

Let C1,2,3 be satisfied. We equivalently represent P(f, g, v) by POSI(f, g
0, v0), and

straightforwardly interpret C1,2,3 as OSI conditions COSI 1,2,3. These are: (OSI) con-
straint qualification EMFCQ, strong stability of all Kuhn-Tucker points in the sense of
OSI optimization, and separateness of the values of these OSI stationary points. Under
slight perturbations of the GSI data, v0 does not (and need not) vary. Now, we are pre-
pared for OSI explanations and, finally, F constructions from [32], [36], [71] in our GSI
context. We briefly repeat main ideas of construction. In [36], [71], detailed information
on the techniques can be found together with illustrations.
An easy counterexample shows that the separateness condition C3 is not generally avoid-
able for establishing structural stability (see [29], [71]). Here, two connected sets, say:
(arcwise) components, would have to be mapped onto one connected component, contra-
dicting homeomorphy. A similar reasoning made for another counterexample shows that,
in general, the τ - (level-) dependence of the intended homeomorphisms also cannot be
avoided. Moreover, each G-O Kuhn-Tucker point Ýxu has to be mapped to the corre-
sponding stationary point Ýxd of the slightly perturbed problem P(f̃ , g̃, ṽ). Finally, we
conclude from the overall boundedness assumption, from EMFCQ and strong stability,
that the number of G-O Kuhn-Tucker points is finite: Ýxu

σ (σ ∈ {1, . . . , σ0}) (cf. [36], [71],
[77]).

We start by dynamically constructing the level shift ψ. In fact, we integrate a C∞-
vector field such that each critical value f(Ýxu

σ) gets shifted in IR to the corresponding
critical value f̃(Ýxd

σ) (σ ∈ {1, . . . , σ0}). Now, we may think ψ = IdIR, referring to f ◦ ψ
otherwise. There are disjoint open neighbourhoods B(Ýxu

σ, ε) (balls) around Ýxu
σ such that

the smaller neighbourhoods B(Ýxu
σ,

ε
2
) contain Ýxd

σ (σ ∈ {1, . . . , σ0}). We assume that
the unperturbed and the perturbed lower level sets coincide in all the sets B(Ýxu

σ, ε) \
B(Ýxu

σ,
ε
2
) (σ ∈ {1, . . . , σ0}). This assumption will not restrict generality.

Based on the foregoing reduction of ψ and the previous assumption, we go on constructing
ϕP,τ (τ ∈ IRn) in a local-global way. Firstly, we realize which undisturbed sets have to be
homeomorphically mapped onto which corresponding sets from the disturbed situation
(mapping task). We distinguish three situations given by levels τ < τ, τ = τ , or τ > τ .
Herewith, we learn that some area from outside of the feasible set possibly has to be
“carried inÔ. Moreover, outside of the stationary points, the intersections of the level
sets with the boundaries are transversal. Our further construction will be raised on these
intersections (fundamental domains).
Outside of B(Ýxu

σ, ε) (σ ∈ {1, . . . , σ0}), we use EMF-technique indicated in the sufficiency
part on Stability Theorem. Here, we use our Lemma from Section 1, and apply this dy-
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namical [EMF-technique on Lτ
OSI(f, g

0) (= Lτ (f, g, v)) and on Lτ
OSI(f̃ , g̃

0) (see Figure
3.2(II) later). By differential geometry, this global construction is glued together in
∪σ0

σ=1(B(Ýxu
σ, ε) \ B(Ýxu

σ,
ε
2
)) with the local construction sketched next. We may refer

to one unperturbed stationary point Ýxu(= Ýxu
σ) ∈ {Ýxu

1 , . . . , Ýx
u
σ0} and corresponding per-

turbed point Ýxd. Now, we are inside of B(Ýxu, ε). We restrict to n ∈ {2, 3}, because
higher dimensions can be reduced to those small dimensions by successive hyperplane
intersection.

