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We describe - going back to the early eighties - a few ideas occurring in some papers by physicists
and mathematicians concerning the dynamical properties of certain fractal structures and we outline an
effective metric theory devised to bring these ideas together, in a metric framework of pseudo-Riemannian
type.
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1. The work of physicists

In the early eighties physicists discovered - by theory, experiment or simulation - that
certain disordered media occurring, for example, in percolation phenomena, ferromag-
netic/paramagnetic transitions, electrical depositions etc. display "strange" diffusive and
vibrational properties. The anomaly appears in the main scaling exponents governing,
for example, the space-time relation of the diffusive process, typically on these media of
the type

|Xt − x|2 ≈ t2/Dw .

The exponent Dw - called the walk dimension - while depending on the body it is always
found to deviate from the value 2, which it takes in the case of usual Brownian motions
in all Euclidean dimensions, indeed

Dw > 2.

Similarly, the vibrational modes obey an asymptotic law of the type

λk ≈ k2/Ds , for k >> 1,

where the exponent Ds - the so-called spectral dimension - for structures imbedded in a
Euclidean space of dimension D is found in general to be

Ds 6= D,

in contrast with the value Ds = D that Ds takes for Euclidean D-dimensional membranes,
as established by H. Weyl in 1912, [63].
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The exponents Dw and Ds are mutually related by the so-called Einstein relation

Dw

2
=

Df

Ds

,

where Df is the fractal dimension, that is the Hausdorff dimension of the body.

From the more general point of view of disordered media, Euclidean D-dimensional mem-
branes appear then to be a sort of "degenerate case", in which the three relevant dimen-
sional parameters Dw, Ds and Df satisfy

Dw = 2, Ds = Df = D.

It is enlightening to try to capture some of the main ideas that led physicists to elaborate
simple models that could explain the fractal "anomalies" described before.

The intuition was that unusual diffusion and vibrations could be explained as due to
ramification at all scales inside the body, and that the basic scaling exponents could be
found by the method of decimation in solving the basic equilibrium equations at each
scale.

From the point of view of mathematics, ramification - in a topological sense - had been
a main issue at the beginning of last century in the study of "strange curves", with weak
or none differential smoothness. In particular, W. Sierpiński, in 1915, published a paper
whose title was "Sur une courbe cantorienne dont tout point est un point de ramification",
[59].

We owe to physicists the creative act that turned these funny topological curves into
something, in some sense, alive, capable of diffusing heat or produce sounds by vibration:
"...e ora parla!", as Michelangelo is quoted by the legend to exclaim, after hitting his just
finished marble Moses.

In somewhat more technical words, what physicists did was to turn topological curves into
elastic bodies, of the kind of the strings and membranes of classic physics and analysis.
In the process, as we shall see below, deep mathematical new ideas came into light.

What makes the Sierpinski strings a particularly interesting model of fractal behavior are
two main geometrical features of these curves. First, they exist in all Euclidean dimensions
D ≥ 2. Second, they exhibit self-similarity at all scales (1/2)k, k = 1, 2, . . . .

A curve of this family can be obtained from a D-dimensional unit simplex
Γ = {a1, . . . , aD+1}, by indefinitely iterating the D + 1 similitudes

ψi(x) ≡ ai +
1

2
(x− ai), i = 1, . . . , D + 1.

This gives the set

S∞ =
∞
⋃

n=0

Sn,

where each Sn is obtained by putting together all smaller images of the initial simplex
under the iterated action of the maps ψi1 ◦ . . . ◦ ψin , each index ih taking all values of
the set I = {1, . . . , D + 1}, for h = 1, . . . , n. The final curve is then the closure S of the
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set S∞. At each point of the set S∞ − Γ, everywhere dense in S, 2D branches of S meet
together.

In this way, a full scale of simple models of increasing ramification becomes available.

The decimation procedure is also carried on iteratively, by applying Kirchhoff laws at the
stage nth of iteration to the graph Sn, treated now as an electric circuit. The idea consists
in eliminating - in the system of equilibrium equations satisfied at each node - the lowest
scale amplitudes corresponding to the mid-points of hyper-tethraedon edges.

The equilibrium conditions of the free circuit at each (interior) node p of Sn are then
found to be

∆nu(p) = 0.

The pre-Laplacean ∆n is the graph operator

∆nu(p) = (D + 3)n(
∑

q∼np

u(q)− χ{q ∼n p}u(p))

where, for each p ∈ Sn, {q ∼n p} denotes the set of all neighbouring points q ∈ Sn of
p - that is, the set of the 2D vertices of the 2 simplexes of size (1/2)n meeting at p - and
χ{q ∼n p} is the number of such neighbouring points, that is, χ{q ∼n p} = 2D.

