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We consider a rate independent evolution variational inequality with an arbitrary convex closed constraint
Z in a Hilbert space X. The main results consist in proving that it is well-posed in the Young integral
setting in the space of functions of essentially bounded variation for every Z and in the space of regulated
functions provided 0 lies in the interior of Z.
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Introduction

We consider a real Hilbert space X endowed with a scalar product 〈·, ·〉 and norm |x| :=
〈x, x〉1/2 for x ∈ X. Throughout the paper we assume that

Z is a convex closed subset of X such that 0 ∈ Z . (1)

We mainly work with the so-called regulated functions (cf. [1]), that is, functions of real
variable which at each point of their domain of definition admit both finite one-sided
limits, see Definition 1.1 below. The space of regulated functions [0, T ] → X will be
denoted by G(0, T ;X) according to [21].

We assume that an initial condition x0 ∈ Z and an input u ∈ G(0, T ;X) are given, and
we look for a function ξ ∈ G(0, T ;X) such that

(P ) (i) u(t)− ξ(t) ∈ Z ∀t ∈ [0, T ],
(ii) u(0)− ξ(0) = x0,
(iii) for every y ∈ G(0, T ;Z), the function τ 7→ u(τ+) − ξ(τ+) − y(τ) is Young

integrable on [0, T ] with respect to ξ according to Definition 3.1, and
∫ t

0

〈u(τ+)− ξ(τ+)− y(τ), dξ(τ)〉 ≥ 0 ∀t ∈ [0, T ] .
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If u is continuous, then Problem (P ) can be stated either as a limit of classical variational
inequalities with smooth inputs, see [10, 22], or in the context of the Riemann-Stieltjes
integral, see [12, 5]. The solution operator (x0, u) 7→ ξ called the play is one of the
main building blocks of the theory of hysteresis operators and its properties have been
extensively studied in various settings. If u is of bounded variation, Problem (P ) can
also be interpreted as a special case of a sweeping process , see [16], defined as a limit of
time-discrete approximations. Theorem 2.3 and Proposition 4.3 below not only illustrate
this property, but also show that the time-discrete approximations in the sense of [16]
coincide with the exact solutions of Problem (P ) for piecewise constant inputs.

The aim of this paper is to propose an extension of the play onto the space of regulated
functions via the Young integral in the form given in [8]. An alternative, which we however
do not pursue here, would be to use Kurzweil’s integral introduced in [14]. Although the
Kurzweil integral calculus is in general simpler, its main drawback in connection with
Problem (P ) consists in the fact that one of the key lemmas (Lemma 3.3 below) which
is nearly trivial for the Young integral, does not hold for the Kurzweil integral, and the
analysis would have to be restricted to, say, left-continuous inputs.

Another approach can be found in [4] in the scalar case X = R: the rate independence
makes it possible to use directly the ‘continuous’ methods by ‘filling in’ the discontinuities
with segments traversed with an infinite speed. In the case dimX > 1, this procedure
turns out to be trajectory-dependent which makes the analysis difficult even if we restrict
ourselves to some canonical (the shortest, say) trajectories filling in the jumps.

As the main results of this paper (Theorems 2.3, 2.4), we show that Problem (P ) always
defines an input-output mapping pZ : Z × BV (0, T ; X) → BV (0, T ; X) : (x0, u) 7→ ξ
which is continuous with respect to the uniform convergence. Here, BV (0, T ; X) denotes
the space of functions with essentially bounded variation, see (7) below. Moreover, if
0 ∈ Int Z, then the output ξ is well-defined in BV (0, T ; X) for every u ∈ G(0, T ; X),
and the operator pZ : Z ×G(0, T ; X) → BV (0, T ; X) is continuous with respect to the
uniform convergence. It is interesting to note that inputs u1, u2 which are equivalent in
the sense that u1(t−) = u2(t−) for every t ∈ [0, T ], generate equivalent outputs ξ1, ξ2.

The paper is organized as follows. In order to fix the notation and to keep the presentation
consistent, we list in Section 1 the main concepts from convex analysis and vector-valued
functions that are used throughout the text. In Section 2 we state the main results.
Section 3 is devoted to a self-contained extension of the Young integration theory to
functions with values in a Hilbert space. Detailed proofs of statements from Section 2 are
given in Section 4. In Section 5 we illustrate the connection between Problem (P ) and
the concept of ε-variation introduced by Fraňková in [7].

Acknowledgement. The authors wish to thank J. Kurzweil, Š. Schwabik and M. Tvrdý
for stimulating suggestions and comments.

1. Preliminaries

The aim of this section is to recall some basic facts about the convex analysis in Hilbert
spaces and vector-valued functions of a real variable. Most of the results are well-known
and we refer the reader e. g. to the monographs [2, 17] for more information.
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For a given convex closed set Z ⊂ X such that 0 ∈ Z we fix the number

ρ := dist (0, ∂Z) := inf {|z| ; z ∈ ∂Z} ≥ 0. (1)

It is clear that ρ > 0 if and only if 0 ∈ Int Z. In this case we have Bρ(0) ⊂ Z, where

Br(x0) := {x ∈ X ; |x− x0| ≤ r} (2)

denotes the ball centered at x0 with radius r.

We introduce in the usual way the projection QZ : X → Z onto Z and its complement
PZ := I −QZ (I is the identity) by the formula

QZx ∈ Z , |PZx| = dist (x, Z) for x ∈ X . (3)

In the sequel, we call (PZ , QZ) the projection pair associated with Z. The projection can
be characterized by the variational inequality

q = QZx ⇔ 〈x− q, q − z〉 ≥ 0 ∀z ∈ Z . (4)

Let now [a, b] ⊂ R be a nondegenerate closed interval. We denote by Da,b the set of all
partitions of the form

d = {t0, . . . , tm} , a = t0 < t1 < · · · < tm = b .

For a given function g : [a, b] → X and a given partition d ∈ Da,b we define the variation
Vd(g) of g on d by the formula

Vd(g) :=
m
∑

j=1

|g(tj)− g(tj−1)|

and the total variation Var [a,b] g of g by

Var
[a,b]

g := sup{Vd(g) ; d ∈ Da,b} .

In a standard way (cf. [2]) we denote the set of functions of bounded variation by

BV (a, b ; X) := {g : [a, b] → X ; Var
[a,b]

g < ∞} . (5)

Let us further introduce the set S(a, b ; X) of all step functions of the form

w(t) :=
m
∑

k=0

Ýckχ{tk}(t) +
m
∑

k=1

ckχ]tk−1,tk[
(t) , t ∈ [a, b] , (6)

where d = {t0, . . . , tm} ∈ Da,b is a given partition, χA for A ⊂ [a, b] is the characteristic
function of the set A and Ýc0, . . . , Ýcm, c1, . . . , cm are given elements from X.

It is well-known (see e. g. the Appendix of [2]) that every function of bounded variation
with values in a Banach space admits one-sided limits at each point of its domain of
definition. Following [1], we separate this property from the notion of total variation and
introduce the following definition.
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Definition 1.1. We say that a function f : [a, b] → X is regulated if for every t ∈ [a, b]
there exist both one-sided limits f(t+), f(t−) ∈ X with the convention f(a−) = f(a),
f(b+) = f(b).

According to [21], we denote byG(a, b ; X) the set of all regulated functions f : [a, b] → X.

For a given function g ∈ G(a, b ; X) and a given partition d ∈ Da,b we define the essential
variation Vd(g) of g on d by the formula

Vd(g) :=
m
∑

j=1

|g(tj−)− g(tj−1+)| +
m
∑

j=0

|g(tj+)− g(tj−)|

and the total essential variation Var [a,b] g of g by

Var
[a,b]

g := sup{Vd(g) ; d ∈ Da,b} .

We denote the space of functions of essentially bounded variation by

BV (a, b ; X) := {g : [a, b] → X ; Var
[a,b]

g < ∞} . (7)

The terminology has been taken from [6], although we restrict ourselves a priori to reg-
ulated functions which makes the analysis easier. This however means here in particular
that Vd(g) is defined for every function g : [a, b] → X, but Vd(g) only for a regulated
function g.

We summarize some easy basic properties of the above spaces in Lemma 1.2 below the
proof of which is left to the reader.

Lemma 1.2.

(i) Every regulated function is bounded.

(ii) For every g ∈ G(a, b ; X) we have Var [a,b] g ≤ Var [a,b] g.

(iii) The sets S(a, b ; X), BV (a, b ; X), BV (a, b ; X), G(a, b ; X) are vector spaces sat-
isfying the inclusion

S(a, b ; X) ⊂ BV (a, b ; X) ⊂ BV (a, b ; X) ⊂ G(a, b ; X) .

(iv) Let GL(a, b ; X) be the subset of left-continuous functions in G(a, b ; X). Then we
have GL(a, b ; X) ∩BV (a, b ; X) ⊂ BV (a, b ; X).

We introduce in G(a, b ; X) a system of seminorms

‖f‖[s,t] := sup{|f(τ)| ; τ ∈ [s, t]} (8)

for any subinterval [s, t] ⊂ [a, b]. Indeed, ‖·‖[a,b] is a norm.

Let us note that the space C(a, b ; X) of continuous functions f : [a, b] → X is a closed
subspace of G(a, b ; X) with respect to the norm ‖·‖[a,b].
We now list some characteristic properties of regulated functions which are needed in the
sequel.
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Proposition 1.3.

