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Given an integrand f of linear growth and assuming an ellipticity condition of the form

D2f(Z)(Y, Y ) ≥ c
(

1 + |Z|2
)−µ

2 |Y |2 , 1 < µ ≤ 3 ,

we consider the variational problem J [w] =
∫

Ω f(∇w) dx → min among mappings w: Rn ⊃ Ω → RN

with prescribed Dirichlet boundary data. If we impose some boundedness condition, then the existence
of a generalized minimizer u∗ is proved such that

∫

Ω′ |∇u∗| log2(1 + |∇u∗|2) dx ≤ c(Ω′) for any Ω′ b Ω.
Here the limit case µ = 3 is included and we obtain a clear interpretation of the particular solution
u∗. Moreover, if µ < 3 and if f(Z) = g(|Z|2) is assumed in the vector-valued case, then we show local
C1,α-regularity and uniqueness up to a constant of generalized minimizers. These results substantially
improve earlier contributions of [6], where only the case of exponents 1 < µ < 1+2/n could be considered.
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1. Introduction

Suppose we are given a smooth, strictly convex (in the sense of definition) integrand f :
RnN → R of linear growth (compare Assumption 2.1 for details). Then we consider the
variational problem

J [w] =

∫

Ω

f(∇w) dx → min (P)

among mappings w ∈ u0+
◦
W1

1(Ω;RN), where Ω ⊂ Rn, n ≥ 2, is a bounded Lipschitz
domain and u0 is of class W 1

1 (Ω;RN).

One prominent (scalar) example is the minimal surface case f(Z) =
√

1 + |Z|2 . A variety
of references is available for the study of this variational integrand. With regard to the
following discussion we just want to mention the monographs [23], [21] and the a priori
estimates given in [25] and [20].

The theory of perfect plasticity provides another famous variational integrand of linear
growth (the assumptions of smoothness and strict convexity however are not satisfied in
this case). Here we like to refer to the studies of Seregin (see, for instance, [28]–[31]) and
to the recent monograph [18].

ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag



118 M. Bildhauer / A Priori Gradient Estimates for Bounded Generalized Solutions...

In any case, on account of the lack of compactness in the non-reflexive Sobolev space
W 1

1 (Ω;RN), problem (P) in general fails to have solutions. Thus one either has to study
suitable relaxations (possibility i)) or we must pass to the dual variational problem (pos-
sibility ii)).

ad i): since the integrand f under consideration is of linear growth, any J-minimizing

sequence {um}, um ∈ u0+
◦
W1

1(Ω;RN), is uniformly bounded in the space BV (Ω;RN).
This ensures the existence of a subsequence (not relabelled) and a function u inBV (Ω;RN)
such that um → u in L1(Ω;RN). Hence, one suitable definition of a generalized minimizer
u is to require u ∈ M, where the set M is given by

M =
{

u ∈ BV
(

Ω;RN
)

: u is the L1-limit of a J-minimizing sequence

from u0+
◦
W1

1(Ω;RN)
}

.

Note that the elements of M are in one-to-one correspondence with the solutions of any
relaxed version of problem (P) (see [7]).

ad ii): following [13] we write

J [w] = sup
τ∈L∞(Ω;RnN )

l(w, τ) , w ∈ u0+
◦
W1

1
(

Ω;RN
)

,

where the Lagrangian l(w, τ) for (w, τ) = (u0 + ϕ, τ) ∈
(

u0+
◦
W1

1(Ω;RN)
)

× L∞(Ω;RnN)
is defined through the formula

l(w, τ) :=

∫

Ω

τ : ∇w dx−
∫

Ω

f ∗(τ) dx = l(u0, τ) +

∫

Ω

τ : ∇ϕdx ,

and where f ∗ denotes the conjugate function of f . If we let

R : L∞(

Ω;RnN
)

→ R ,

R[τ ] := inf
u∈u0+

◦
W1

1(Ω;RN )

l(u, τ) =















−∞ , if div τ 6= 0 ,

l(u0, τ) , if div τ = 0 ,

then the dual problem reads as

to maximize R among all functions in L∞(

Ω;RnN
)

. (P∗)

Although the set M of generalized minimizers of problem (P) may be very “largeÔ, the
solution of the dual problem is unique. This is a well known fact from duality theory
(compare [13]), a generalization (without imposing any condition on the conjugate func-
tion) is given in [2]. Moreover, the dual solution σ admits are clear physical or geometrical
interpretation: in the minimal surface case the dual solution corresponds to the normal of
the surface, in the theory of perfect plasticity we obtain the stress tensor. Let us finally
mention that (see again [13])

inf
u∈u0+

◦
W1

1(Ω;RN )