The interior nodes, mentioned before, are the points of the graph distinct from the vertices
of the initial simplex. The D + 1 vertices of the initial simplex assume the role of the
boundary, Γ, of Sn and of the curve S itself. On Γ, Dirichlet or Neumann conditions can
be prescribed. In what follows, we shall assume for simplicity that all functions on S∞,
as well as on S, satisfy a homogeneous Dirichlet condition on the boundary, that is, they
vanish at the points of Γ = {a1, . . . , aD+1}.
The operator ∆n, with its scaling factor (D+3)n, is the main outcome of the decimation
technique. This method gives also the spectral dimension of S, namely

Ds = 2
log(D + 1)

log(D + 3)
.

Note also that the walk dimension is given by the Einstein relation and is

Dw =
log(D + 3)

log 2
.

For these results we refer e.g. to R. Rammal [55].

This is a rather surprising result, which shows that increasing ramification affects geometry
and dynamics in quite diverse extent. In fact, the (Hausdorff) geometric dimension of S,
Df , easily calculated to be

Df =
log(D + 1)

log 2
,

grows with D logarithmically to ∞. Also Dw grows logarithmically to ∞. On the other
side, the spectral dimension Ds remains bounded and strictly less than 2 as D → ∞.
Therefore, the spectral dimension of S - as a function of the imbedding dimension
D - interpolates, in a logarithmic scale, the spectral dimension Ds = 1 of 1-dimensional
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strings and that, Ds = 2, of 2-dimensional membranes. The value 2 is reached only
asymptotically, as D → ∞.

Physicists have been able to "construct" a full scale of strange "balalaika", sounding less
and less like a string and more and more like a drum!

For more informations about the physical aspects of the fractal theory mentioned before
we refer, e.g., to D. Stauffer [60], Y. Gefen - A. Aharoni - B. B. Mandelbrot - S. Kirkpatrick
[22], Y. Gefen - A. Aharoni - S. Alexander [21], S. Alexander - R. L. Orbach [1], R. B.
Stinchcombe - C. H. Harris [61], R. Rammal [55], R. Rammal - G. Toulouse [56] and to
the surveys S. Havlin [24], T. Nakayama - K. Yakubo - R. L. Orbach [51].

2. The work of mathematicians

Such intriguing analytical models could not be ignored by mathematicians. At the turning
of eighties and nineties, a group of probabilists - working independently - were able to
construct rigorously a diffusion process within certain model fractals.

The work was done in the late eighties, initially for the Sierpinski curve, by S. Goldstein
[23], S. Kusuoka [31], M. T. Barlow and E. A. Perkins [3] and by T. Lindstrøm [37]. They
considered suitably scaled random walks on the pre-fractal graphs Sn and then went to
the limit in n, as the graph approaches the continuous curve. It should be noted, in this
regard, that only the limit continuous set enjoys self-similarity at all scales h = (1/2)n,
hence only the limit fractal curve possesses the intrinsic invariance postulated in physical
applications.

Out of Sierpinski models, Lindstrøm was able to describe a larger family of fractals - called
by him nested fractals - intended to be a good mathematical model for what physicists call
finitely ramified fractals, that is, self-similar bodies that can be disconnected by a finite
number of cuts. Incidentally, a peculiar feature of Lindstrøm approach - also based on
probability and the constructions of random walks - is the use of non-standard analysis.
Non-standard analysis appeared indeed to him as the natural tool to get a continuous
diffusion out of the approximating discrete random walks.

An analytic approach to the construction of fractal "Laplaceans" was taken by J. Kigami,
[28], who used suitably scaled finite-difference schemes on the pre-fractals. Given a con-
tinuous function u on the curve, he defined f = ∆u to be the continuos function on the
curve obtained as the uniform limit of suitable finite-difference approximations, provided
this limit exists. Due to the restriction on its domain, this operator plays the role of a
sort of analogue of the classic Laplacean on smooth functions.

We note, incidentally, that uniqueness and non-uniqueness results of "Laplaceans" on
certain model fractals have been given by V. Metz, [41], R. Peirone, [53], C. Sabot, [58].

To show that both approaches - the probabilistic and the analytic one - are two sides of
the same medal requires to show that there is a same self-adjoint operator in the role, on
the one side, of the generator of the diffusion semigroup and, on the other side, in that of
the Friedrichs extension of the analytic Laplacean considered by Kigami.

Here the theory of Dirichlet forms of Beurling-Deny came into play and allowed S.
Kusuoka, [32], [33], and M. Fukushima - T. Shima, [20], to make the desired connection.
It is perhaps worthwile to remember that random walks and finite-difference scheme,
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Brownian motions and differential operators had already been brought together more or
less sixty years before by R. Courant - K. O. Friedrichs - H. Lewy, in their by now famous
paper [16].