(i) The space G(a, b ; X) is complete with respect to the norm ‖·‖[a,b].
(ii) Given C > 0, the set VC := {g ∈ BV (a, b ; X) ; Var [a,b] g ≤ C} is closed in

G(a, b ; X).

(iii) For f ∈ G(a, b ; X) and t ∈ [a, b] put

osc f(t) := max{|f(t)− f(t−)| , |f(t+)− f(t)| , |f(t+)− f(t−)|} .

Then for every ε > 0 the set

U ε
f := {t ∈ [a, b] ; osc f(t) ≥ ε} (9)

is finite, and f is continuous except in a countable number of points.

(iv) Let f ∈ G(a, b ; X) and ε > 0 be given and let U ε
f be the set defined by (9). Then

there exists h > 0 such that for every [s, t] ⊂ [a, b], [s, t] ∩ U ε
f = ∅, 0 < t− s < h we

have |f(t)− f(s)| < ε.

(v) For every f ∈ G(a, b ; X) and ε > 0 there exists w ∈ S(a, b ; X) such that ‖f − w‖[a,b]
≤ ε, w(t) ∈ ∪τ∈[a,b]{f(τ)} for every t ∈ [a, b], Var [a,b]w ≤ Var [a,b] f and Var [a,b]w ≤
Var [a,b] f .

(vi) Let f ∈ G(a, b ; X) be such that

∃C > 0 ∀h ∈
]

0,
1

2
(b− a)

[

: Var
[a+h, b−h]

f ≤ C.

Then f ∈ BV (a, b ; X) and Var [a,b] f ≤ C + |f(a+)− f(a)|+ |f(b)− f(b−)|.

Proof.
(i) Let {fn} be a Cauchy sequence in G(a, b ; X). For t ∈ [a, b] put f(t) := limn→∞ fn(t).
For every t ∈ ]a, b] and every sequence tk ↗ t we have

|f(tk)− f(t`)| ≤ |f(tk)− fn(tk)|+ |fn(tk)− fn(t`)|+ |f(t`)− fn(t`)| ,

hence {f(tk) ; k ∈ N} is a Cauchy sequence whose limit is independent of the choice of
the sequence tk, and we conclude that f(t−) exists. In the same way we check that f(t+)
exists for t ∈ [a, b[ .

(ii) Let {gn} be a sequence in VC which converges uniformly to g in [a, b]. Then, for
d ∈ Da,b, Vd(gn) converge to Vd(g), hence (ii).

(iii) For every t ∈ [a, b] there exists δ(t) > 0 such that |f(τ) − f(t+)| < ε/4 for
τ ∈ ]t, t+ δ(t)[∩[a, b], |f(τ)− f(t−)| < ε/4 for τ ∈ ]t− δ(t), t[∩[a, b]. In particular,

(

]t− δ(t), t+ δ(t)[ \ {t}
)

∩ U ε
f = ∅ ∀ t ∈ [a, b] .

As [a, b] is compact, we can select from the covering

[a, b] ⊂
⋃

t∈[a,b]

]t− δ(t), t+ δ(t)[
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a finite covering

[a, b] ⊂
n
⋃

j=1

]tj − δ(tj), tj + δ(tj)[ ,

hence U ε
f ⊂ {t1, . . . , tn}.

(iv) Let U ε
f = {t1, . . . , tn}, tj+1 > tj for j = 1, . . . , n−1, and put I0 := [a, t1[ , In := ]tn, b]

(which might possibly be empty), Ij := ]tj, tj+1[ for j = 1, . . . , n− 1. Let fj, j = 0, . . . , n
be the functions f |Ij continuously extended to Ij. The assertion holds provided we put

h := inf
{

|t− s| ; [s, t] ⊂ Ij , |fj(t)− fj(s)| ≥ ε , j = 0, . . . , n
}

,

and we easily check that h > 0.

(v) Let ε > 0 be given and let U ε
f , h > 0 and Ij, j = 0, . . . , n be as in the proof of (iv).

In each interval Ij we find a partition tj = s0j < s1j < · · · < s
`j
j = tj+1 (with the convention

t0 = a, tn+1 = b) such that s1j , . . . , s
`j−1
j are continuity points of f , skj − sk−1

j < h for
k = 1, . . . , `j. For j = 0, . . . , n we now put

w(tj) := f(tj)

w(t) :=

{

f(skj ) for t ∈ ]sk−1
j , skj ] , k = 1, . . . , `j − 2 ,

f(s
`j−1
j ) for t ∈ ]s

`j−2
j , tj+1[ .

Then w ∈ S(a, b ; X) and from (iii) we immediately obtain that |f(t)−w(t)| ≤ ε for every
t ∈ [a, b]. Moreover, putting

d := {a} ∪ {b} ∪ {t1, . . . , tn} ∪

(

n
⋃

j=0

{

s1j , . . . , s
`j−1
j

}

)

∈ Da,b

we have Var [a,b]w = Vd(f), Var [a,b]w ≤ Vd(f), and the assertion follows.

(vi) Let d = {t0, . . . , tm} ∈ Da,b be an arbitrary partition. For 0 < h < min{t1 − a, b −
tm−1} we have

Vd(f) ≤ Var
[a+h, b−h]

f + |f(a+)−f(a)|+ |f(a+h)−f(a+)|+ |f(b)−f(b−)|+ |f(b−)−f(b−h)| ,

and letting h tend to 0+ we obtain the assertion. The proof of Proposition 1.3 is complete.

2. Main results

We will see in Section 3 that the integral in Problem(P ) is meaningful if ξ ∈BV (0, T ; X) .
Let us denote by Dom (P) ⊂ Z ×G(0, T ; X) the set of all (x0, u) ∈ Z ×G(0, T ; X) such
that there exists a solution ξ ∈ BV (0, T ; X) to Problem (P ). We first show that the
solution ξ is unique for every (x0, u) ∈ Dom (P). In fact, we prove more, namely

Lemma 2.1. Let (x0, u), (y0, v) ∈ Dom (P) be given and let ξ, η ∈ BV (0, T ; X) be re-
spective solutions to Problem (P ). Then for every t ∈ [a, b] we have

|ξ(t)− η(t)|2 ≤ |ξ(0)− η(0)|2 + 2 ‖u− v‖[0,t]Var
[0,t]

(ξ − η) . (10)
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Proof. Putting y(τ) := (1/2) (u(τ+)+v(τ+)−ξ(τ+)−η(τ+)) in the inequalities (P )(iii)
for ξ and for η and summing them up we obtain

∫ t

0

〈u(τ+)− v(τ+)− ξ(τ+) + η(τ+), d(ξ − η)(τ)〉 ≥ 0 .

Corollary 3.15 then yields that

1

2

(

|ξ(t)− η(t)|2 − |ξ(0)− η(0)|2
)

≤
∫ t

0

〈u(τ+)− v(τ+), d(ξ − η)(τ)〉

and (10) follows from (29).

Lemma 2.1 enables us to define the operator

pZ : Dom (P) → BV (0, T ; X) : (x0, u) 7→ ξ , (11)

where ξ =: pZ [x0, u] is the unique solution to Problem (P ).

We summarize the main results of this paper as Proposition 2.2 and Theorems 2.3 – 2.4
below. The proofs will be given in Section 4.

Proposition 2.2. Let x0 ∈ Z be given, and for u ∈ G(0, T ; X), t ∈ [0, T ] put u−(t) :=
u(t−). Then (x0, u) ∈ Dom (P) if and only if (x0, u−) ∈ Dom (P), and in this case we
have

pZ [x0, u](t−) = pZ [x0, u−](t) , pZ [x0, u](t)− pZ [x0, u](t−) = PZ(u(t)− pZ [x0, u](t−))
(12)

for every t ∈ [0, T ], with PZ defined by (3).

Theorem 2.3. For each set Z satisfying (1) we have Z × BV (0, T ; X) ⊂ Dom (P) and
Var [0,T ] pZ [x0, u] ≤ Var [0,T ] u for every (x0, u) ∈ Z × BV (0, T ; X). Moreover, for every
(x0, u), (y0, v) ∈ Z × BV (0, T ; X), ξ = pZ [x0, u], η = pZ [y0, v] and every t ∈ [0, T ] we
have

|ξ(t)− η(t)|2 ≤ |ξ(0)− η(0)|2 + 2 ‖u− v‖[0,t]
(

Var
[0,t]

u+Var
[0,t]

v

)

. (13)

Theorem 2.4. If 0 ∈ Int Z, then Dom (P) = Z ×G(0, T ; X). Moreover, if {(xn
0 , un) ; n

∈ N} is a sequence in Z×G(0, T ; X) such that |xn
0−x0| → 0, ‖un − u‖[0,T ] → 0 as n → ∞,

then there exists a constant C > 0 independent of n such that Var [0,T ] pZ [x
n
0 , un] ≤ C and

‖pZ [x
n
0 , un]− pZ [x0, u]‖[0,T ] → 0.

Remark 2.5. We cannot replace the variational inequality (iii) in Problem (P ) by

(iii)’

∫ t

0

〈u(τ)− ξ(τ)− y(τ), dξ(τ)〉 ≥ 0 ∀y ∈ G(0, T ;Z) ∀t ∈ [0, T ]

which might seem to be a natural extension of the continuous case in [12]. It suffices to
consider the scalar case X = R, Z = [−r, r] for some r > 0, x0 = 0, u(τ) = ūχ]0,T ](τ) with
some ū > r. Assume that there exists ξ ∈ BV (0, T ; X) satisfying (iii)’, ‖u− ξ‖[0,T ] ≤ r,
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ξ(0) = 0. Putting y(τ) := rχ{0}(τ) + (u(τ) − ξ(τ))χ]0,T ](τ) we obtain from (iii)’ and
Proposition 3.7 that

0 ≤
∫ t

0

(u(τ)− ξ(τ)− r)χ{0}(τ) dξ(τ) = −r ξ(0+) ,

hence ξ(0+) ≤ 0 and u(0+)− ξ(0+) ≥ ū > r, which is a contradiction.

