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An example is shown of a functional

F (u) =

∫

I

f(u, u′) dt

which is not lower semicontinuous with respect to L1-convergence. The function f is nonnegative, con-
tinuous and strictly convex in the second variable for each u ∈ Rn.
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1. Introduction

In the recent paper [3], the authors construct an example of functional of type

F (u) =

∫

Ω

f(z, u,∇u) dz (1)

on W 1,1(Ω;Rd) which is not lower semicontinuous with respect to L1-convergence, al-
though the integrand is convex in the last variable. In this paper we present another such
example, but of different nature and giving answer to other questions.

Here Ω ⊂ RN is an open set and f : Ω× Rd × Rd×N is a nonnegative function convex in
the last variable.

The lower semicontinuity questions are important in connection with searching for mini-
mizers in the Calculus of Variations. We refer to the books [1], [2], [7], [11] for treatments,
notes and bibliography.

If the integrand f (nonnegative, convex) depends only on the last variable, then the
functional F is lower semicontinuous with respect to L1-weak convergence without any
additional assumptions, see [10], [9, Th. 1.8.1.]. The situation is more complicated in the
general case. The following theorem is due to Serrin [10]. Let us emphasize that d = 1 in
Serrin’s theorem.

ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag
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Serrin’s l.s.c. theorem. Let f : Ω × R × RN → [0,∞) be a continuous function, with
f(z, ζ, ·) convex. Assume that f satisfies one of the following conditions:

(a) f(z, ζ, ζ̄) → ∞ as |ζ̄| → ∞ for each (z, ζ) ∈ Ω× R.
(b) f(z, ζ, ·) is strictly convex for each (z, ζ) ∈ Ω× R.
(c) The derivatives fz, fζ̄ and fζ̄x exist and are continuous.

Then F is lower semicontinuous in W 1,1
loc (Ω) with respect to local convergence in L1.

Recently the lower semicontinuity problems for convex and generalized-convex functionals
were treated by Fonseca and Leoni [5], [6], [8]. They obtained a lower semicontinuity
results for vector-valued case. Namely, they assume that f is a lower semicontinuous
function convex in the last variable satisfying the linear coercivity assumption

f(x, ζ, ζ) ≥ c|ζ| − 1

c

for some c > 0, and that for each (x0, u0) ∈ Ω × Rd there exists a continuous function g
on a neighborhood U of (x0, u0) with values in Rd×N such that f(x, u, g(x, u)) ∈ L∞(U).
This assumption on existence of such a g might look artificial, however the example in [3]
shows that it cannot be dropped.

The vectorial case is much different from the scalar one and various counterexamples
are useful to complete the picture. Eisen [4] constructed a counterexample to lower
semicontinuity with respect to L1-convergence with a smooth integrand. The example in
[3] has a lower semicontinuous integrand verifying a “linear coercivityÔ assumption

f(z, ζ, ζ̄) ≥ c|ζ̄|, c > 0.

Here we present an example with a smooth integrand, such that the function f is strictly
convex in the last variable and, again, the functional is not lower semicontinuous with
respect to (strong) L1-convergence. In [6], [8], the problem has been recalled whether the
part (b) of the Serrin theorem can be generalized to vector-valued case, namely whether
the functional (1) is lower semicontinuous with respect to L1-convergence under the as-
sumption that f is strictly convex in the last variable. Our example solves this problem
negatively.

The vector-valued counterpart of the Serrin theorem (c) is disproved by our example as
well, but for this already Eisen’s example can be used. The vector-valued case of (a) is
however valid, as shown by Fonseca and Leoni [6, Theorem 1.1].

One of the features (and perhaps the most important one) which enables the failure of
lower semicontinuity in our example is the lack of coercivness. Notice however that in
some other situations (scalar case, or no dependence on ζ) lower semicontinuity results
can be achieved even without the coercivness assumption.