Case 1. Ýxu is lying in the interior MOSI [g
0](= M [g, v]) :

Then, Ýxd, being sufficiently slightly perturbed, lies in the interior of MOSI [g̃
0]. Both

stationary points are nondegenerate ([28]), and for each τ we transform the τ -levels
around Ýxu onto the local τ -levels at Ýxd. In fact, this Morse theoretical local construction
can be made by a C1-diffeomorphism ([36], [71]).

Case 2. Ýxu is placed on the boundary of MOSI [g
0] :

Then, Ýxd may lie on the boundary or in the interior of MOSI [g̃
0]. Without loss of gener-

ality we assume the boundary case. Actually, using an implantation of a suitable level
structure we turn from stationary points at the boundary to fictive stationary points in
the interior. This level structure is locally given by fictive objective functions Ýfu and
Ýfd. For performing this implantation of Ýfu, Ýfd we need precise knowledge of the con-
figurations around the boundary points Ýxu, Ýxd. These configurations are characterizable
by the position (relative to the boundary) of cones or balls, together with the growth
behaviours of f, f̃ there. We have two conical types and one radial type, governed by
strong stability (under EMFCQ; [36], [71], [77]). See, e.g., Figure 3.2(I). We arrive back
in case 1 (interior position) by means of fictive interior problems, extrapolating the
“characteristicÔ of Ýxu, Ýxd and implanting fictive stationary points Ýxu

fic, Ýx
d
fic with their

local level structures. Herewith, for all τ ∈ IR the mapping task is fulfilled in case 2, too.
The delicate dynamical and topological techniques (and substeps) exhibited in Figure
3.2(I) are due to the local construction in case 2 (see [36], [71]).

Necessity Part

Let P(f, g, v) be structurally stable. Our proof of CGSI 1,2,3 is indirect. Assuming one of
the first two regularity conditions or the third technical condition to be violated always
contradicts structural stability (see Figure 3.3). Based on our assumptions, we carry
over the proof the OSI necessity part from [32] into our GSI setting. Many details
of argumentations are Morse theoretical ([17], [35], [36], [71], [77]). To avoid loss of
differentiability, we assume that all data are C∞ ([17]). This smoothness can be achieved
by fine perturbations of all OSI data and, by tracing them back, of all GSI ones.

Here, we make the inequalities of different indices z%
1 6= z%

2
independent from each other

(by small shifts).

C1: As M [g] is compact, there exists the finite number τmax := max{f(x)|
x ∈ M [g]}. Herewith, M [g] = Lτ (f, g, v) (τ ∈ [τmax,∞)). Moreover, we can choose
perturbations slight enough such that M [g̃] remains compact. Let τ̃max for each suf-
ficiently slight perturbation (f̃ , g̃, ṽ) denote the maximal (feasible) value of f̃ . Taking
τ ∗ := max{τmax, ψ−1(τ̃max)}, the homeomorphism ϕP,τ∗ gives topological equivalence
between M [g, v] = Lτ∗(f, g, v) and M [g̃, ṽ] = Lψ(τ∗)(f̃ , g̃, ṽ). By Stability Theorem,
topological stability implies EMFCQ. In fact, by suitable perturbations any violation of
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EMFCQ at a feasible point leads to compact sets M [g̃], M [˜̃g], satisfying ELICQ but
being not of the same homotopy type ([18], [35], [71], [77]). When, e.g., the two sets
have a different finite number of connected components, this must contradict topological
equivalence (cf. also [28]).

C2: Suppose EMFCQ, but C2 not fulfilled: some G-O point Ýxu be not (G-O) strongly
stable.