3. The Young integral

We give here a survey of those elements of the Young integral calculus that are related to
Problem (P ) using the ideas of [8, 19, 20, 21].

We fix a compact interval [a, b] ⊂ R and as in Section 1, we denote by Da,b the set of all
partitions d = {t0, . . . , tm}, a = t0 < t1 < · · · < tm = b of [a, b].

We say that a partition Ýd is a refinement of d ∈ Da,b and write Ýd ¿ d if Ýd ∈ Da,b and

d ⊂ Ýd.

Let d = {t0, . . . , tm} ∈ Da,b be a partition. We denote by B(d) the set of special refinements
D of d (the so-called P -partitions , see [19]), of the form

D = {t0, %1, t1, . . . , tm−1, %m, tm} , a = t0 < %1 < t1 < %2 < t2 < . . . tm−1 < %m < tm = b .
(14)

For given functions f : [a, b] → X, g ∈ G(a, b ; X) and partitions d ∈ Da,b, D ∈ B(d) of
the form (14) we define the integral sum SD(f ∆g) by the formula

SD(f ∆g) =
m
∑

j=1

〈f(%j), g(tj−)− g(tj−1+)〉 +
m
∑

j=0

〈f(tj), g(tj+)− g(tj−)〉 , (15)

again with the convention g(a−) = g(a), g(b+) = g(b).

Definition 3.1. We say that J ∈ R is the Young integral over [a, b] of f with respect to
g and denote

J =

∫ b

a

〈f(t), dg(t)〉 , (16)

if for every ε > 0 there exists dε ∈ Da,b such that for every d ¿ dε and D ∈ B(d) we have

|J − SD(f ∆g)| ≤ ε . (17)

It is an easy exercise to check that if the value J in Definition 3.1 exists, then it is uniquely
determined. In what follows, whenever we write

∫ b

a
〈f(t), dg(t)〉 = J , we interpret it as

‘the function f is Young integrable with respect to g in [a, b] and the integral equals to J .’

Similarly as for other integration theories (cf. e. g. [19] for the Perron-Stieltjes or Kurzweil
integral), the Young integral admits the following ‘Bolzano-Cauchy-type’ characterization.

Lemma 3.2. Consider f : [a, b] → X and g ∈ G(a, b ; X). Then f is Young integrable
with respect to g in [a, b] if and only if for every ε > 0 there exists dε ∈ Da,b such that for
every di ¿ dε and Di ∈ B(di), i = 1, 2 we have

|SD1(f ∆g) − SD2(f ∆g)| ≤ ε . (18)
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Proof. If
∫ b

a
〈f(t), dg(t)〉 exists, then (18) obviously holds. Conversely, let (18) hold.

For every n ∈ N we find a partition d1/n ∈ Da,b such that (18) holds with ε = 1/n,
and put d∗1 := d1, d∗n := d∗n−1 ∪ d1/n for n = 2, 3, . . . . For each n ∈ N we fix some
Dn ∈ B(d∗n) and put Jn := SDn(f ∆g). By (18), {Jn} is a Cauchy sequence in R, and

putting J := limn→∞ Jn we easily check that J =
∫ b

a
〈f(t), dg(t)〉 by Definition 3.1.

The reason we decided for the Young integral is its following property which is an imme-
diate consequence of the definition and which plays an important role in our arguments.
Surprisingly enough, identity (19) does not hold for the Kurzweil integral in general [13].

Lemma 3.3. Consider f : [a, b] → X and g ∈ G(a, b ; X), and assume that there exists
a countable set A ⊂ [a, b] such that g(t) = 0 for every t ∈ [a, b] \ A. Then we have

∫ b

a

〈f(t), dg(t)〉 = 〈f(b), g(b)〉 − 〈f(a), g(a)〉 . (19)

The Young integral is linear with respect to both functions f and g. For the sake of
completeness, we state this result explicitly.

Proposition 3.4.

(i) Let
∫ b

a
〈f1(t), dg(t)〉,

∫ b

a
〈f2(t), dg(t)〉 exist. Then we have

∫ b

a

〈(f1 + f2)(t), dg(t)〉 =

∫ b

a

〈f1(t), dg(t)〉 +

∫ b

a

〈f2(t), dg(t)〉 . (20)

(ii) Let
∫ b

a
〈f(t), dg1(t)〉,

∫ b

a
〈f(t), dg2(t)〉 exist. Then we have

∫ b

a

〈f(t), d(g1 + g2)(t)〉 =

∫ b

a

〈f(t), dg1(t)〉 +

∫ b

a

〈f(t), dg2(t)〉 . (21)

(iii) Let
∫ b

a
〈f(t), dg(t)〉 exist. Then for every constant λ ∈ R we have

∫ b

a

〈λf(t), dg(t)〉 =

∫ b

a

〈f(t), d(λg)(t)〉 = λ

∫ b

a

〈f(t), dg(t)〉 . (22)

Proof. (i) Let ε > 0 be given. We find d1ε/2, d
2
ε/2 ∈ Da,b such that for all di ¿ diε/2,

Di ∈ B(di), i = 1, 2 we have

∣

∣

∣

∣

∫ b

a

〈fi(t), dg(t)〉 − SDi
(fi∆g)

∣

∣

∣

∣

<
ε

2
. (23)

Putting dε := d1ε/2 ∪ d2ε/2 we obtain (20) immediately from (23). The same argument

applies to the case (ii), while (iii) is obvious.

The Young integral behaves in the following way with respect to the variation of the
integration domain.

Proposition 3.5. Let f : [a, b] → X, g ∈ G(a, b ; X) be given functions and let [r, s] ⊂
[a, b] be a nondegenerate interval.
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(i) Assume that
∫ b

a
〈f(t), dg(t)〉 exists. Then

∫ s

r
〈f(t), dg(t)〉 exists.

(ii) Assume that
∫ s

r
〈f(t), dg(t)〉 exists. Then we have

∫ b

a

〈(

fχ]r,s[

)

(t), dg(t)
〉

=

∫ s

r

〈f(t), dg(t)〉 − 〈f(r), g(r+)−g(r)〉 − 〈f(s), g(s)−g(s−)〉 .

(24)

Remark 3.6. Proposition 3.5 needs some comment. Here and in the sequel, whenever
we integrate functions f, g defined in [a, b] over an interval [r, s] ⊂ [a, b], we implicitly
consider their restrictions f |[r,s], g|[r,s]. In particular, we have e. g. f |[r,s](s+) = f(s),
f |[r,s](r−) = f(r), similarly as in Definition 1.1.

Proof of Proposition 3.5.
(i) Let ε > 0 be given. By Lemma 3.2 we find dε ∈ Da,b such that for every di ¿ dε and
Di ∈ B(di), i = 1, 2 we have

|SD1(f ∆g) − SD2(f ∆g)| < ε ,

and put d∗ε := (dε∩ ]r, s[ ) ∪ {r} ∪ {s}. Then d∗ε ∈ Dr,s, and we arbitrarily fix di ¿ d∗ε and

Di ∈ B(di), i = 1, 2. Put Ýdi := di ∪ dε. Then Ýd1, Ýd2 may be written in the form

Ýd1 = {a = t0 < t1 < · · · < tk = r < t1k+1 < · · · < s = t1m1−` < · · · < t1m1
= b} ,

Ýd2 = {a = t0 < t1 < · · · < tk = r < t2k+1 < · · · < s = t2m2−` < · · · < t2m2
= b} ,

where t1m1−j = t2m2−j for j = 0, . . . , `. We now fix arbitrary %i ∈ ]ti−1, ti[ for i = 1, . . . , k
and Ý%j ∈ ]t1m1−j, t

1
m1−j+1[ for j = 1, . . . , `, and put

ÝD1 =
{

t0, %1, t1, . . . , tk−1, %k, D1, Ý%`, t
1
m1−`+1, . . . , t

1
m1−1, Ý%1, t

1
m1

}

,

ÝD2 =
{

t0, %1, t1, . . . , tk−1, %k, D2, Ý%`, t
2
m2−`+1, . . . , t

2
m2−1, Ý%1, t

2
m2

}

.

Then ÝDi ∈ B( Ýdi), i = 1, 2, and we have

SD1(f ∆g) − SD2(f ∆g) = S ÝD1
(f ∆g) − S ÝD2

(f ∆g) ,

hence the assertion follows from Lemma 3.2.

(ii) Let ε > 0 be given and let dε = {t0, . . . , tm} ∈ Dr,s be such that for every d ¿ dε and
D ∈ B(d) we have

∣

∣

∣

∣

∫ s

r

〈f(t), dg(t)〉 − SD(f ∆g)

∣

∣

∣

∣

< ε . (25)

Put d∗ε := dε ∪ {a, b}. Then d∗ε ∈ Da,b, and every D∗ ∈ B(d∗) with d∗ ¿ d∗ε is of the form

D∗ = {t∗0, %∗1, t∗1, . . . , t∗m∗−1, %
∗
m∗ , t∗m∗} ,

where r = t∗i , s = t∗k for some 0 ≤ i < k ≤ m∗. By construction, d := {t∗i , t∗i+1, . . . , t
∗
k} is a

refinement of dε and D := {t∗i , %∗i+1, t
∗
i+1, . . . , %

∗
k, t

∗
k} belongs to B(d). On the other hand,

for j ≤ i and j > k we have fχ]r,s[ (%
∗
j) = 0, hence

SD∗
((

fχ]r,s[

)

∆g
)

= SD(f ∆g) − 〈f(r), g(r+)− g(r)〉 − 〈f(s), g(s)− g(s−)〉 ,

and the assertion follows.
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We next investigate some typical cases.