Non finitely-ramified fractals are harder to deal with in rigorous mathematical terms. The
typical example is, for example, the so-called Sierpinski carpet, which - in the plane - is
obtained by a similar Cantor-like construction as for the Sierpinski curves, but with
squares replacing triangles. The construction of nontrivial diffusion processes was done in
this case by M. T. Barlow - R. F. Bass - J. Sherwood [4] and, in a series of papers, by M. T.
Barlow - R. F. Bass, see e.g. [2], relying on probabilistic techniques. More analytically
minded is the work carried out by S. Kusuoka - X. Y. Zhou, [34], and S. Kozlov, [29]. In
the approach of these authors, certain energy estimates play the main role.

We do not attempt here to describe these mathematical results. We shall confine ourselves
to outline an approach to the theory inspired to classic Riemmanian models.

3. The effective distance

We come back to the physical ideas of ramification and decimation. Having in mind
classic Riemannian models, out of these physical concepts we can extract new pseudo-
Riemannian notions which help us to better understand the strange behavior of fractals
and other non-Euclidean structures, like certain homogeneous groups, [43].

Let us then go back to the Sierpinski curves and their ramifications. The curve S itself
is clearly a non rectifiable set and there is no easy way to define a distance function
on it. On the other hand, Riemannian geometry teaches us that a good metric, from
the analytic point of view, is the one related to a gradient form and, eventually, to a
differential operator of Laplace-Beltrami type.

Applied to our complicated curve, this means that a good candidate for a distance inside
the curve - or, to start with, inside the pre-fractal Sn - must cope with the presence of
ramifications in Sn and be associated with a gradient form for functions on Sn.

Note that, as a set, Sn can be identified with In = {1, . . . , D + 1}n and Sn is a graph
under the relation ∼n. We recall that p ∼n q if p and q are two vertices of a same symplex
of size (1/2)n occurring in Sn. Therefore, by connecting every two neighbouring points
p ∼n q of Sn with a straight line segment, we get the union of the edges of all (D + 1)n

small simplexes, each one of size (1/2)n, obtained at the step n of the iteration. Moreover,
each node p ∈ Sn−Γ is now at the crossing of 2D straight-line segments of length (1/2)n.

For fixed n, the piece-wise straight-line curve so obtained exhibits ramification only at
the scale (1/2)n. In this sense, it is a poor approximation of the limit curve S constructed
before.

We make Sn into a better approximation of the limit curve, by filling each small simplex
of size (1/2)n - constructed before - not only with its edges, but with the whole portion of
the limit curve which it encompasses. If we connect two vertices p and q of one of these
simplexes - hence two contiguous nodes of Sn - with a generic path along the curve inside
that simplex, we now meet points of ramifications at all scales (1/2)n+k, k = 1, 2, . . ..

Note that we reach the same result if, instead of filling in whole portions of the limit
curve, we fill each initial simplex of size (1/2)n only with the union of the edges of all
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simplexes of smaller size (1/2)n+k, k = 1, 2, . . ., which originate from it by similarity.

Now we turn this fully ramified Sn into an effective graph, by defining on it a suitable
effective gradient which takes ramification into account.

To achieve this, we introduce a parameter

δ > 0

intended to be a sort of effective measurement of the ramification existing in our graph.

More precisely, we postulate that ramification - for every n ≥ 1 - affects the initial
Euclidean distance |p− q| = (1/2)n of two neighbouring point of Sn, by changing it into
the distance

dn(p, q) = |p− q|δd0(ξ, η) = (1/2)nδd0(ξ, η).

Here d0(ξ, η) is a given function assigned on Γ× Γ and ξ, η are points of Γ carried into p
and q, respectively, by one of the maps ψi1 ◦ . . . ◦ ψin .

The matrix d0 is supposed to express the effective distance of two points of the initial
simplex Γ, filled in with the whole S, or S∞. In the present case, by obvious symmetry
reasons, we choose d0(ξ, η) to be independent of the pair ξ, η, hence d0 to be a constant,
which, for simplicity, we put equal to 1 in the following.

Having incorporated the metric effect of ramification into the - by now unknown - pa-
rameter δ, hence in the effective distance, we are now in a position to define the effective
gradient

5nu · 5nv

on Sn.

If u and v are arbitrary functions on Sn, for every fixed p ∈ Sn we put

5nu · 5nv(p) =
∑

q∼np

u(p)− u(q)

dn(p, q)

v(p)− v(q)

dn(p, q)
,

where, as before, the sum is extended to all q which are neighbours of p in Sn. Therefore,

5nu · 5nv(p) = 4nδ
∑

q∼np

(u(p)− u(q))(v(p)− v(q))

which shows more explicitely that δ is a sort of "control parameter" of the (effective)
gradient on Sn.

The main point of our pseudo-Riemannian approach consists in choosing δ so that this
gradient can be legitimated - in a convenient sense to be better specified - as a gradient
of pseudo-Riemannian type.

The pseudo-Riemannian nature of the gradient - in our picture - should consist in that:
distance, volume and energy on the graph must be in mutual relationship - all changes
done - as on a Riemannian manifold.