Perturbation Lemma ([77]). Let a G-O Kuhn-Tucker point Ýxu of P(f, g, v) be given,
where EMFCQ is fulfilled, but (G-O) strong stability violated.

x̂

ˆu
fic

f=τgˆ

f =τgˆu ˆf

f

x

(I)(a)

reduction

ˆ u
ficx

ˆux

ˆ ux

(b)

(c) ˆ u
ficx

ˆ ux ˆ ux

ˆ u
ficx

mapping task fulfilled

raising
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(d)

(II)

back in case 1

EMF - technique

f=τg˜ ˆf f=τg̃f

ˆu
ficx x̂fic

d

ˆ

Figure 3.2: Proof of sufficiency part, Characterization Theorem

Then, for each open C2-neighbourhood O′ of (f, g, v) there are (f̃ , g̃, ṽ), ( ˜̃f, ˜̃g, ˜̃v) ∈ O′

and a k′ ∈ IN such that:

(i) P(f̃ , g̃, ṽ) has k′ G-O Kuhn-Tucker points, all being (G-O) strongly stable, except
one (namely, Ýx).

(ii) P( ˜̃f, ˜̃g, ˜̃v) has at least k′ + 1 G-O Kuhn-Tucker points, all being (G-O) strongly
stable.

(iii) In both P(f̃ , g̃, ṽ) and P( ˜̃f, ˜̃g, ˜̃v), EMFCQ is satisfied everywhere, and different

G-O Kuhn-Tucker points have different critical (f̃ - or ˜̃f -) values.

In F or OSI necessity parts of [17], [71] (cf. also [32]), these perturbations are real-
ized by three steps. Step 1 yields local isolatedness of Ýxu as a stationary point where,
additionally, (E)LICQ is guaranteed but unstability preserved. In step 2, outside of the
local situation, (E)MFCQ and strong stability of all (other) stationary points are estab-
lished. Finally, in step 3, the unstable Kuhn-Tucker point Ýxu “splitsÔ: By this bi- (or
tri-) furcation we locally get two new stationary points; they have strongly stability. In
this GSI situation, we use the algebraical characterization from our preparations. Now,

we introduce a topological idea: For Lτ (f̃ , g̃, ṽ), Lτ ( ˜̃f, ˜̃g, ˜̃v) we have to take into account
each change of the homeomorphy type of a lower level set, when τ traverses (−∞,∞).
Based on the perturbations from above, we apply the following items on P(f̃ , g̃, ṽ), and

P( ˜̃f, ˜̃g, ˜̃v). We look at a C2-problem P( Ýf, Ýg, Ýv) having a compact feasible set and fulfilling
EMFCQ, and we put Lb

a(
Ýf, Ýg, Ýv) := {x ∈ M [Ýg]| a ≤ Ýf(x) ≤ b} for some a, b ∈ IR, a < b.
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Item 1. If Lb
a(

Ýf, Ýg, Ýv) does not contain a stationary point, then La( Ýf, , Ýg, Ýv) and Lb( Ýf, Ýg, Ýv)
are homeomorphic.

Item 2. Let Lb
a(

Ýf, Ýg, Ýv) contain exactly one stationary point Ýx′. Moreover, let a <
f(Ýx′) < b and Ýx′ be (G-O) strongly stable. Then, La( Ýf, Ýg, Ýv) and Lb( Ýf, Ýg, Ýv) are not
homeomorphic.

These two items immediately result from corresponding facts on POSI(f̃ , g̃
0, ṽ0), POSI(

˜̃f,
˜̃g0, ˜̃v0) stated in [57]. Here, Item 2 can be expressed with attaching κ-cells (κ = stationary
index at Ýx′; [77]). By Manifold Theorem and Lemma (Sections 1–2) we conclude for all
noncritical levels τ : Lτ ( Ýf, Ýg, Ýv) = M [(Ýg,− Ýf + τ)] is a compact topological manifold (with
boundary). So, their homology spaces (over IR) are of different finite dimensions ([63]).
As these spaces are topological invariants, the two considered lower level sets cannot be
homeomorphic ([28]).

Now, we can make the following “discreteÔ statement on numbers of topological changes

for the lower level sets: The homeomorphy type of Lτ ( ˜̃f, ˜̃g, ˜̃v) changes (at least) at k′+1
times, while the homeomorphy type of Lτ (f̃ , g̃, ṽ) changes (at least) at k′ − 1 times, but
at most at k′ times. This difference contradicts structural stability of P(f, g, v) (cf. [77],
or see Figure 3.3).