Proposition 3.7. For every f : [a, b] → X, g ∈ G(a, b ; X), a ≤ r ≤ b and v ∈ X we
have

(i)

∫ b

a

〈

vχ{r}(t), dg(t)
〉

= 〈v, g(r+)− g(r−)〉 ,

(ii)

∫ b

a

〈

f(t), d
(

vχ{r}
)

(t)
〉

=











0 if r ∈ ]a, b[ ,

−〈f(a), v〉 if r = a ,

〈f(b), v〉 if r = b ,

(iii)

∫ b

a

〈

vχ]r,s[ (t), dg(t)
〉

= 〈v, g(s−)− g(r+)〉 ∀ s ∈ ]r, b] ,

(iv)

∫ b

a

〈

f(t), d
(

vχ]r,s[

)

(t)
〉

= 〈f(r)− f(s), v〉 ∀ s ∈ ]r, b] .

Proof. Identity (iii) follows immediately from Proposition 3.5 for f(t) ≡ v and from the
obvious fact (cf. Remark 3.6) that

∫ s

r
〈v, dg(t)〉 = 〈v, g(s)−g(r)〉. For a < r < b we obtain

(i) from (iii) and from Proposition 3.4 using the formula χ{r} = χ]a,b[ − χ]a,r[ − χ]r,b[ . To
treat the case r = a, we just note that for each d ∈ Da,b and D ∈ B(d), the integral sum
SD(vχ{a}∆g) contains only one nonzero term, namely 〈v, g(a+)− g(a)〉. For r = b we
argue analogously. Statement (ii) is a trivial consequence of Lemma 3.3.

To prove (iv), we set d0 := {a, r, s, b}. Then for every d ¿ d0 and D ∈ B(d) of the form
(14) we have r = ti, s = tk for some 0 ≤ i < k ≤ m, where χ]r,s[ (tj−) = χ]r,s[ (tj−1+) for
every j = 1, . . . ,m, χ]r,s[ (tj−) = χ]r,s[ (tj+) for every j 6= i, k, χ]r,s[ (ti+)− χ]r,s[ (ti−) = 1,

χ]r,s[ (tk+)−χ]r,s[ (tk−) = −1, hence SD

(

f∆
(

vχ]r,s[

))

= 〈f(r)−f(s), v〉, and Proposition
3.7 is proved.

Corollary 3.8. Let f : [a, b]→X, g ∈ G(a, b ; X) and s∈ ]a, b[ be such that
∫ s

a
〈f(t), dg(t)〉,

∫ b

s
〈f(t), dg(t)〉 exist. Then we have

∫ b

a

〈f(t), dg(t)〉 =

∫ s

a

〈f(t), dg(t)〉 +

∫ b

s

〈f(t), dg(t)〉 . (26)

Proof. We clearly have f = fχ]a,s[ + fχ]s,b[ + fχ{a} + fχ{s} + fχ{b}. By Propositions
3.5 and 3.7 (i), each of these five functions is Young integrable with respect to g in [a, b].
Owing to Proposition 3.4, f is Young integrable with respect to g in [a, b], and (26) readily
follows from (24), Proposition 3.7 (i), and the identity

∫ s

a

〈f(t), dg(t)〉 +

∫ b

s

〈f(t), dg(t)〉 =

∫ b

a

〈(

f
(

χ]a,s[ + χ]s,b[

))

(t), dg(t)
〉

+ 〈f(a), g(a+)− g(a)〉 + 〈f(s), g(s+)− g(s−)〉 + 〈f(b), g(b)− g(b−)〉

=

∫ b

a

〈(

f
(

χ]a,s[ + χ]s,b[ + χ{a} + χ{s} + χ{b}
))

(t), dg(t)
〉

=

∫ b

a

〈f(t), dg(t)〉.
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In order to preserve the consistency of (26) also in the limit cases s = a and s = b, we set

∫ s

s

〈f(t), dg(t)〉 = 0 ∀s ∈ [a, b] , ∀ f, g : [a, b] → X . (27)

Propositions 3.4 and 3.7 enable us to evaluate the integral
∫ b

a
〈f(t), dg(t)〉 provided one

of the functions f , g belongs to S(a, b ; X). The next strategy consists in exploiting the
density of S(a, b ; X) in G(a, b ; X) stated in Proposition 1.3 (iv). We first notice that for
all functions f, g : [a, b] → X and every P -partition D of the form (14) we have

SD(f ∆g) =
m
∑

j=1

〈f(%j), g(tj−)− g(tj−1+)〉+
m
∑

j=0

〈f(tj), g(tj+)− g(tj−)〉

= 〈f(b), g(b)〉 − 〈f(a), g(a)〉

+
m
∑

j=1

〈f(%j)− f(tj), g(tj−)〉 −
m−1
∑

j=0

〈f(%j+1)− f(tj), g(tj+)〉 ,

hence

|SD(f ∆g)| ≤ min
{

‖f‖[a,b] Vd(g) , (|f(a)|+ |f(b)|+ Vd(f)) ‖g‖[a,b]
}

. (28)

The extension of the Young integral to G(a, b ; X) is based on Theorem 3.9 below.

Theorem 3.9. Consider f, fn : [a, b] → X, n ∈ N such that limn→∞ ‖f − fn‖[a,b] = 0.
Then the following implications hold.

(i) If g ∈ BV (a, b ; X) and

∫ b

a

〈fn(t), dg(t)〉 exists for each n ∈ N, then

∫ b

a

〈f(t), dg(t)〉

exists and
∫ b

a

〈f(t), dg(t)〉 = lim
n→∞

∫ b

a

〈fn(t), dg(t)〉 .

(ii) If g ∈ BV (a, b ; X) and

∫ b

a

〈g(t), dfn(t)〉 exists for each n ∈ N, then

∫ b

a

〈g(t), df(t)〉

exists and
∫ b

a

〈g(t), df(t)〉 = lim
n→∞

∫ b

a

〈g(t), dfn(t)〉 .

Proof.
(i) For n ∈ N put Jn :=

∫ b

a
〈fn(t), dg(t)〉. For each n we find dn ∈ Da,b such that for

every d ¿ dn and D ∈ B(d) we have

|SD(fn∆g) − Jn| <
1

n
.

For m,n ∈ N put dmn := dn ∪ dm. For every d ¿ dmn and D ∈ B(d) we then have

|SD(fn∆g) − Jn| <
1

n
, |SD(fm∆g) − Jm| <

1

m
,
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and (28) with f := fn − fm, g := g implies that

|Jn − Jm| ≤ |SD(fn∆g) − Jn − SD(fm∆g) + Jm| + |SD((fn − fm)∆g)|

≤ 1

m
+

1

n
+ ‖fn − fm‖[a,b] Var

[a,b]
g ,

hence {Jn} is a Cauchy sequence and we may put J := limn→∞ Jn. For each d ¿ dn and
D ∈ B(d) we obtain that

|SD(f ∆g) − J | ≤ |SD((f − fn)∆g)| + |SD(fn∆g) − Jn| + |Jn − J |
≤ ‖f − fn‖[a,b] Var

[a,b]
g + 1/n + |Jn − J | ,

hence
∫ b

a
〈f(t), dg(t)〉 = J and (i) is proved.

The same argument based on (28) with f := g, g := fn − fm yields (ii).

From Propositions 3.4 and 3.7 it follows that the integral
∫ b

a
〈f(t), dg(t)〉 exists whenever

one of the functions f , g belongs to S(a, b ; X). Using the fact that every regulated
function can be uniformly approximated by step functions (cf. Proposition 1.3 (v)), we
obtain the following result as an immediate consequence of Theorem 3.9 and inequality
(28).

Corollary 3.10. If either f ∈ G(a, b ; X) and g ∈ BV (a, b ; X), or f ∈ BV (a, b ; X)

and g ∈ G(a, b ; X), then
∫ b

a
〈f(t), dg(t)〉 exists and satisfies the estimate

∣

∣

∣

∣

∫ b

a

〈f(t), dg(t)〉
∣

∣

∣

∣

≤ min

{

‖f‖[a,b] Var
[a,b]

g ,

(

|f(a)|+ |f(b)|+Var
[a,b]

f

)

‖g‖[a,b]
}

. (29)

The estimate (29) is optimal in the following sense.