On a Riemannian manifold, distance, volume and energy descend all from a same Rie-
mannian metric tensor. Here - for the Sierpinski strings - we simply demand that:
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The square distance scales as the Lagrangean form

Ln(u, v) := 5nu · 5nv µn

under the action of the basic similarities.

Above,

µn =
∑

p∈Sn

(D + 1)−n δ{p}

is the volume measure of Sn, δ{p} being a unit Dirac mass at the point p.

More explicitely, we require that the identities

d2n(p, q) =
D+1
∑

i=1

ρd2n+1(ψi(p), ψi(q))

as well as

Ln(u, v) =
D+1
∑

i=1

ρLn−1(u ◦ ψi, v ◦ ψi),

expressing (self-similar)invariance of distance and energy, both hold with the same scaling
factor ρ > 0.

The problem now consists in determining ρ and, in this way, finding the good value of δ.
Since this is the crucial step, we shall do it in three equivalent ways: decimation, Gauss
principle, spectral gap.

Decimation

By integrating the Lagrangean Ln(u, v) over S
n, we get the total energy

En(u, v) =

∫

dLn(u, v).

The Lagrangean is easily calculated:

Ln(u, v)(dx) = 4nδ(D + 1)−n
∑

p∈Sn

∑

q∼nx

(u(x)− u(q))(v(x)− v(q)) δ{p}(dx).

Therefore,

En(u, v) = 4nδ(D + 1)−n
∑

p∈Sn

∑

q∼np

(u(p)− u(q))(v(p)− v(q))

This identifies the scaling factor of the Lagrangean, hence of the total energy, as

ρ = 4δ(D + 1)−1,

and gives δ as a function of ρ

δ =
log((D + 1)ρ)

log 4
.
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By integrating by parts and taking boundary conditions - say, u = 0 on Γ - into account,
we find

En(u, v) = −
∫

(∆nu)v dµn = −
∑

p∈Sn

(∆nu)(p)v(p)(D + 1)−n

where
(∆nu)(p) := 4nδ(

∑

q∼p

u(q)− χ{q ∼n p}u(p)).

Here is where decimation comes into the picture. The operator ∆n occurring in the previ-
ous relation takes the role - in our approach - of an (effective) Laplace-Beltrami operator
on the graph Sn. On the other hand - according to the physical evidence described before
- this operator must coincide with the pre-Laplacean ∆n obtained by decimation. This
requires the two scaling factors 4nδ and (D + 3)n to be equal, that is, we must have

δ =
log(D + 3)

log 4
,

hence

ρ =
D + 3

D + 1
.

Note that this identifies Dw as
Dw = 2δ.

We can summarize what we have done sofar, by saying that the pre-Laplacean obtained
by decimation can be interpreted to be a bona fide effective Laplace-Beltrami operator
on the graph Sn, provided we introduce a suitable (effective) metric inside the graph.

The Gauss principle

The integrated version of the decimation principle is that the equilibrium potential min-
imizes the total energy of the circuit.

This can be expressed in the form of a Gauss principle, requiring the equilibrium solution
to be given at a point by a suitable average of neighbouring points, see also K. J. Falconer
- J. Hu [18]. This principle can be equivalently stated as a harmonic variational principle
as follows:

The energy En(u, u), obtained by minimizing En(v, v) on Sn over the values of v in Sn −
Sn−1 given the values of v = u on Sn−1, must be equal to the energy En−1(u, u).

It can be seen that, in order to calculate the scaling factor ρ, it suffices to apply this
principle at the first step of the iteration, that is with n = 1, when Sn−1 = S0 = Γ. This
requires solving a simple quadratic minimization problem and gives the same value of ρ
as before. This is the usual way in which ρ is determined, for example in M. Fukushima
- T. Shima [20], S. Kozlov [29], see also R. Capitanelli [13] for more details on this point.

The spectral gap

An interesting method is the one suggested by S. Kusuoka - X. Y. Zhou in [34], presented
here in a slightly different form, the crucial notion being now that of spectral gap. By
spectral gap of Sn we mean the number
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λNEUM
1 =

1

cP (n)
,

where cP (n) denotes the best constant in the Poincaré inequality

∫

Sn

|u− ūn|2dµn ≤ cP (n)

∫

Sn

5nu · 5nudµn,

where

ūn = µn(S
n)−1

∫

Sn

udµn.

It is clear that the choice of δ in the gradient form affects the best Poincaré constant
cP (n), hence the eigenvalue λNEUM

1 (n). In other words, in this picture, δ is the control
parameter of the spectral gap.

By spectral gap control, we now mean that λNEUM
1 (n) stays bounded and away from 0, as

n → ∞. That is, we look for two constants c1, c2, such that

0 < c1 ≤ λNEUM
1 (n) ≤ c2 < ∞

for every n.