J [u] = sup
τ∈L∞(Ω;RnN )

R[τ ] .
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Next, some known results are briefly summarized.

i) In the minimal surface case it is possible to benefit from the geometric structure of the
problem (compare Remark 2.3). A class of integrands with this structure is studied, for
instance, in [20] following the a priori gradient bounds given in [25]. It turns out that
generalized minimizers have (locally) Hölder continuous derivatives, they are unique up
to a constant and the dual solution σ is of class C0,α

loc for any 0 < α < 1.

ii) In the theory of perfect plasticity only partial regularity of the stress tensor is known
(compare [30]). Even in the twodimensional setting n = 2 we just have some additional
information on the singular set (see [31]). As an approximation, plastic materials with
logarithmic hardening are studied, i.e. the integrand under consideration is given by

f(Z) := |Z| log(1 + |Z|) .

This integrand is of nearly linear growth and, as a consequence, a unique solution of
problem (P) exists. The solution is known to be of class C1,α

loc implying the stress tensor
to be (locally) continuous (see [15], [17], [26] — generalizations are given in [16], [8], [5],
[3]).

iii) In the general situation of strictly convex, smooth integrands with linear growth,
singularities have to be expected as well (see [20] or [3] for examples). However, partial
C1,α-regularity of generalized minimizers u follows from [1] and finally the duality relation
σ = ∇f(∇u) ensures partial C0,α-regularity of the stress tensor (see [4] and [3] for details).

iv) In contrast to the nearly linear logarithmic hardening, the idea in [6] is to study a
regular class of variational integrals with linear growth. Here, on one hand, existence and
regularity results are comparable to the minimal surface situation. On the other hand,
no geometric structure conditions are imposed.

As an example one may think of

f(Z) =

∫ |Z|

0

∫ s

0

(1 + t2)−
µ
2 dt ds , (1)

where µ > 1 is some fixed real number. If, as a substitute for the geometric structure,
ellipticity is assumed to be “good enoughÔ, i.e. if µ < 1 + 2/n is assumed, then C1,α

loc -
regularity of generalized minimizers (which again are unique up to a constant) and local
Hölder continuity of the stress tensor are valid.

Let us shortly discuss the limitation µ < 1+ 2/n. Given a suitable regularization uδ, it is
shown that

ωδ :=
(

1 + |∇uδ|2
) 2−µ

4

is uniformly bounded in the class W 1
2,loc(Ω). This provides no information at all if the

exponent is negative, i.e. if µ > 2. An application of Sobolev’s inequality, which needs
the bound µ < 1 + 2/n, proves local uniform higher integrability of the gradients of the
regularization.

In a similar way, the De Giorgi-type technique of [6] leads to the same limitation on the
ellipticity exponent µ.

The purpose of our paper is to cover the whole scale of µ-elliptic integrands with linear
growth (as introduced in [6]) up to µ = 3. This is the limit induced by the minimal
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surface example (see Remark 2.3). Moreover, due to the examples given in [20] and [3]
we can not expect regular solutions in case µ > 3.

As an additional assumption, the boundary values u0 are supposed to be of class L∞(Ω;RN)
(with the approximation arguments of [4] w.l.o.g. u0 ∈ L∞ ∩ W 1

2 (Ω;RN)). Moreover, a
maximum principle is imposed:

Assumption 1.1. Let uδ denote the unique minimizer of

Jδ[w] :=
δ

2

∫

Ω

|∇w|2 dx+ J [w] , w ∈ u0+
◦
W2

1(Ω;RN) ,

δ ∈ (0, 1). Then there is a real number M , independent of δ, such that

‖uδ‖L∞(Ω;RN ) ≤ M ‖u0‖L∞(Ω;RN ) .

Remark 1.2. Alternatively, Assumption 1.1 may be replaced by

‖uδ‖L∞
loc(Ω;RN ) ≤ K

for some real number K not depending on δ. In this case no restriction on the boundary
values is needed.

Remark 1.3. Of course there are a lot of contributions on the boundedness of solutions
of variational problems. Let us mention [33] in the scalar case, a maximum principle for
N > 1 is given in [12]. Let us also remark that in the case of non-standard, superlinear
growth conditions, a boundedness assumption serves as an important tool in [11], [14] and
[3].

Given some preliminary results on the regularization (see Section 3), we exploit these
hypotheses in the main sections 4–6 to obtain uniform a priori gradient estimates for the
sequence {uδ}.
In contrast to [6] we do not differentiate the Euler equation in Sections 4 and 5 by the
way avoiding Sobolev’s inequality.