Theorem 3.11. For every g ∈ BV (a, b ; X) we have

|g(a)|+ |g(b)|+Var
[a,b]

g = sup

{∫ b

a

〈g(t), df(t)〉 ; f ∈ S(a, b ; B1(0))

}

. (30)

For every g ∈ BV (a, b ; X) we have

Var
[a,b]

g = sup

{∫ b

a

〈f(t), dg(t)〉 ; f ∈ S(a, b ; B1(0))

}

. (31)

Proof. To prove (30), we fix ε > 0 and find a partition d = {t0, . . . , tm} ∈ Da,b such that

m
∑

j=1

|g(tj)− g(tj−1)| ≥ Var
[a,b]

g − ε . (32)

Let σ : X → X be the function

σ(x) = x/|x| for x 6= 0 , σ(0) = 0 ,
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and for t ∈ [a, b] put

f1(t) := σ(g(b))χ{b}(t)− σ(g(a))χ{a}(t)−
m
∑

j=1

σ(g(tj)− g(tj−1))χ]tj−1,tj [ (t) . (33)

We then infer from (32), Proposition 3.7 (ii), (iv) and Proposition 3.4 (ii) that

∫ b

a

〈g(t), df1(t)〉 = |g(a)|+|g(b)|+
m
∑

j=1

|g(tj)−g(tj−1)| ≥ |g(a)|+|g(b)|+Var
[a,b]

g − ε , (34)

which, together with Corollary 3.10, yields (30).

We now turn to the proof of (31) and consider g ∈ BV (a, b ; X) and ε > 0. We find again
a partition d = {t0, . . . , tm} ∈ Da,b such that

m
∑

j=1

|g(tj−)− g(tj−1+)| +
m
∑

j=0

|g(tj+)− g(tj−)| ≥ Var
[a,b]

g − ε , (35)

and put

f2(t) :=
m
∑

j=1

σ(g(tj−)− g(tj−1+))χ ]tj−1,tj [ (t) +
m
∑

j=0

σ(g(tj+)− g(tj−))χ{tj}(t) . (36)

Then f2 ∈ S(a, b ; B1(0)) and it follows from Propositions 3.4 and 3.7 (i), (iii) that

∫ b

a

〈f2(t), dg(t)〉 =
m
∑

j=1

|g(tj−)− g(tj−1+)| +
m
∑

j=0

|g(tj+)− g(tj−)| . (37)

The assertion (31) is then a consequence of (35), (37), and Corollary 3.10.

As an easy extension of Theorem 3.9 we have the following convergence result.

Proposition 3.12. Consider f, fn ∈ G(a, b ; X), g, gn ∈ BV (a, b ; X), n ∈ N such that

lim
n→∞

‖f − fn‖[a,b] = 0 , lim
n→∞

‖g − gn‖[a,b] = 0 , sup
n∈N

Var
[a,b]

gn = C < ∞ .

Then
∫ b

a

〈f(t), dg(t)〉 = lim
n→∞

∫ b

a

〈fn(t), dgn(t)〉 . (38)

Proof. For any w ∈ S(a, b ; X) we have by Corollary 3.10 that
∣

∣

∣

∣

∣

∫ b

a

〈f(t), dg(t)〉 −
∫ b

a

〈fn(t), dgn(t)〉

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ b

a

〈(f − fn)(t), dgn(t)〉
∣

∣

∣

∣

+

∣

∣

∣

∣

∫ b

a

〈(f − w)(t), d(g − gn)(t)〉
∣

∣

∣

∣

+

∣

∣

∣

∣

∫ b

a

〈w(t), d(g − gn)(t)〉
∣

∣

∣

∣

≤ C ‖f −fn‖[a,b] + 2C ‖f −w‖[a,b] +
(

2 ‖w‖[a,b] +Var
[a,b]

w

)

‖g − gn‖[a,b]

and the assertion follows from Proposition 1.3 (v).
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Example 3.13.

(i) Notice that the pointwise convergence gn(t) → g(t) for every t ∈ [a, b] is not sufficient
in Proposition 3.12 as in the case of the Riemann-Stieltjes integral. In the example
X = R,

fn(t) = f(t) = χ{0}(t) , g(t) ≡ 0 , gn(t) = χ]0,1/n[ (t) for t ∈ [0, 1] (39)

we have
∫ 1

0
fn(t) dgn(t) = 1 for every n ∈ N,

∫ 1

0
f(t) dg(t) = 0, hence the assertion

of Proposition 3.12 does not hold.

(ii) Similarly, the pointwise convergence of {fn} is not sufficient for Proposition 3.12 to
hold. Indeed, putting

fn(t) :=
n

∑

k=1

(−1)k−1χ{k/n2}(t) for t ∈ [0, 1] , (40)

gn(t) :=

{

1
2n

(

(−1)k + 1
)

for t ∈
[

k−1
n2 , k

n2

[

, k = 1, . . . , n ,

0 for t ∈
[

1
n
, 1
]

,
(41)

for n ∈ N, we see that fn, gn ∈ S(a, b ; X), ‖fn‖[a,b] ≤ 1, Var [a,b] gn ≤ 1, ‖gn‖[a,b] → 0

and fn(t) → 0 for every t ∈ [a, b] as n → ∞, while
∫ b

a
fn(t) dgn(t) → 1.

The uniform convergence of fn towards f in Proposition 3.12 can however be relaxed,
as we will see in Section 5, Proposition 5.4. To conclude this section, we derive two
integration-by-parts formulas.

Theorem 3.14. For every f ∈ G(a, b ; X), g ∈ BV (a, b ; X) we have

∫ b

a

〈f(t), dg(t)〉+
∫ b

a

〈g(t), df(t)〉 = 〈f(b), g(b)〉 − 〈f(a), g(a)〉 (42)

+
∑

t∈[a,b]

(

〈f(t)− f(t−) , g(t)− g(t−)〉 − 〈f(t+)− f(t) , g(t+)− g(t)〉
)

.

Proof. From Proposition 1.3 (ii) it follows that the sum on the right-hand side of (42) is
at most countable, hence the formula is meaningful. Using Proposition 3.7 we check in a
straightforward way that (42) holds for every g ∈ BV (a, b ; X) whenever f is of the form
vχ{r} or vχ]r,s[, hence also for every f ∈ S(a, b ; X) by Proposition 3.4. For f ∈ G(a, b ; X)
and n ∈ N we find fn ∈ S(a, b ; X) such that ‖f − fn‖[a,b] → 0 as n → ∞ and pass to the
limit using Theorem 3.9 and the obvious inequality

∑

t∈[a,b]

(

|g(t)− g(t−)|+ |g(t+)− g(t)|
)

≤ Var
[a,b]

g .

Corollary 3.15. For every g ∈ BV (a, b ; X) we have

∫ b

a

〈g(t+), dg(t)〉 =
1

2

(

|g(b)|2 − |g(a)|2
)

+
1

2

∑

t∈[a,b]

|g(t+)− g(t−)|2 . (43)



174 P. Krejč́ı, P. Laurençot / Generalized Variational Inequalities

Proof. The function g+(t) := g(t+) satisfies g+(t+) = g(t+) = g+(t) for every t ∈ [a, b],
g+(t−) = g(t−) for every t ∈ ]a, b], and belongs to BV (a, b ; X). By Theorem 3.14 we
have

∫ b

a

〈g+(t), dg+(t)〉 =
1

2

(

|g(b)|2 − |g(a+)|2
)

+
1

2

∑

t∈ ]a,b]

|g(t+)− g(t−)|2

(note that the sum is taken over the semi-open interval ]a, b]), while (19) yields that

∫ b

a

〈g+(t), d(g − g+)(t)〉 = 〈g(a+), g(a+)− g(a)〉 .

Combining the above identities we obtain the assertion.

4. Proofs of main results

We first investigate local properties of the mapping pZ introduced in (11) that will enable
us to treat the general case in Theorems 2.3 – 2.4. With the notation from Section 2, we
establish the following lemma.

Lemma 4.1. Consider (x0, u) ∈ Dom (P) and put ξ := pZ [x0, u]. Then for every t ∈
[0, T ] we have

ξ(t)− ξ(t−) = PZ(u(t)− ξ(t−)) , ξ(t+)− ξ(t−) = PZ(u(t+)− ξ(t−)) , (44)

where (PZ , QZ) is the projection pair introduced in (3). In particular, the inequalities

|ξ(t)− ξ(t−)| ≤ |u(t)− u(t−)| , |ξ(t+)− ξ(t)| ≤ |u(t+)− u(t)| (45)

hold for every t ∈ [0, T ].

Proof. For a given t ∈ [0, T ] and z ∈ Z put

y(τ) := zχ{t}(τ) +
(

u(τ+)− ξ(τ+)
)(

χ[0,t[ (τ) + χ]t,T ](τ)
)

for τ ∈ [0, T ]. Then Proposition 3.7 (i) yields (cf. Remark 3.6) that

0 ≤
∫ t

0

〈u(τ+)− ξ(τ+)− y(τ), dξ(τ)〉 =

∫ t

0

〈

(u(t)− ξ(t)− z)χ{t}(τ), dξ(τ)
〉

(46)

= 〈u(t)− ξ(t)− z, ξ(t)− ξ(t−)〉 .

If moreover T > t, then

0 ≤
∫ T

0

〈u(τ+)− ξ(τ+)− y(τ), dξ(τ)〉 =
∫ T

0

〈

(u(t+)− ξ(t+)− z)χ{t}(τ), dξ(τ)
〉

(47)

= 〈u(t+)− ξ(t+)− z, ξ(t+)− ξ(t−)〉 .

Since z ∈ Z is arbitrary, we obtain from (4), (46), (47) that u(t)−ξ(t) = QZ(u(t)−ξ(t−)),
u(t+)− ξ(t+) = QZ(u(t+)− ξ(t−)), and the assertion follows. The inequalities (45) are
obvious: the first one follows from (46) by putting z := u(t−) − ξ(t−), to prove the
second one we put z := u(t+)− ξ(t+) in (46), z := u(t)− ξ(t) in (47) and sum up both
inequalities.
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As a consequence of Lemma 4.1, we see that ξ := pZ [x0, u] is left- (right-) continuous if
u is left- (right-) continuous, respectively. We now pass to the proof of Proposition 2.2
which shows that we can reduce the analysis to the left-continuous case.