C3: Let C3 be violated, but the former two properties on EMFCQ and strong stability
be satisfied. By local addition of arbitrarily small constant functions on f , we get a
problem P(f ∗, g, v) satisfying C3. Let k∗ stand for the number of critical points of
P(f ∗, g, v). Then the homeomorphy type of Lτ (f ∗, g, v) changes k∗ times, while the
number of changes of the homeomorphy type of Lτ (f, g, v) is less than k∗. Hence, we are
faced again with a situation which is incompatible with structural stability of P(f, g, v)
(Figure 3.3).

Figure 3.3: Proof of necessity part, Characterization Theorem

Our optimality conditions, topological results and techniques together prepare iteration
procedures for treating P(f, g, v). For detailed explanation of the design see [51], [76], and
[77], [80], where the importance of discrete-combinatorial information for transparency
and rate of convergence is emphasized. Further new approaches and numerical methods
are presented in [13], [46], [66], [67], [68], [69], [70].
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4. Generalizations, Optimal Control and Conclusion

4.1. Generalizations

There are two lines for generalizing our topological results:

(i) M [g] is unbounded (noncompactness),

(ii) f is of the nondifferentiable GSI maximum-minimum-type, i.e., the composition
f = fp ◦ fp−1 ◦ . . . ◦ f1 of finitely many functions which are of max-type
fj(x) = maxς∈Υj(x)wj(x, ς) or of min-type fj(x) = minς∈Υj(x)wj(x, ς).

On (i): We overcome noncompactness by turning to the family of excised subsets of
M [g]. Roughly speaking, the effect of intersection is generated by subtracting lower
semi-continuous functions from g ([58], [71], [77]). Herewith, we can express cuts, e.g.,
by cylinders or balls, by IRn itself or by bizarre sets. Referring to all excised sets, we get
the condition of excisional topological stability which can actually be characterized
by the overall validity of EMFCQ in the unbounded set M [g]. For that (Excisional )
Stability Theorem see [77].

On (ii): In the case of f being of max-type, nonsmoothness is overcome by express-
ing P(f, g, v) by minimization of xn+1 over the epigraph E(f) := {(x, xn+1)|x ∈
M [g], f(x) ≤ xn+1}. From this problem in IRn+1 we obtain our stationary points of
P(f, g, v) and the appropriate condition of strong stability ([71], [72], [77]). Now, (max-)
structural stability of our nondifferentiable problem can be characterized by EMFCQ,
strong stability and the technical separateness condition again. This Characterization
Theorem and the one for the case combination with (i) are demonstrated in [77].
In case of a min-type f , we turn to E(−f) and use geometrical insights from the max-type
case. Now, in our general case of finite max-min composition, we unfold nondifferentia-
bility step by step, finally getting our max-min structural stability and its characterizing
conditions ([79], [81]).

Remark. In (ii), we treated the discrete-combinatorial nondifferentiability structure un-
derlying f by unfolding or lifting along continuous parameters. For further examples of
tracing back structures in the way “discrete → continuousÔ, or “continuous → continu-
ousÔ, “continuous → discreteÔ and “discrete → discreteÔ cf. [79] or Subsection 4.3.

In our next subsection, we have to reconsider equality constraints (disregarded above by
Convention) again.

4.2 Optimal Control of Ordinary Differential Equations

We turn to infinite dimensions by studying the following minimization problem in (x, u)
([21], [45], [53]):

P(`, L, F,H,G)







































Min I(x, u) := `(x(a), x(b)) +
b
∫

a

L(t, x(t), u(t)) dt

(x ∈ (C0
pw 2 ([a, b], IR))n, u ∈ (Fpw 2 ([a, b], IR))q ),

such that
Úx(t) = F (t, x(t), u(t)) (for almost every t ∈ [a, b]),
(x(a), x(b)) ∈ M [H],
x(t) ∈ MF [G(t, ·, u(t))] (for almost every t ∈ [a, b]),
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where (L, F,G), (`,H) are C3- and C2-functions (vector notation), respectively. Instead
of referring to the larger classes of Sobolev or Lebesgue spaces, we concentrate on spaces
of continuous and piecewise C2 states x, and piecewise C2 controls, called C0

pw 2 and
Fpw 2 . For these spaces, strong topologies in Whitney’s sense can be generally introduced
([77]).