This non-triviality of the spectral gap is indeed the fundamental property which really
turns our geometric curve into an elastic body. In fact, if λNEUM

1 (n) vanishes as n → ∞,
then the Poincaré constant cP (n) grows up to ∞. This means that, in the left side of
Poincaré inequality, we can achieve infinite displacements with, at the right hand side,
vanishing energy: the continuous curve exhibits no resistance at all to deformation under
external forces, hence it has trivial elasticity. On the other hand, if λNEUM

1 (n) grows up
to ∞, then cP (n) vanishes and we get no displacement at all at the left hand side of the
inequality, notwithstanding how big the energy at the right hand side of the inequality is:
the curve stays stiff like a stone, again no meaningful elasticity is inherited in the limit.

It is easily seen that if a value of the parameter δ exists, such that both uniform bounds
on λNEUM

1 (n) hold, then this value is unique. In fact, if δ∗ is such a value and we replace
it by δ < δ∗ in the expression of the effective gradient, then this would affect λNEUM

1 (n) by
a factor 4n(δ−δ∗), leading to a vanishing spectral gap. Similarly, the uniform upper bound
λNEUM
1 (n) would be violated, if we take δ > δ∗.

It can be seen by direct calculations that the good value of δ, assuring both uniform
bounds of λNEUM

1 (n) from below and from above, is - for the Sierpinski strings - the same
value

δ =
log(D + 3)

2 log 2

obtained before.

It should be noted that, in order to fulfill the condition on the spectral gap, no exact
calculations are required in principle, but only estimates of energy type. This brings this
topic in connection with homogenization theory and introduces flexibility in the strict
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self-similar approach represented by decimation and other similar techniques, see also
S. Kozlov [29] in this respect.

We consider the control of spectral gap - as specified by the uniform estimates above
- to be the appropriate tool, in an effective pseudo-Riemannian approach, to build up
a structural theory of fractal bodies, stable under energy perturbations in the sense of
homogenization. That is, a theory aimed at establishing uniform estimates for a whole
class of operators with comparable Lagrangean forms, as in the classic theory of uniformly
elliptic operators of De Giorgi-Nash-Moser type.

The main lines of such a general theory emerge from the example of the Sierpinski strings,
as we shall see below. Before, we shall better describe the analytic objects - variational
fractals - obtained by the previous construction in the limit as n → ∞.

4. Variational fractals

When applied to the Sierpinski strings, the analytic theory we have in mind refers not to
the graphs Sn considered up to now, but to the (nonrectifiable) curve S itself. This curve
has been constructed in Section 1 as the limit of Sn as n → ∞. As already noted, it is S
- not Sn - the self-similar set under the action of the mappings ψi, i = 1, . . . , D + 1, that
is,

S =
D+1
⋃

i=1

ψi(S),

therefore it is S the natural candidate for an invariant theory.

S is a compact subset of RD and the Hausdorff dimension of S, as already mentioned in
Section 2, is

Df =
log(D + 1)

log 2
.

The natural "volume measure" in S is the restriction to S of the Df− dimensional Haus-
dorff measure of RD, normalized to have total mass 1, that is, the measure

µ = (HDf (S))−1 HDf |S.

It is easy to see that µ is the weak limit in S of the discrete measures µn - supported on
Sn - as n → ∞. The measure µ is also self-similar, this property being expressed by the
identity

µ(F ) =
1

D + 1

D+1
∑

i=1

µ(ψ−1
i (F ))

for every Borel set F in S.

We can thus construct the Hilbert space L2(S, µ) on S, which of course plays an important
role in the whole theory.

More problematic is taking the limit of the graph Lagrangeans Ln as n → ∞. Indeed, the
pointwise values Ln(u, v)(p) at a fixed node p ∈ S∞ are all well defined if n is large enough,
however they oscillate wildly and do not converge as n → ∞ for nontrivial functions u
and v.
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What helps here is that the discrete measures Ln(u, v) do indeed converge weakly to a
measure L(u, v) on S as n → ∞, for a dense family C of (continuous) functions u and
v in L2(S, µ). Moreover, as a function of u and v, the measure L(u, v) inherits from the
discrete Ln(u, v) the nature of a gradient map. In fact, the following chain rule

L(g(u), v) = g′(u) L(u, v)

is satisfied in the measure sense, for every real function g ∈ C1(R,R) and for all functions
u, v ∈ C. We shall call such a measure-valued map a Lagrangeanform.

The Lagrangean form on S turns out to be closable in the space L2(S, µ). This means
that the abstract completion of C in the norm

||u|| = (

∫

u2 dµ +

∫

dL(u, u))1/2,

is injected in the space L2(S, µ).

The Lagrangean L is also self-similar. In fact, it satisfies the identity

L(u, v) =
N
∑

i=1

ρL(u ◦ ψi, v ◦ ψi)

for every u, v ∈ C, that follows from the iterative analogous similarity relation of the
discrete Ln. The parameter ρ is the one already calculated in Section 3. For more details
on the construction of L see for example S. Kusuoka [33], or R. Capitanelli [11].