Proof of Proposition 2.2. Let u ∈ G(0, T ; X), y ∈ G(0, T ; Z), x0 ∈ Z and ξ ∈
BV (0, T ; X) be given. For t ∈ [0, T ] put u−(t) := u(t−), ξ−(t) := ξ(t−), ξ∗(t) :=
ξ(t)− ξ−(t). For all t ∈ [0, T ] and τ ∈ [0, t[ we have u−(τ+)− ξ−(τ+) = u(τ+)− ξ(τ+),
and from Proposition 3.7 (i), Lemma 3.3 and property (4) it follows that
∫ t

0

〈u(τ+)− ξ(τ+)− y(τ), dξ(τ)〉 =
∫ t

0

〈

(u(t)− ξ(t)− u−(t) + ξ−(t))χ{t}(τ), dξ−(τ)
〉

(48)

+

∫ t

0

〈u−(τ+)− ξ−(τ+)− y(τ), dξ−(τ)〉 +

∫ t

0

〈u(τ+)− ξ(τ+)− y(τ), dξ∗(τ)〉

=

∫ t

0

〈u−(τ+)− ξ−(τ+)− y(τ), dξ−(τ)〉 + 〈u(t)− ξ(t)− y(t), ξ(t)− ξ(t−)〉 .

Assume first that (x0, u−) ∈ Dom (P), and put η := pZ [x0, u−]. By Lemma 4.1, η is
left-continuous, and putting

ξ(t) := η(t) + PZ(u(t)− η(t)) (49)

we obtain u(t) − ξ(t) ∈ Z for every t ∈ [0, T ], ξ(t−) = η(t) + PZ(u−(t) − η(t)) = η(t),
hence u(0) − ξ(0) = u−(0) − η(0) = x0. Moreover, the first term on the rightmost side
of (48) is non-negative by hypothesis, the second term is non-negative by (49), hence
ξ = pZ [x0, u].

Conversely, assume that (x0, u) ∈ Dom (P), and for a fixed y ∈ G(0, T ; Z) and t ∈ [0, T ]
put y∗(τ) := y(τ) + χ{t}(τ) (u(t) − ξ(t) − y(t)) for τ ∈ [0, T ]. Then y∗ ∈ G(0, T ; Z) and
identity (48) with y replaced by y∗ yields

0 ≤
∫ t

0

〈u(τ+)− ξ(τ+)− y∗(τ), dξ(τ)〉

=

∫ t

0

〈

u−(τ+)− ξ−(τ+)− y(τ) + χ{t}(τ) (y(t)− y∗(t)), dξ−(τ)
〉

=

∫ t

0

〈u−(τ+)− ξ−(τ+)− y(τ), dξ−(τ)〉 ,

where we used Proposition 3.7 (i) and the left-continuity of ξ−. We have indeed u−(t)−
ξ−(t) ∈ Z for every t, u−(0)− ξ−(0) = u(0)− ξ(0), and Proposition 2.2 is proved.

In the sequel, we denote by BVL(0, T ; X) the space of functions from BV (0, T ; X) which
are left-continuous. Besides the fact that Var [a,b] f = Var [a,b] f for every f ∈ GL(0, T ; X)
and every [a, b] ⊂ [0, T ], the restriction to left-continuous functions has the following
advantage.

Lemma 4.2. Let u ∈ G(0, T ; X) and ξ ∈ BVL(0, T ; X) be such that u(t)− ξ(t) ∈ Z for
every t ∈ [0, T ], u(0)− ξ(0) = x0. Assume that

∫ T

0

〈u(τ+)− ξ(τ+)− y(τ), dξ(τ)〉 ≥ 0 ∀y ∈ G(0, T ;Z) . (50)
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Then for every 0 ≤ s < t ≤ T we have

∫ t

s

〈u(τ+)− ξ(τ+)− y(τ), dξ(τ)〉 ≥ 0 ∀y ∈ G(0, T ;Z) , (51)

in particular ξ = pZ [x0, u].

Proof. For y ∈ G(0, T ;Z) and τ ∈ [0, T ] put

Ýy(τ) := (u(τ+)− ξ(τ+))
(

χ[0,s[ (τ) + χ[t,T ](τ)
)

+ y(τ)χ[s,t[ (τ) .

Then Ýy ∈ G(0, T ;Z) and combining (50) with Propositions 3.5, 3.7 (i) we obtain using
the left-continuity of ξ that

0 ≤
∫ T

0

〈u(τ+)− ξ(τ+)− Ýy(τ), dξ(τ)〉 =
∫ T

0

〈

(u(τ+)− ξ(τ+)− y(τ))χ[s,t[ (τ), dξ(τ)
〉

=

∫ t

s

〈u(τ+)− ξ(τ+)− y(τ), dξ(τ)〉

and Lemma 4.2 is proved.

Lemma 4.2 and Proposition 2.2 enable us to construct easily ξ = pZ [x0, u] ∈ S(0, T ; X)
whenever u ∈ S(0, T ; X). As it has already been mentioned, the explicit formula coincides
with the time-discrete scheme of [16, 12].

Proposition 4.3. Let x0 ∈ Z be given and let u ∈ S(0, T ; X) be of the form

u(t) = u0χ{0}(t) +
m
∑

k=1

ukχ]tk−1,tk]
(t) for t ∈ [0, T ] , (52)

with {t0, . . . , tm} ∈ Da,b. For k = 1, . . . ,m put ξ0 := u0−x0, ξk := ξk−1+PZ(uk− ξk−1).
Then ξ = pZ [x0, u] has the form

ξ(t) = ξ0χ{0}(t) +
m
∑

k=1

ξkχ]tk−1,tk]
(t) for t ∈ [0, T ] (53)

and we have Var [0,T ] ξ = Var [0,T ] ξ ≤ Var [0,T ] u = Var [0,T ] u.

Proof. For every k = 1, . . . ,m we have uk−ξk = QZ(uk−ξk−1) ∈ Z, hence u(t)−ξ(t) ∈ Z
for every t ∈ [0, T ]. Moreover, by (4) and Proposition 3.7, the function ξ given by (53)
satisfies the inequality

∫ T

0

〈u(τ+)− ξ(τ+)− y(τ), dξ(τ)〉 =
m
∑

k=1

〈ξk − ξk−1, uk − ξk − y(tk−1)〉 ≥ 0

for each y ∈ G(0, T ; Z), hence ξ = pZ [x0, u] by Lemma 4.2. To complete the proof, we
use again (4) which entails that 〈ξk − ξk−1, uk − ξk − uk−1 + ξk−1〉 ≥ 0, hence |ξk−ξk−1| ≤
|uk − uk−1| for every k = 1, . . . ,m and Var [0,T ] ξ ≤ Var [0,T ] u.
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We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. From Propositions 4.3 and 2.2 it follows that for each function

u(t) =
m
∑

k=0

Ýukχ{tk}(t) +
m
∑

k=1

ukχ]tk−1,tk[
(t)

we have ξ = pZ [x0, u] if and only if

ξ(t) =
m
∑

k=0

Ýξkχ{tk}(t) +
m
∑

k=1

ξkχ]tk−1,tk[
(t)

for t ∈ [a, b] with Ýξ0 = Ýu0 − x0, ξk − ξk−1 = PZ(uk − ξk−1), Ýξk − ξk = PZ(Ýuk − ξk) for
k = 1, . . . ,m. By Lemma 4.1 we have |ξk−ξk−1| ≤ |uk−uk−1|, hence Var [0,T ] ξ ≤ Var [0,T ] u.

Consider now u ∈ BV (0, T ; X) and x0 ∈ Z. By Proposition 1.3 (iv) we find un ∈
S(0, T ; X) such that ‖u− un‖[0,T ] → 0 as n → ∞, Var [0,T ] un ≤ Var [0,T ] u. Put ξn :=
pZ [x0, un]. By Lemma 2.1 we have for n,m ∈ N that

|ξn(t)− ξm(t)|2 ≤ |ξn(0)− ξm(0)|2 + 2 ‖un − um‖[0,t]
(

Var
[0,t]

(ξn) + Var
[0,t]

(ξm)

)

(54)

≤ |un(0)− um(0)|2 + 4 ‖un − um‖[0,t] Var
[0,t]

u ,

hence {ξn} is a Cauchy sequence in G(0, T ; X), Var [0,T ] ξn ≤ Var [0,T ] u for every n ∈ N.

Let ξ ∈ BV (0, T ; X) be its limit, Var [0,T ] ξ ≤ Var [0,T ] u. From Proposition 3.12 we infer
that ξ = pZ [x0, u], and the estimate (13) follows immediately from Lemma 2.1. Theorem
2.3 is proved.

For the proof of Theorem 2.4 we need the following crucial Lemma the idea of which (for
bounded domains Z) goes back to A. Vladimirov, see Sect. 19 of [10], cf. also Chapter 2
of [15].

Lemma 4.4. Let 0 ∈ Int Z and {(xn
0 , un) ; n ∈ N} be a sequence in Dom (P) ∩ (Z ×

GL(0, T ; X)) such that |xn
0 − x0| → 0, ‖un − u‖[0,T ] → 0 as n → ∞. Then there exists a

constant C > 0 independent of n such that Var [0,T ] pZ [x
n
0 , un] ≤ C.