Assumption (BOUND): M [H] ⊆ IRn × IRn and MF [G] ⊆ [a, b]× IRn × IRq, defined
by the equality and inequality contraints, are bounded.

Assumption (LB): There exist positive functions α0, β0 ∈ C(IRq+1, IR) such that (un-
der || · ||∞ = maximum norm) we have linear boundedness of F :

||F (t,x,u)||∞ ≤ α0(t,u)||x||∞ + β0(t,u) ((t,x,u) ∈ IRn+q+1).

We briefly present two approaches to global structure and stability of P(`, L, F,H,G)
(cf. [77]). While our main Approach II is refined, Approach I is given for preparation.

Approach I: Particular Structure. Let u be considered as C2 and a parameter. Then,
for each fixed u = u∗ the optimal control problem P(`, L, F,H,G) becomes a problem
Pu∗

(`, L, F,H,G) from calculus of variations. The corresponding system of differential
equations (on x) generates a flow (in IRn+1; [2], [29]). Under this flow, we trace back
the equality and inequality constraints, and the objective functional as well (cf. [73], [74],
[77]). Let us mention f ∗(x) = I(Q[x](· − a), u∗(·)), where Q[x](0) = x, (Q[x](s))(t) =
Q[x](s+ t) (x ∈ IRn; s, t ∈ IR). So we obtain an OSI problem Pu∗

OSI(f
∗, h∗, g∗) (where

Y j = [a, b]). Then, referring to the family of all u and to perturbations of (f ∗, h∗, g∗),
we get the condition of (particular) structural stability with its Characterization
Theorem again (cf. Section 3; [74], and [77] where also examples are discussed). The
C2-property and parametrical treatment of u, however, are not sufficient for optimal
control. So we change to

Approach II: Composite Structure. We evaluate the necessary optimality condition
Pontryagin’s minimum principle ([21], [53]) in the way of Kuhn-Tucker conditions for
almost every t ∈ [a, b], where the latter conditions refer to the “minÔ problems im-
plied in the principle. Here, we have suitable multiplier vectors, (adjoint) variables, and
H(t,x,u, λ, µ) := L(t,x,u) − λTF (t,x,u) − µTG(t,x,u). Then, our evaluation, called
minimum principle here ([10], [48], [50]), reads

DT
uH(t, x0(t), u0(t), λ0(t), µ0(t)) = 0q,

µ0
j(t) ≥ 0 (j ∈ J) and µ0T (t)G(t, x0(t), u0(t)) = 0,

λ0(a) = −DT
x1
(`− ρ0

T
H)(x0(a), x0(b)),

λ0(b) = DT
x2
(`− ρ0

T
H)(x0(a), x0(b)),

Úλ0(t) = −DT
xH(t, x0(t), u0(t), λ0(t), µ0(t)).

For our causal (composite) structure we need a condition like strong stability ([77]):

Assumption (CONT): All the (C0
pw 2 × Fpw 2-) solution components (x0, u0) of the

minimum principle depend continuously on C3
S × C2

S -perturbations

((L, F,G), (`,H)) → ((˜L, ˜F , ˜G), (˜̀, ˜H)).
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In fact, we interpret the first four lines of the minimum principle as Kuhn-Tucker condi-
tions of two families of optimization problems: (∗) P t,x,w

F (L, F−w, G) and (∗ ∗) PF(λ
0(a),

λ0(b), `,H), an index set Mη0
pr [F,G] of (t,x,w) being appropriately chosen in view of

P(`, L, F,H,G). Let us only mention

P t,x,w(L, F,G)

{

Minu∈IRq L(t,x,u), where
u ∈ M t,x,w

F [F −w, G],

with its KT conditions DuL(t,x,u) =
∑

κ∈{1,...,n}
λκDufκ(t,x,u)+

∑

j∈J0(t,x,u)