As shown by Kusuoka, [32], however, the measure L(u, v) - for nontrivial u and v - is
singular with respect to m: this makes life difficult!

In analogy with what we have done on the graphs, we now define the effective distance

d(x, y) := |x− y|δ

for x, y ∈ S, by choosing δ such that d2 enjoys the same invariant scaling as L, that is

d2(x, y) =
N
∑

i=1

ρd2(ψi(x), ψi(y).

It is easy to check that this gives a unique value of δ, the same as in Section 3.

An important property, which mutually relies S, µ and L, follows from the estimates
leading to the spectral gap control of Section 3. Namely, the following global Poincaré
inequality holds

∫

S

|u− ū|2 dµ ≤ cP

∫

S

dL(u, u)

for every u, v ∈ C, ū = µ(S)−1
∫

S
udµ.

This inequality is a strong form of global irreducibility of L, because it implies, in par-
ticular, that if u ∈ C is such that L(u, u) = 0 on S, then u is a constant. The physical
meaning of this property is the one already described in Section 3.
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A triple
(S, µ,L)

with the above properties, has been called a variational fractal in [44], [45]. This is a class
of self-similar fractals for which a variational theory of Laplace and heat equation can be
carried on, as we shall now briefly describe.

By integration of L(u, v) over S we get the energy form

E(u, v) =

∫

dL(u, v)

on the domain C. The closure of E - taken initially with domain C - in the norm ||u|| is
a closed form in L2(S, µ), with dense domain denoted DE. We keep the notation E also
for the closed form.

We shall also denote DE by H1, in analogy with the classic theory, in which C = C∞,
µ = dx, L(u, v) = 5u·5v dx, and the domain of the closed form E(u, v) =

∫

5u·5v dx is
the usual Sobolev space H1. Similarly, by H1

0 we denote the closure in H1 of all functions
of C which vanish on Γ.

By the general theory of forms, there exists then a self-adjoint operator ∆DIR in L2(S, µ),
with domain D∆DIR dense in H1

0 , such that

E(u, v) = −
∫

(∆DIRu) v dµ

for every u ∈ D∆DIR and every v ∈ H1
0 . This is the Laplace operator in S, with Dirichlet

boundary conditions. Similarly defined is the Laplace operator with Neumann boundary
conditions ∆NEUM, obtained by replacing H1

0 with H1 in the preceding identity.

By relying on the spectral theory of self-adjoint operators, we can also construct the
semigroup

Pt = e∆
DIRt, t > 0.

Thus we have all the ingredients to develop a theory of Laplace and heat equations and
related Green function g(x, y) and heat kernel pt(x, y).

We do not intend to develop further the theory of these equations here. We refer to
the papers mentioned in Section 2 and also to [45], [46]. Instead, we prefer to describe
how self-similar invariance can be turned into metric invariance and, consequently, how a
purely metric fractal theory - that of metric fractals - can be extracted from the previous
example of a variational fractal.

5. Metric fractals

The variational fractal S = (S, µ,L) constructed in Section 4 enjoys self-similar invari-
ance with respect to the mappings ψ1, . . . , ψD+1 generating the Sierpinski string under
consideration.

We recall that S is a quasi-metric space endowed with the quasi-distance d. We also recall
that d2 also enjoys self-similar invariance, with the same factor as L.
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Clearly, two concentric balls - in the quasi-metric d - are not invariant under the action
of the mappings ψi. However, it can be proved that there exists a constant M ≥ 1,
independent of x and R, such that each ball BR ≡ BR(x) can be approximated by the
union of at most M sets

Si1,...,ik := ψi1 ◦ · · · ◦ ψik(S),

whose diameter - in the metric d - is of order R, i.e., diamSi1,...,ik ≈ R.

To simplify notation, above - and in the following - we write A ≈ B, where A and B
are two positive quantities, to mean that c1A ≤ B ≤ c2A, for some constants c1 and c2,
independent of x and R and of all functions possibly involved in A and B, depending only
on the structural constants of X.

As shown in [44], [45], by using this approximation and the self-similarity relations of
Section 4, it is possible to derive the following inequalities:

m(Br)

m(BR)
≈ (

r

R
)ν

∫

BR

|u− ū|2dm ≤ cPR
2

∫

BqR

dL(u, u)

cap(BR, B2qR) ≤ cC
m(BR)

R2
,

where m = µ, which hold for every 0 < p ≤ R < R0 and every BR = BR(x) and where ū
is the mean-value of u ∈ C in BR, q ≥ 1.

We have single out these inequalities because they capture the main dynamic features of
our fractals. Indeed, as shown below, they bring into light the pseudo-Riemannian nature
of the effective metric.