As outlined in Section 4, a generalized minimizer u∗ satisfying some higher integrability
properties is found in the first step. Note that Corollary 2.6 provides a clear interpretation
of this particular solution.

It turns out that in the limit case µ = 3 we have to stop at this point, i.e. full regularity
in the minimal surface case depends on the geometric structure of the problem (again
compare Remark 2.3).

However, if µ < 3 and if some additional assumptions are imposed in the vectorial setting,
then Section 5 proves uniform local Lp-integrability of the gradients for any 1 < p < ∞
(see Theorem 5.1).

Once this is established, uniform local a priori gradient bounds for the sequence {uδ} are
shown in Theorem 6.1. Here De Giorgi’s technique is modified: since on one hand we
benefit from Hölder’s inequality, on the other hand we have to check carefully that the
iteration works (see the definition of β at the end of Section 6).

Finally, in Section 7 the proof of Theorem 2.7 on C1,α
loc -regularity is completed.
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2. Assumptions and main results

The boundary values u0 are supposed to be of class L∞ ∩ W 1
2 (Ω;RN). As mentioned

above, the case u0 ∈ L∞ ∩ W 1
1 (Ω;RN) is covered with the help of the approximation

arguments given in [4].

The class of integrands under consideration is given by

Assumption 2.1. There exist positive constants ν1, ν2, ν3 and a real number 1 < µ ≤ 3
such that for any Z ∈ RnN

i) f ∈ C2(RnN);

ii) |∇f(Z)| ≤ ν1;

iii) for any Y ∈ RnN we have

ν2
(

1 + |Z|2
)−µ

2 |Y |2 ≤ D2f(Z)(Y, Y ) ≤ ν3
(

1 + |Z|2
)− 1

2 |Y |2 .

Remark 2.2. Assumption 2.1 implies the following structure conditions.

i) There are real numbers ν4 > 0 and ν5 such that for any Z ∈ RnN

∇f(Z) : Z ≥ ν4
(

1 + |Z|2
) 1

2 − ν5 ,

where we use the symbol Y : Z to denote the standard scalar-product in RnN .

ii) The integrand f is of linear growth in the sense that for real numbers ν6 > 0, ν7,
ν8 > 0, ν9 and for any Z ∈ RnN

ν6 |Z| − ν7 ≤ f(Z) ≤ ν8 |Z|+ ν9 .

iii) The integrand satisfies a balancing condition: there is a positive number ν10 such
that

|D2f(Z)| |Z|2 ≤ ν10
(

1 + f(Z)
)

holds for any Z ∈ RnN .

Proof. ad i): replace f by f̄ : RnN → R,

f̄(Z) := f(Z)−∇f(0) : Z for all Z ∈ RnN .

An integration by parts gives a real number c such that we have for all w ∈ u0+
◦
W1

1(Ω;RN)

J̄ [w] :=

∫

Ω

f(∇w) dx−
∫

Ω

∇f(0) : ∇w dx = J [w] + c .

Thus minimizing sequences and generalized minimizers of J and J̄ respectively coincide,
and w.l.o.g. ∇f(0) = 0 may be assumed. This implies by Assumption 2.1 iii)

∇f(Z) : Z =

∫ 1

0

d

dθ
∇f(θZ) : Z dθ

=

∫ 1

0

D2f(θZ)
(

Z,Z
)

dθ

≥ ν2

∫ 1

0

(

1 + θ2 |Z|2
)−µ

2 |Z|2 dθ

= ν2 |Z|
∫ |Z|

0

(

1 + ρ2
)−µ

2 dρ ,

(2)
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i.e. ∇f(Z) : Z is at least of linear growth and i) follows.

ad ii): the upper bound is immediate by Assumption 2.1 ii). Proving the left-hand
inequality we observe that (2) gives ∇f(Z) : Z ≥ 0 for any Z ∈ RnN . W.l.o.g. we
additionally assume f(0) = 0 to write (using i))

f(Z) =

∫ 1

0

d

dθ
f
(

θZ
)

dθ

≥
∫ 1

1/2

∇f
(

θZ
)

: θZ dθ

≥ 1

2

[

ν4

(

1 +
|Z|2

4

) 1
2

− ν5

]

,

hence ii) is clear as well.

ad iii): this assertion follows from ii) and the right-hand side of Assumption 2.1 iii).