µjDugj(t,x,u),

µj ≥ 0 (j ∈ J0(t,x,u) being active), incorporated into minimum principle, and

P(λ0(a), λ0(b), `,H)

{

Min ((λ0T (a),−λ0T (b))(·) + `)(x1,x2),
where (x1,x2) ∈ M [H],

with its KT conditions likewise. For each of these problems of the form (∗), (∗ ∗) we
introduce (composite) structural stability and characterize it essentially by (E)MFCQ
and strong stability (see Section 3). Analyzing (∗) so, we locally get implicit C2-
control functions u∨(t,x,w), which are Kuhn-Tucker point-valued and fulfill u0(t) =
u∨(t, x

0(t), Úx(t)). Substituting w := Úx(t) for any trajectory x of some auxiliary flow,
adapted to our system of differential equations, we locally receive core functions u0

∨(t,x).
For this dimensional reduction we also have to use interpolation properties and smooth-
ing techniques. The choices of those auxiliary or test flows etablish a structural frontier
of our theory ([77]). To globalize a core such that its domain covers [a, b], we admit
jumps in IRn+1 (see Figure 4.1). These jumps shall be compatible with the jumps of our
variables u0. Again we say that the piecewise globalized core functions (♥) u0

∨ are of
class Fpw 2 . Let B, B be (“boundaryÔ) sets where the jumps may or really do happen,
respectively. When these sets exist as Lipschitzian manifolds of dimension q, and if they
(by decomposition) define piecewise structures before or after jumps, which quantitatively
remain preserved under small perturbation of (`, L, F,H,G), then the core (♥) is called
(composite) structurally stable ([77]).

A further regularity condition, called structural transversality, in short: ST, analyti-
cally determines the boundary sets (up to a finite number of choices) and guarantees this
(composite) structural stability of a core. (See also [30], [48], [50].) In one of two cases,
the refined condition ST means transversal intersection of u0

∨(·, x(·)) (along trajectories
x) at the boundary of the corresponding feasible set in IRq. This implies transversality
of x at the manifolds B,B, and it is an analytic condition just governing the (composite)
structural stability of the considered core (♥) u0

∨. In fact, ST allows to record “stableÔ
manifolds B,B by Implicit Function Theorem.
Now, inserting u(t) = u0

∨(t, x(t)) in P(`, L, F,H,G) delivers again a problem Pu0
∨(`, L,

F,H,G) from calculus of variations (recall Approach I), which we also trace back under
its flow Φu0

∨ . In this way we get an optimization problem with a complex underlying
piecewise structure. Up to structural frontiers given by combinatorially more complicate
index sets Y (x) of the form [t1(x), t2(x)] and objective functions f of continuous selec-
tion type ([31]), we arrive at a GSI problem (∗∗∗) P(f, h, g, v) with f of max-min-type
(cf. Subsection 4.1). Here, t1(x) and t2(x) record the times of transversal intersection of
codimension 1 manifolds B1, B2 (or B1,B2) by the corresponding trajectory x(·) which
starts at the point x. Now, the underlying max-min combinatorics of the continuous se-
lection represents the continuity (jump) and differentiability structure of the incorporated
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Figure 4.1: Piecewise structure and jumps of cores

cores (many technical aspects are worked out in [77]). As some kind of excision, we delete
inequality constraints where they vanish identically on the manifold P bounded by B1

and B2. Then, we introduce this GSI optimization problem’s condition of (composite)
structural stability referring to perturbations of the original data (`, L, F,H,G).
In that sense, we call P(`, L, F,H,G) composite structurally stable if all the struc-
tural elements (∗), (∗ ∗), (∗ ∗ ∗), (♥) are (composite) structurally stable. Under our
basic Assumptions (BOUND), (LB) and up to those more complex problems we state
(with simplified presentation):

Characterization Theorem on Composite Structural Stability ([77]).
The problem P(`, L, F,H,G) is composite structurally stable, if and only if the condi-
tions C1, 2, 3, 4 are satisfied:

C1. (E)MFCQ holds for all the feasible sets underlying (∗), (∗ ∗), (∗ ∗ ∗), (♥).