We call metric fractal any triple (X,m,L) with the following properties:

X is a quasi-metric space, endowed with a quasi distance d, that is, X is a topological
space and d a quasi-distance on X (i.e., d is a function on X ×X that has the properties
of a distance except for the triangle inequality, satisfied up to a mutiplicative constant
cT ≥ 1), such that the (quasi-) balls BR(x), R > 0, of d form a basis of neighborhoods at
each point x ∈ X;

m is a positive measure supported on X;

L is a measure-valued Lagrangean form on a dense subalgebra C of the space of bounded
continuous functions on X, closable in L2(X,m),

d, m and L being mutually related by the family of inequalities on balls listed above,
where now ν, q ≥ 1, cP and cC are any given positive constants, independent of x ∈ X
and of R, for 0 < r ≤ R < R0, R0 ∈ (0,∞], and of u ∈ C.
Before proceeding, let us make a few comments on these inequalities.

The inequality satisfied by m says that the volume in X has polynomial growth.
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The Poincaré inequality is a weak lower bound for the spectral gap, that is, for the first
nontrivial eigenvalue λNEUM

1 (BR) on the ball BR. In fact, if q = 1, then by Raleigh-Ritz
formula we find

λNEUM
1 (BR) = min

∫

BR
dL(u, u)

∫

BR
|u− ū|2dm

≥ c−1
P R−2

hence
c−1
P ≤ R2λNEUM

1 (BR).

The capacity inequality gives a upper bound for the first eigenvalue λDIR
1 (BR) of the

Dirichlet problem with vanishing boundary condition on the boundary of BR. In fact,
again by Raleigh-Ritz formula, if Φ is the capacitary potential of BR in B2qR, we have

m(BR) =

∫

BR

Φ2dm

≤

∫

B2qR
Φ2dm

∫

B2qR
dL(Φ,Φ)

∫

B2qR

dL(Φ,Φ)

≤ (λDIR
1 (B2qR))

−1cap(BR, B2qR)

≤ cC(λ
DIR
1 (B2qR))

−1m(BR)

R2

therefore
R2λDIR

1 (BR) ≤ 4q2cC .

These spectral bounds, together with the polynomial growth of the volume, can be seen
as the characteristic features of metric fractals. Note that the above set of inequalities
is stable under changes to equivalent quasi-distances, measures and Lagrangeans. In this
sense, the inequalities express "effective" properties of X.

Before mentioning some of the results that hold on metric fractals, let us give further
examples which better show the pseudo-Riemannian character of these structures.

A first classic example of a metric fractal is the one arising in the obvious way from any
second order uniformly elliptic operator in divergence form, with bounded measurable
coefficients, as in the theory of De Giorgi, Nash and Moser.

Another classic example is given by X a complete D-dimensional Riemannian manifold
with Ricci curvature bounded from below. Then, if k0 ≥ 0 is the constant occurring in
the lower bound Ric ≥ −k0g of the curvature, Bishop-Gromov comparison theorem gives
the bound

|B2R| ≤ 2D
√

(D − 1)k02R|BR|

see J. Cheeger - M. Gromov - M. Taylor [15], while Buser inequality gives

∫

BR

|u− ūBR
|dvol ≤ cexp(

√

k0R)R

∫

BR

| 5 u|dvol
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c a constant depending only on D and |B| = vol(B), see P. Buser [10].

A semi-classic example is the one of certain stratified homogeneous Lie groups, like the
Heisenberg groups. The simplest of these Lie groups is R3 with the vector fields

Y1 =
∂

∂x1
+ 2x2

∂

∂x3

Y1 =
∂

∂x2
− 2x1

∂

∂x3
,

that satisfy a Hörmander condition of length L = 2: the vector fields {Y1, Y2, [Y1, Y2]}
span the whole R3 at every point. The distance d here is the one, d = dOPT , given by
geometric optics along the fields, namely dOPT (x, ·) is the maximal subsolution - vanishing
at x - of the eiconal equation

|Y Φ|2 ≡ |Y1Φ|2 + |Y2Φ|2 = 1,

that is,

dOPT (x, y) = sup{Φ(x)− Φ(y) : |Y Φ|2 ≤ 1, Φ ∈ C∞
0 }.

Then, the following inequalities hold, due to A. Nagel - E. M. Stein - S. Wainger [50],
L. P. Rothschild - E. M. Stein [57], C. L. Fefferman - D. H. Phong [19], D. Jerison [25]:

dOPT (x, y) ≤ c|x− y|δ

where now δ = 1/L = 1/2;
|B2R| ≤ c|BR|;

∫

BR

|u− ū|2dx ≤ cR2

∫

BR

|Y u|2dx.

Note that now δ is smaller than 1, to compare with the previous fractal case, in which
δ > 1: fractals and degenerate subelliptic operators of Hörmander type show opposite
intrinsic metric behaviour! It is in some sense surprising that a common effective metric
theory can be developed for both.