Proof. Notice first that the uniform convergence of {un} and Proposition 1.3 (i) guar-
antee that u ∈ GL(0, T ;X). Next, let ρ > 0 be as in (1) and let us denote Uρ := {t ∈
[0, T ] ; |u(t+)− u(t)| ≥ ρ/6}. By Proposition 1.3 (iii), (iv), the set Uρ is finite and there
exists h > 0 such that for every [s, t] ⊂ [0, T ] with |t− s| < h and [s, t] ∩ Uρ = ∅, we have
|u(t) − u(s)| ≤ ρ/6. We fix a partition d = {t0, . . . , tm} such that Uρ ⊂ d, tk − tk−1 < h
for k = 1, . . . ,m, and a number n0 ∈ N such that ‖un − u‖[0,T ] ≤ ρ/6 for n ≥ n0.

For ξn = pZ [x
n
0 , un] and k ∈ {0, . . . ,m} put

xk
n := un(tk+)− ξn(tk+) ∈ Z . (55)
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Consider now a fixed k ∈ {1, . . . ,m}. By Lemma 4.2 we have for every y ∈ G(0, T ; Z),
n ∈ N and ε ∈ ]0, (tk − tk−1)/2[ that

∫ tk−ε

tk−1+ε

〈un(τ+)− ξn(τ+)− y(τ), dξn(τ)〉 ≥ 0 . (56)

In particular, for n ≥ n0 we may put in (56)

y(τ) =
(

un(τ+)− un(tk−1+) +
ρ

2
w(τ)

)

χ]tk−1,tk[
(τ)

for an arbitrary w ∈ S(0, T ; B1(0)), since for τ ∈ ]tk−1, tk[ we have |un(τ+)−un(tk−1+)| ≤
ρ/2, hence y(τ) ∈ Bρ(0) ⊂ Z. Then (56) yields

ρ

2

∫ tk−ε

tk−1+ε

〈w(τ), dξn(τ)〉 ≤
∫ tk−ε

tk−1+ε

〈un(tk−1+)− ξn(τ+), dξn(τ)〉

and from Theorem 3.11 and Corollary 3.15 it follows that

ρ

2
Var

[tk−1+ε,tk−ε]
ξn ≤ 1

2

(

|un(tk−1+)− ξn(tk−1 + ε)|2 − |un(tk−1+)− ξn(tk − ε)|2
)

.

Letting ε → 0 (note that ξn is left-continuous), we obtain on the one hand that

|un(tk−1+)− ξn(tk−1+)| ≥ |un(tk−1+)− ξn(tk)| , (57)

and, on the other hand, Proposition 1.3 (vi) yields that

ρ Var
[tk−1,tk]

ξn = ρ Var
[tk−1,tk]

ξn ≤ ρ |ξn(tk−1+)− ξn(tk−1)| (58)

+ |un(tk−1+)− ξn(tk−1+)|2 − |un(tk−1+)− ξn(tk)|2 .

Lemma 4.1, inequality (57) and the triangle inequality imply that

|xk
n| ≤ |un(tk−1+)− ξn(tk)|+ |un(tk+)− un(tk−1+)|+ |ξn(tk+)− ξn(tk)|

≤ |xk−1
n |+ 2 |un(tk+)− un(tk)|+ ρ/2

≤ |xk−1
n |+ 2 |u(tk+)− u(tk)|+ 3ρ/2 .

Now consider ` ∈ {1, . . . ,m}. Summing up the above inequalities from k = 1 to k = `,
we obtain that

|x`
n| ≤ |x0

n|+ 2
m
∑

k=1

|u(tk+)− u(tk)|+ 3mρ/2 .

Observe further that Lemma 4.1 and the triangle inequality ensure that

|x0
n| ≤ |xn

0 |+ 2 |un(0+)− un(0)| ≤ sup
n

{|xn
0 |}+ 2 |u(0+)− u(0)|+ ρ/2 .

Consequently, for ` ∈ {0, . . . ,m},

|x`
n| ≤ sup

n
{|xn

0 |}+ 2
m
∑

k=0

|u(tk+)− u(tk)|+ (3m+ 1) ρ/2 =: C1 . (59)



P. Krejč́ı, P. Laurençot / Generalized Variational Inequalities 179

From (58), (59) and Lemma 4.1, we thus obtain that

ρ Var
[tk−1,tk]

ξn ≤ ρ |un(tk−1+)− un(tk−1)|+ |xk−1
n |2 ≤ ρ2/2 + C2

1 + ρ |u(tk−1+)− u(tk−1)| ,

hence Var [0,T ] ξn ≤ mρ/2 +mC2
1/ρ+ C1/2, and Lemma 4.4 is proved.

Proof of Theorem 2.4. For an arbitrary (x0, u) ∈ Z × G(0, T ; X) we find a sequence
{un}∞n=1 of step functions such that ‖un − u‖[0,T ] → 0 as n → ∞. For t ∈ [0, T ] and
n ∈ N put un

−(t) := un(t−), u−(t) := u(t−), ξn(t) := pZ [x
n
0 , un](t), ξ

n
−(t) := pZ [x

n
0 , u

n
−](t).

From Proposition 2.2 it follows that ξn(t−) = ξn−(t) for every t ∈ [0, T ] and n ∈ N. Using
Lemma 4.4 we find a constant C > 0 such that Var [0,T ] ξ

n
− ≤ C, and Lemma 4.1 yields

Var
[0,T ]

ξn ≤ C + |ξn(T )− ξn(T−)| ≤ C + |un(T )− un(T−)| ≤ C̄

for some constant C̄. The same argument as in (54) implies that {ξn} is a Cauchy
sequence in G(0, T ; X). Denoting its limit by ξ, we obtain from Proposition 3.12 that
ξ := pZ [x0, u]. Repeating the same argument for an arbitrary sequence ‖un − u‖[0,T ] → 0,
un ∈ G(0, T ; X), we complete the proof.

5. Functions of bounded ε-variation

In this section, we give an extension of Proposition 3.12 to the case where the sequence
{fn} does not converge uniformly. The idea is based on the following concept introduced
in [7], Def. 3.3.

Definition 5.1. We say that a set A ⊂ G(a, b ; X) has uniformly bounded ε-variation, if

∀ ε > 0 ∃Lε > 0 ∀ f ∈ A : inf

{

Var
[a,b]

ψ ; ψ ∈ BV (a, b ; X) , ‖f − ψ‖[a,b] < ε

}

≤ Lε .

We will see in Proposition 5.6 below that every uniformly convergent sequence inG(a,b ;X)
has uniformly bounded ε-variation. The converse is obviously false, as we can see from
the example fn(t) = χ[0,1/n](t) for t ∈ [0, 1]. On the other hand, we prove the following
generalization of Helly’s Selection Principle as an extension of Theorem 3.8 of [7] to the
infinite dimensional case.

Theorem 5.2. Let X be a real separable Hilbert space and let {fn ; n ∈ N} be a bounded
sequence of functions from G(a, b ; X) which has uniformly bounded ε-variation. Then
there exist f ∈ G(a, b ; X) and a subsequence {fnk

} of {fn} such that fnk
(t) converges

weakly to f(t) as k → ∞ for every t ∈ [a, b].

The proof of Theorem 5.2 consists in a gradual selection of subsequences similar to the
proof of the classical Helly Selection Principle (see e. g. [9], pp. 372 – 374). In order to
make the diagonalization argument more transparent, we introduce the following notation.

By G(N) we denote the set of all infinite subsets M ⊂ N. We say that a sequence
{xn ; n ∈ N} of elements of a topological spaceM-converges to x if for every neighborhood
U(x) of x there exists n0 such that xn ∈ U(x) for every n ∈ M , n ≥ n0.

We start with the following Lemma as the Hilbert-space version of [3], Theorem I.3.5.
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Lemma 5.3. Let {ψn ; n ∈ N} be a bounded sequence in BV (a, b ; X) such that Var [a,b] ψn

≤ C for every n ∈ N. Then there exist ψ ∈ BV (a, b ; X) and a set M ∈ G(N) such that
Var [a,b] ψ ≤ C and the sequence ψn(t) weakly M-converges in X to ψ(t) for every t ∈ [a, b].

Proof. Let {wj ; j ∈ N} be a countable dense subset ofX. The functions t 7→ 〈ψn(t), w1〉
have uniformly bounded variation, and according to the one-dimensional Helly Selection
Principle we find N1 ∈ G(N) such that the sequence {〈ψn(t), w1〉} N1-converges to a limit
v1(t) for every t ∈ [a, b]. By induction we construct a sequence {Nk ; k ∈ N} of sets
in G(N), N1 ⊃ N2 ⊃ . . . , such that the sequence {〈ψn(t), wj〉} Nj-converges to a limit
vj(t) for every t ∈ [a, b]. We now put n1 := minN1, nk := min{n ∈ Nk ; n > nk−1} for
k = 2, 3, . . . , and define the set M := {nk ; k ∈ N} ∈ G(N). By construction, every Nj-
convergent sequence is M -convergent, hence {〈ψn(t), wj〉} M -converges to vj(t) for every
t ∈ [a, b] and j ∈ N.

For a fixed t ∈ [a, b], the mapping wj 7→ vj(t) can be extended in a unique way to a
bounded linear functional on X. By the Riesz Representation Theorem, there exists an
element ψ(t) ∈ X such that vj(t) = 〈ψ(t), wj〉 for every j ∈ N. Since the system {wj} is
dense in X, we obtain that

lim
k→∞

〈ψnk
(t), w〉 = 〈ψ(t), w〉

for every w ∈ X and t ∈ [a, b]. Moreover, for a fixed partition a = t0 < t1 < · · · < tm = b
we have

m
∑

i=1

|ψ(ti)− ψ(ti−1)| ≤ lim inf
k→∞

m
∑

i=1

|ψnk
(ti)− ψnk

(ti−1)| ≤ C ,

and the assertion follows.