C2. All the Kuhn-Tucker points u, x of the problems represented in (∗), (∗ ∗), (∗ ∗ ∗)
are strongly stable (in F or G-O sense).

C3. For all optimization problems represented in (∗), (∗ ∗), (∗ ∗ ∗), each two different
Kuhn-Tucker points have different (separate) critical values.

C4. For all core functions (♥) ST is fulfilled.

Sketch of Proof: The main lines are the same as in Subsection 3.3. The new item,
given in the necessity part, “=⇒ C4,Ô concerns the undisturbed or disturbed piecewise
structures, and it is illustrated in Figure 4.2.

Remark. In the necessity part, we resolve the inverse problem of reconstructing special
perturbations of optimization problems by special perturbations of the given optimal
control problem. Example: In case of C2-functions f , the following additive C3-variation



684 G.-W. Weber / On the Topology of Generalized Semi-Infinite Optimization

Figure 4.2: Proof of necessity part (composite structural stability)

δL (where ˜L = L + δL) reconstructs an additive C∞-variation δf (where f̃ = f + δf):
(δL)(t, x, u) := −D(δf)(x) ∂

∂t
Φu0

∨(x, 0) + 1
b−a

(δf)(Φu0
∨(x, b− t)) ([77]).

For controllability, i.e., to come from time a to time b under given constraints of
P(`, L, F,H, G), discrete mathematics ([9]) often turns out as a mean of investigation
as follows. (For underlying finiteness and genericity considerations see [77].) Our control
problem asks for a domain of the core u0

∨ (compatible with u0) that is sufficiently large,
say: tending to maximality. Provided a carefully chosen set of jumps, this maximal do-
main problem can be represented as a maximal matching problem in a partite graph
(see, e.g., Figure 4.3). In a subset of arcs called matching, different elements are disjoint.
Here, each partition stands for a locally defined continuous core, the directedness of the
ars reflects orientation by time t. This matching problem can be solved by Edmond’s
algorithm ([34]).

jump

B

u0
∨

0

u 0∨
0

u 3
∨

0

u2
∨

0

u1
∨

0

Figure 4.3: Tripartite directed graph featuring controllability problem

Inserting the global cores, arriving at an x-depending problem, we may, for example,
consider the objective function as the arc length of our piecewise structured solutions
x = x0 ∈ C0

pw 2 of minimum principle. Therefore, we take into account arcs between
neighbouring vertices (manifolds B1,B2) of the same former partition such that the partite
character gets lost (see, e.g., Figure 4.4, periodic constraint x0(a) − x0(b) = 0 implied).
The corresponding minimization problem can be regarded as a shortest path problem,
solvable by Dijkstra’s algorithm ([34]).
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4.2. Related Problems

a) Time-Minimal Control of Heating.

Turning to optimal control of partial differential equations, we consider the example of
controlling the heating (or cooling) of a ball consisting of a homogeneous material from
an initial to a terminal temperature in a time (= T ) minimal way. The initial time is 0.
Our problem is governed by a heat equation, and the temperature at the ball’s boundary
is considered as the control ([43], [44]). Now, for every terminal time T ≥ 0 an auxiliary
norm minimal problem on the thermal stress tangential to the boundary turns out to have
a unique solution (cf. [43]), say again: a core variable u0

∨(·, x) (x := T ). Inserting u0
∨

into the control problem delivers a GSI optimization problem with y := t, Y (x) := [0, x].
Here, however, differentiability can get lost by solving the heat equation. Therefore, any
iteration procedure of the control problem based on Sections 3–4 (e.g., using discretization)
should stepwise be accompanied by smooth approximation of the functional data. (See
[44]; cf. also [39].) For numerical evaluations and relations to the problem of global
warming see [52].

b) Problems from Transportation and Aerodynamics.