In this regard, let us also notice that the theory applies also to uniformly subelliptic
operators with possibly discontinuous coefficients. In the previous Heisenberg case, for
example, these operators are obtained by replacing YhYk with Yhαh,kYk - where αh,k is a
uniformly positive-definite 2 × 2 matrix of bounded measurable functions on R3 - hence
by replacing the (smooth) operator

∑

h,k YhYk with the operator
∑

h,k Yhαh,kYk whose
coefficients are discontinuous, see [42].

Let us now mention some of the main results that can be obtained in the general framework
of metric fractals.

Inequalities of Morrey-Sobolev type, in which ν plays the role of critical exponent, and
inequalities of John-Nirenberg type when ν = 2, as well as Nash inequalities for all
dimension ν > 0, see M. Biroli - U. Mosco [7], [8], J. Malý - U. Mosco [38], R. Capitanelli
[12].

Moreover, Harnack inequalities of De Giorgi-Nash-Moser type in the case ν < 2, which,
by the way, includes the fractal example of Sierpinski strings, [49].
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Harnack inequalities in the case ν > 2 have been obtained in [9] - in a different but
essentially equivalent framework - under the additional assumption that the Lagrangean
measure L(u, v) admits a density with respect to the underlying volume measure m.
This assumption, however, rules out the fractal case - as we have seen in the example of
Sierpinski curves.

The study of Harnack inequality in the general case, certainly one of the main objective
of the theory, is the object of current research. The main difficulty relies in the fact that
cut-off functions of finite energy are not easily available in the present context.

When Harnack inequalities are at hand, then estimates of fundamental solutions can also
be obtained. For example, the Green function gBR

(x0, x) for the Dirichlet problem in a
ball BR can be estimated on the boundary of a smaller concentric ball Br by

gBR
(x0, x)|x∈∂Br ≈

1

2− ν
(R2−ν − r2−ν))

if ν 6= 2, and by

gBR
(x0, x)|x∈∂Br ≈ log(

R

r
),

if ν = 2. These estimates reproduce the Euclidean behavior, showing the universality of
the effective metric theory presented here.

6. Remarks and conclusions

We conclude by mentioning a few other results, in the spirit of partial differential equations
and convex analysis.

Semilinear equations of the type

−∆u− λu+ f(u) = 0

have been studied on variational fractals by M. Biroli - S. Tersian [6], K. J. Falconer [17],
K. J. Falconer - J. Hu [18], M. Matzeu [40], the critical exponent being (ν + 2)/(ν − 2),
in analogy with the Euclidean case.

Transmission problems accross a fractal layer Σ - e.g., the Koch curve - in a plane domain
Ω have been recently studied by M. R. Lancia [35] and M.R. Lancia - M. A. Vivaldi [36].
These are problems of the kind considered by H. Pham Huy - E. Sanchez Palencia in the
70’s, [54], involving a second order transmission condition, of the type

−∆u = f in Ω− Σ,
∂u

∂n+
− ∂u

∂n− = ∆Σu,

where ∆ is the usual Laplace operator in R2, ∆Σ is the fractal Laplacean on the Koch
curve - constructed in a similar way as on the Sierpinski strings - and ∂n+, ∂n− denote
the normal derivatives at the opposite sides of Σ in Ω. This study relies on the recent
theory of Besov- and Lipschitz spaces on possibly very irregular sets, due to A. Jonsson,
H. Wallin and H. Triebel, [26], [27], [62]. Similar problems have been also studied by
T. Lindstrøm, [37], and T. Kumagai, [30], without, however, making the transmission
condition explicit.
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Convex energy functionals - and related Sobolev spaces W 1,p and p-Laplaceans - have
been constructed by R. Capitanelli, [12] on certain model fractals like the Koch curve and
then compared with Besov and Lipschitz spaces by M. R. Lancia - R. Capitanelli in [14].

Finally, certain aspects of fractal theory, like existence of general selfsimilar measures in
quasi-metric spaces and dimensionality problems for affine fractals, have been studied by
M. V. Marchi [39] - where a construction of a fractal set in the Heisenberg group is also
given - and by M. P. Bernardi - C. Bondioli [5], see also [48].

As a conclusion, we can say that various classic, semiclassic and fractal analytic theories of
general - possibly intrinsically non-Euclidean and fractal - "elastic bodies" can be built on
a common metric background, named above a metric fractal. This "primitive" structure
is made of quasi-distances, doubling measures and measure-valued Lagrangeans, related
by the fundamental property loosely stated by saying that Lagrangeans control mean
oscillations at all metric scales.

The main analytic "mechanisms" generating these structures are Lie group invariance,
from the one side, and self-similar invariance on the other side. In both cases, the non-
Euclidean nature of the structure is incorporated in the intrinsic effective metric - typically
with δ < 1 in the first case, δ > 1 in the fractal case - this way leading to "universal"
scaling laws.

The theory is "effective", in the sense that - as in homogenization - all estimates hold
uniformly for equivalent metrics and energy forms.
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