A comparison of the minimal surface integrand with the above definition provides the
following

Remark 2.3.

i) The minimal surface example f(Z) =
√

1 + |Z|2 satisfies Assumption 2.1 with the
limit exponent µ = 3. On the other hand, there is much better information on
account of the geometric structure of this example, in particular we have

c1
√

1 + |Z|2

[

|Y |2 − (Y · Z)2

1 + |Z|2

]

≤ D2f(Z)(Y, Y )

≤ c2
√

1 + |Z|2

[

|Y |2 − (Y · Z)2

1 + |Z|2

]

for all Z, Y ∈ Rn with some real numbers c1, c2.
Given an integrand satisfying this condition, Ladyzhenskaya/Ural’tseva ([25]) and
Giaquinta/Modica/Souček ([20]) then use Sobolev’s inequality for functions defined
on minimal hypersurfaces (compare [27] and [9]) as an essential tool for proving
their regularity results.

ii) Note that (1) in case µ = 3 exactly coincides with the minimal surface integrand.
Examples of different type are discussed in [3]. For instance, a minimal surface
structure can not be expected for integrands depending on dist(Z,C), where C
denotes a suitable convex set.

Finally, the vectorial setting N > 1 needs some additional

Remark 2.4. Suppose that N > 1 and that Assumptions 1.1 and 2.1 hold. This is
sufficient to prove some higher integrability result for a generalized minimizer — even in
the limit case µ = 3 (see Theorem 2.5 and Corollary 2.6 for an interpretation).

Our second theorem in the vectorial setting however is obtained for integrands f with
some additional “special structureÔ in the sense that

f(Z) = g
(

|Z|2
)

for all Z ∈ RnN (3)
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with g: [0,∞) → [0,∞) of class C2 (in particular we have ∇f(0) = 0, hence (2)).

Note that (3) is not needed to prove a maximum principle (compare [12]).

As an immediate consequence, (3) gives

∂2f

∂ziα∂z
j
β

(Z) = 4g′′
(

|Z|2
)

ziα z
j
β + 2g′

(

|Z|2
)

δij δαβ .

In addition to (3) we impose some Hölder condition on the second derivative: there are
real numbers α ∈ (0, 1], K > 0 such that for any Z, Z̃ ∈ RnN

∣

∣D2f(Z)−D2f(Z̃)
∣

∣ ≤ K |Z − Z̃|α . (4)

Now let us give a precise formulation of the results.

Theorem 2.5. If N ≥ 1 and if Assumptions 1.1 and 2.1 are supposed to be true in the
limit case µ = 3, then there is a generalized minimizer u∗ ∈ M such that

i) ∇su∗ ≡ 0, i.e. ∇u∗ ≡ ∇au∗, where the absolutely continuous part of ∇u∗ w.r.t. the
Lebesgue measure is denoted by ∇au∗, the symbol for the singular part is ∇su∗.

ii) For any Ω′ b Ω there is a constant c(Ω′) satisfying

∫

Ω′
|∇u∗| log2

(

1 + |∇u∗|2
)

dx ≤ c(Ω′) < ∞ .

Once higher integrability of the gradient of a generalized minimizer u∗ is established, it
is shown in [7] (compare also [3]) that u∗ admits a clear interpretation:

Corollary 2.6. The generalized minimizer u∗ given in Theorem 2.5 is of class W 1
1 (Ω;RN)

and (up to a constant) the unique solution of the variational problem

∫

Ω

f(∇w) dx+

∫

∂Ω

f∞
(

(u0 − w)⊗ ν
)

dHn−1 → min in W 1
1

(

Ω;RN
)

,

where f∞ denotes the recession function and ν is the unit outward normal to ∂Ω.

A slight improvement of the ellipticity condition yields:

Theorem 2.7. Suppose Assumptions 1.1 and 2.1 to be true with µ < 3. In case N > 1
we additionally impose (3) and (4).

i) Each generalized minimizer u ∈ M is in the space C1,α(Ω;RN) for any 0 < α < 1.

ii) The dual solution σ is of class C0,α(Ω;RnN) for any 0 < α < 1. Moreover, σ has
weak derivatives in the space L2

loc(Ω;RnN).

iii) For u, v ∈ M we have ∇u = ∇v, i.e. up to a constant uniqueness of generalized
minimizers holds true.

Remark 2.8. Although we concentrate on generalized minimizers, the (local) continu-
ity of the dual solution is needed to obtain iii) and the full strength of i). The fact
σ ∈ W 1

2,loc(Ω;RnN) is well known (compare [28], [4]) and just mentioned for the sake of
completeness.