2. Example of non lower semicontinuity

Construction of f

We write θ = (ξ, η), θ̄ = (ξ̄, η̄). We define the function f as

f(ξ, η, ξ̄, η̄) =
η̄2 + exp ξ̄

exp |θ|4
=

η̄2 + exp ξ̄

exp(ξ2 + η2)2
.
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We consider the functional

F (u) =

∫ 1

0

f(x(t), y(t), x′(t), y′(t)), u = (x, y) ∈ W 1,1
0 ((0, 1),R2).

Proposition 2.1. The function f : R2×R2 → R is smooth, nonnegative and continuous.
For each θ ∈ R2, f(θ, ·) is strictly convex.

Proof. All of the mentioned properties are obviously verified.

Proposition 2.2. There exists a sequence {un} of functions from W 1,1
0 ((0, 1),R2) such

that

‖un‖1 → 0 and F (un) →
1

e
. (2)

Proof. We write un = (xn, yn). We construct un as 1
n
-periodic functions on R (formally,

the elements of W 1,1
0 ((0, 1),R2) that we look for are then restrictions to (0, 1)), so it is

enough to determine their values on [0, 1
n
]. We set

xn(t) =



























−n4 t, 0 ≤ t ≤ 1
n3 ,

−n cos
(

πn3

4

(

t− 1
n3

))

, 1
n3 ≤ t ≤ 5

n3 ,

n− n3
(

n− 1
n

)(

t− 5
n3

)

, 5
n3 ≤ t ≤ 6

n3 ,

n2

n2−6

(

1
n
− t

)

, 6
n3 ≤ t ≤ 1

n
,

and

yn(t) =















0, 0 ≤ t ≤ 1
n3 ,

n sin
(

πn3

4

(

t− 1
n3

))

, 1
n3 ≤ t ≤ 5

n3 ,

0, 5
n3 ≤ t ≤ 1

n
.

We estimate

|un(t)| ≤ n, 0 < t <
6

n3
,

|un(t)| ≤
1

n
,

6

n3
< t <

1

n
.

Using periodicity, it follows

∫ 1

0

|un(t)| dt ≤ n

∫ 6
n3

0

n dt+
n

n2
≤ 7

n
.

Hence ‖un‖1 → 0. Now we are going to compute limn F (un). If t ∈
(

1
n3 ,

5
n3

)

, then

x′
n(t) ≤

π

4
n4 ≤ n4, |y′n(t)| ≤

π

4
n4 ≤ n4, |x2

n(t) + y2n(t)| = n2,

and thus

f
(

xn(t), yn(t), x
′
n(t), y

′
n(t)

)

≤ n8 + expn4

expn4
.
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For a.e. t ∈ (0, 1
n
) \

(

1
n3 ,

5
n3

)

we have

x′
n(t) ≤ −1, y′n(t) = 0

and thus
f
(

xn(t), yn(t), x
′
n(t), y

′
n(t)

)

≤ exp(−1).

Using the periodicity of un we estimate

∫ 1

0

f(x, y, x′, y′) dt ≤ n

∫ 1/n

0

f(x, y, x′, y′) dt

≤ n

∫ 5
n3

1
n3

n8 + expn4

expn4
dt+ n

∫ 1/n

0

exp(−1) dt → exp(−1).

On the other hand, we compute

∫ 1

0

f(x, y, x′, y′) dt ≥ n

∫ 1
n

6
n3

exp (− n2

n2−6
)

exp (n−4)
dt

≥ n
( 1

n
− 6

n3

)

exp
(

− n2

n2 − 6
− 1

n4

)

→ exp(−1).

Hence
F (un) → exp(−1).

Remark 2.3. By a mollification, for each n we can obtain an infinitely smooth ũn such
that ‖ũn−un‖1 < 1

n
and F (ũn)−F (un) <

1
n
. For these mollified functions we also obtain

F (ũn) → exp(−1) and ‖ũn‖1 → 0.

Theorem 2.4. The functional F is not lower semicontinuous on W 1,1
0 ((0, 1),R2) with

respect to L1 convergence.

Proof. We consider the sequence from Proposition 2.2 and recall that

un → 0 in L1((0, 1),R2).

We observe
F (0) = 1, (3)

whereas, by Proposition 2.2,

lim
n

F (un) =
1

e
.

Hence
F (0) ¢ lim inf

n
F (un).
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