We now use Lemma 5.3 to prove Theorem 5.2 by an argument similar to the one used in
[7] in the case dimX < ∞.

Proof of Theorem 5.2. We fix a sequence εi → 0 and for every n, i ∈ N we find ψi
n ∈

BV (a, b ; X) such that ‖ψi
n − fn‖[a,b] < εi, Var [a,b] ψ

i
n ≤ Lεi + 1. We now apply Lemma

5.3 to find M1 ∈ G(N) and ψ1 ∈ BV (a, b ; X) such that Var [a,b] ψ
1 ≤ Lε1 + 1 and ψ1

n(t)
weakly M1-converges to ψ1(t) for every t ∈ [a, b]. We continue by induction and construct
a sequence {Mi} of sets in G(N), M1 ⊃ M2 ⊃ . . . , such that the sequence {ψi

n(t)} weakly
Mi-converges to ψ

i(t) for every t ∈ [a, b] and i ∈ N, ψi ∈ BV (a, b ; X), Var [a,b] ψ
i ≤ Lεi+1.

Putting n1 := minM1, nk := min{n ∈ Mk ; n > nk−1} for k = 2, 3, . . . , M∗ := {nk ; k ∈
N} we argue as in the proof of Lemma 5.3 to obtain that ψi

n(t) weakly M∗-converges to
ψi(t) for every t ∈ [a, b] and i ∈ N.

We now check that {ψi} is a Cauchy sequence in G(a, b ; X). For i, j, n ∈ N we have

∥

∥ψi
n − ψj

n

∥

∥

[a,b]
≤

∥

∥ψi
n − fn

∥

∥

[a,b]
+
∥

∥fn − ψj
n

∥

∥

[a,b]
≤ εi + εj.

Consequently we have for t ∈ [a, b],

∣

∣ψi(t)− ψj(t)
∣

∣ ≤ lim inf
k→+∞

∣

∣ψi
nk
(t)− ψj

nk
(t)

∣

∣ ≤ εi + εj,
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from which readily follows that {ψi} is a Cauchy sequence in G(a, b ; X). We denote by
f ∈ G(a, b ; X) its limit. For each t ∈ [a, b], w ∈ X and k ∈ N we then have

〈f(t)− fnk
(t), w〉 =

〈

f(t)− ψi(t), w
〉

+
〈

ψi(t)− ψi
nk
(t), w

〉

+
〈

ψi
nk
(t)− fnk

(t), w
〉

for a suitably chosen i, and we easily conclude that fnk
(t) weakly converges to f(t) for

every t ∈ [a, b]. Theorem 5.2 is proved.

As a complement to Theorem 5.2, the following extension of Proposition 3.12 holds true.

Proposition 5.4. Let f, fn ∈ G(a, b ; X), g, gn ∈ BV (a, b ; X) for n ∈ N be such that
the sequence {fn} has uniformly bounded ε-variation and

fn(t) → f(t) weakly for every t ∈ [a, b] ,

lim
n→∞

‖g − gn‖[a,b] = 0 , sup
n∈N

Var
[a,b]

gn = C < ∞ .

Then (38) holds.

For the proof of Proposition 5.4 we need the following lemma.

Lemma 5.5. Consider w ∈ S(a, b ; X) and f̃n : [a, b] → X, f̃n(t) → 0 weakly for every
t ∈ [a, b]. Then

lim
n→∞

∫ b

a

〈

f̃n(t), dw(t)
〉

= 0 .

Proof of Lemma 5.5. For a function w of the form (6) we have by Proposition 3.7

∫ b

a

〈

f̃n(t), dw(t)
〉

=
m
∑

k=0

〈

f̃n(tk), ck+1 − ck

〉

,

where we put c0 := Ýc0, cm+1 := Ýcm, and it suffices to pass to the limit as n → ∞.

Proof of Proposition 5.4. For each ε > 0 and n ∈ N we find {ψε},{ψε
n} inBV (a, b ; X)

such that ‖fn − ψε
n‖[a,b] ≤ ε, ‖f − ψε‖[a,b] ≤ ε, Var [a,b] ψ

ε
n ≤ Lε + 1, and put ÝLε :=

max{Var [a,b] ψ
ε, Lε + 1}.

The sequence {fn} is obviously bounded in G(a, b ; X). Indeed, as {fn(a)} is weakly
convergent, it is necessarily bounded and we have for every n and t that

|fn(t)| ≤ |fn(t)−ψε
n(t)|+ |ψε

n(t)−ψε
n(a)|+ |fn(a)−ψε

n(a)|+ |fn(a)| ≤ 2 ε+ ÝLε + |fn(a)|

and taking the infimum over ε we obtain an upper bound for ‖fn‖[a,b] independent of n
and ε, say

‖fn‖[a,b] ≤ R .

Let now ε > 0 be fixed. By Proposition 1.3 (v), there exists a step function w ∈ S(a, b ; X)
such that ‖g − w‖[a,b] ≤ ε/ÝLε, Var [a,b]w ≤ C. Using Lemma 5.5 and the uniform con-

vergence of {gn}, we find n0 such that for n ≥ n0 we have |
∫ b

a
〈(f − fn)(t), dw(t)〉 | ≤ ε,
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‖g − gn‖[a,b] ≤ ε/ÝLε. Then Corollary 3.10 yields

∣

∣

∣

∣

∣

∫ b

a

〈f(t), dg(t)〉 −
∫ b

a

〈fn(t), dgn(t)〉

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ b

a

〈(f − ψε − fn + ψε
n)(t), d(g − w)(t)〉

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ b

a

〈(f − fn)(t), dw(t)〉
∣

∣

∣

∣

+

∣

∣

∣

∣

∫ b

a

〈(ψε − ψε
n)(t), d(g − w)(t)〉

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ b

a

〈(fn − ψε
n)(t), d(g − gn)(t)〉

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ b

a

〈ψε
n(t), d(g − gn)(t)〉

∣

∣

∣

∣

≤ 2C ‖f − ψε − fn + ψε
n‖[a,b] + ε+ (4 (R + ε) + 2 ÝLε) ‖g − w‖[a,b]

+ 2C ‖fn − ψε
n‖[a,b] + (2 (R + ε) + ÝLε) ‖g − gn‖[a,b]

≤ M ε

for n ≥ n0, where M is a constant independent of n and ε, hence (38) holds.

To conclude the paper, we show how Theorem 2.4 can be used to prove directly the
following link between Propositions 3.12 and 5.4.

Proposition 5.6. Let {un} be a sequence in G(0, T ; X), ‖un − u‖[0,T ] → 0 as n → ∞.
Then {un} has uniformly bounded ε-variation.

Proof. Let ε > 0 be given. For t ∈ [0, T ] and n ∈ N put u−(t) := u(t−), un
−(t) := un(t−),

ξn−(t) := pZ [0, u
n
−](t) with Z = Bε/2(0). By Theorem 2.4 there exists Cε > 0 such that

Var [0,T ] ξ
n
− ≤ Cε independently of n,

∥

∥un
− − ξn−

∥

∥

[0,T ]
≤ ε/2.

Let Uε ⊂ [0, T ] be the finite set of those t for which |u(t) − u−(t)| ≥ ε/4. For t ∈ [0, T ]
and n ∈ N we now put

un
ε (t) := un

−(t) + (un(t)− un
−(t))χUε

(t) , ξnε (t) := pZ [0, u
n
ε ](t) . (60)

Clearly, un
ε (t−) = un

−(t) for t ∈ [0, T ] and we infer from Proposition 2.2 that ξnε (t−) =
ξn−(t) for t ∈ [0, T ]. Consequently, ξnε (t) = ξnε (t−) = ξn−(t) for every t ∈ [0, T ] \ Uε, while
|ξnε (t)− ξnε (t−)| ≤ |un(t)− un(t−)| for t ∈ Uε by Lemma 4.1. Then ξnε ∈ BV (0, T ; X)
with Var [0,T ] ξ

n
ε ≤ Cε + 2

∑

t∈Uε
|un(t)− un

−(t)|, where |un(t)− un
−(t)| ≤ 2 ‖un − u‖[0,T ] +

|u(t) − u−(t)|, and we may put Lε := supnVar [0,T ] ξ
n
ε < +∞. For every t ∈ [0, T ] and

n ∈ N we have by (60) that |un
ε (t)− ξnε (t)| ≤ ε/2 and, on the other hand,

|un(t)− un
ε (t)| =

∣

∣

(

un(t)− un
−(t)

) (

1− χUε
(t)

)∣

∣

≤
∣

∣(u(t)− u−(t))
(

1− χUε
(t)

)∣

∣+ 2 ‖un − u‖[0,T ]

≤ ε/4 + 2 ‖un − u‖[0,T ] ≤ ε/2

for n ≥ n0 with n0 sufficiently large. This yields that ‖un − ξnε ‖[0,T ] ≤ ε for n ≥ n0. For
n < n0 we approximate the functions un for instance by step functions and taking a larger
Lε if necessary, we complete the proof.
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[11] P. Krejč́ı: Vector hysteresis models, Eur. J. Appl. Math. 2 (1991) 281–292.
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