Consider the transportation of some rigid body (e.g., a piano) from an initial position
p to a terminal position q, remaining inside of a given feasible set. To be precise, all
the positions are lying in group SE3. Supposing the body and the feasible set to be
polynomially defined as semi-algebraic sets, then we learn from algebraic geometry that
we can make a cell decompostion of the feasible set. Representing each cell by a vertex
and representing any two neighbouring cells (dimensional difference = 1) by an edge, we
get a connectedness graph. So, the problem of finding a continuous path between p and
q has become a discrete one of finding a path in this graph, e.g., by Dijkstra’s algorithm
again. (See [59], [60].) Sometimes such paths are called road maps. They could also
be central paths from interior point methods in semidefinite programming, being closely
related with our SI optimization.
Let us carry over the cell decomposition techniques to find a cell complex which reflects
the different air regions around some airplane. Now, optimizing the architecture or the
flight of the airplane (being a subject of hard research in continuum mechanics) can be
supported by optimizing the corresponding connectedness graph. In the dynamical case of
flight, we could make a colouring of the vertices in such a way that, for example, turbulent
structure is red, laminar structure is blue, etc.. Then, we locally change the colours in time
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just as being desired in the way of our discretized time-minimal control of our heating
(or cooling) from a). The relation to GSI optimization is given by locally transferring
our GSI discrete-algorithmic methods from time-minimal thermo-control. Such research
is initiated with Yu. Shokin ([62], [78]). For further relations to continuum mechanics see
[3] concerning sensitivity, and see [6] concerning thermo-control of premature infants.

c) Discrete Tomography.

A modern inverse problem from tomography comes from the microscopic VLSI design.
Given a “nonconvexÔ set of atoms located in on a chip. We want to measure the number
and distribution of the atoms (represented as balls in a regular grid) by “shootingÔ parallel
electronic beams and recording the reverse “X-raysÔ at hyperplanes. How many directions
of beams – “flowsÔ in the sense of Subsection 4.2 – do we need, how to choose them? As
a basic reference we cite [15], and we sketch three lines of present and future research
([79]):

(i) Wavelets detect roughness in layer structures on chips ([20]).

(ii) Representing any supposed atoms cluster within the grid box as a single word over
{0, 1}, the theory of linear codes helps by error detection and correction. Here, we
look for Hamming codes or ask for the extent of cyclicity ([26]). This line is also
followed by A. Alpers, P. Gritzmann et al.. Concerning their first results on stability
and instability in discrete tomography see [1]. For instability (distortion) of, e.g.,
spherical codes, cf. [19], for binary control in discrete tomography reconstruction, cf.
[7].

(iii) Further invariance and equivariance information about the atoms distribution could
be extracted by using optimal experimental design from statistics ([12], [14]). Refer-
ring to all n × n “moment matrices ÔC, lying in some convex (e.g., GSI defined)
cone C with semidefinite elements, and the given “measurement spaceÔ X , invari-
ance and equivariance mean f(QCQT ) = f(C) ∀Q ∈ Q, C ∈ C, and F (G(x)) =
QGF (x) ∀G ∈ G, x ∈ X , respectively. Here, f is some suitable criterion on C to
be minimized, F stands for the measurements of atom distribution, while Q is a
compact group of regular Q ∈ IRn×n (e.g., a suitable QG) and G is a group of
bijective G : X → X . This leads to dimensional reduction of our measurements
(recall also Figure 3.2 (I) (a)). In [5], this algebraical model has already been utilized
for optimizing elasticity of crystals. Finally, semidefinite and nonlinear integer pro-
gramming problems have to be resolved. The semidefinite ones with their feasibilty
being defined by the cone C, are closely related to our semi-infinite problems.

4.4 Conclusion.

In this survey article, we studied the topology of generalized semi-infinite optimization
problems under basic assumptions. We were concerned with global structural stability.
Its characterization and extension to nondifferentiability and optimal control problems
referred us to inverse problems. Here, we noted the importance of discrete intrinsic infor-
mation for transparency, convergence and stability. The fruitful meeting of these three
aspects gave a number of impulses for new projects.
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