124 M. Bildhauer / A Priori Gradient Estimates for Bounded Generalized Solutions...

To finish this section we fix some notation.

i) With a slight abuse of notation, positive constants are just denoted by c, not neces-
sarily being the same in any two occurrences.

ii) We take the sum w.r.t. repeated Greek indices α = 1, . . . , n and w.r.t. repeated Latin
indices i = 1, . . . , N .

iii) We always assume that x0 ∈ Ω and that Br(x0) b Ω is satisfied for each ball under
consideration.

3. Regularization

As mentioned above, problem (P) is approximated in the following way: consider for any
δ ∈ (0, 1) the functional

Jδ[w] :=
δ

2

∫

Ω

|∇w|2 dx+ J [w] , w ∈ u0+
◦
W2

1
(

Ω;RN
)

,

and denote by uδ the unique solution of

Jδ[w] → min , w ∈ u0+
◦
W2

1
(

Ω;RN
)

. (Pδ)

Letting fδ :=
δ
2
|·|2+f we observe that the minimality of uδ implies Jδ[uδ] ≤ Jδ[u0] ≤ J1[u0],

hence
∫

Ω

fδ(∇uδ) dx ≤ c (5)

follows for some real number c. Moreover, by the definition of uδ,

∫

Ω

∇fδ(∇uδ) : ∇ϕdx = 0 for all ϕ ∈
◦
W2

1
(

Ω;RN
)

. (6)

With the notation σδ = ∇fδ(∇uδ) we may assume on account of (5) that σδ ⇁: σ in
L2(Ω;RnN) as δ → 0, and following [4] it is easily seen that

Lemma 3.1. i) The sequence {uδ} is a J-minimizing sequence. Hence, the L1-cluster
points of {uδ} provide generalized minimizers in the above sense.

ii) The limit σ of the sequence {σδ} maximizes the dual problem (P∗).

Next, a Caccioppoli-type lemma has to be proved.

Lemma 3.2. Suppose that Assumption 2.1 is true and that we have (3) in the case N > 1.

i) There is a real number c > 0 such that for any s ≥ 0, for any η ∈ C∞
0 (Ω), 0 ≤ η ≤ 1,

and for any δ ∈ (0, 1)

∫

Ω

D2fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)Γ
s
δ η

2 dx

≤ c

∫

Ω

D2fδ(∇uδ)(∂γuδ ⊗∇η, ∂γuδ ⊗∇η)Γs
δ dx ,

where we have abbreviated Γδ = 1 + |∇uδ|2.
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ii) Letting A(k, r) = Aδ(k, r) =
{

x ∈ Br(x0) : Γδ > k
}

, k > 0, there is a real number
c > 0, independent of δ, such that for any η ∈ C∞

0 (Br(x0)), 0 ≤ η ≤ 1, and for any
δ ∈ (0, 1)

∫

A(k,r)

Γ
−µ

2
δ |∇Γδ|2 η2 dx

≤ c

∫

A(k,r)

D2fδ(∇uδ)(ej ⊗∇η, ej ⊗∇η)(Γδ − k)2 dx .

Here ej denotes the jth coordinate vector.

Remark 3.3. Following the proof of Lemma 3.2 we see that (3) is not needed for assertion
i) if s = 0.

Proof of Lemma 3.2. ad i): using the standard difference quotient technique it is easily
seen that uδ is of class W

2
2,loc(Ω;RN).

Moreover, since |D2fδ| is bounded, ∇fδ(∇uδ) is of classW
1
2,loc(Ω;RnN) with partial deriva-

tives (almost everywhere)

∂γ
(

∇fδ(∇uδ)
)

= D2fδ(∇uδ)
(

∂γ∇uδ, ·
)

, γ = 1, . . . , n .

Now, given ϕ ∈ C∞
0 (Ω;RN), we take ∂γϕ, γ = 1, . . . , n, as an admissible choice in the

Euler equation (6). An integration by parts implies by the above remarks

∫

Ω

D2fδ(∇uδ)(∂γ∇uδ,∇ϕ) dx = 0 for all ϕ ∈ C∞
0

(

Ω;RN
)

, (7)

and, using standard approximation arguments, (7) is seen to be true for all ϕ ∈ W 1
2 (Ω;RN)

which are compactly supported in Ω.

Next we cite [24], Chapter 4, Theorem 5.2, in the scalar case and [34] (we may also
refer to [19], Theorem 3.1) if N > 1 to see that uδ ∈ W 1

∞,loc(Ω;RN). As a consequence,
ϕ = η2∂γuδΓ

s
δ with η given above is admissible in (7) (recall the product and chain rules

for Sobolev functions). Summarizing the results we arrive at

∫

Ω

D2fδ(∇uδ)
(

∂γ∇uδ, ∂γ∇uδ

)

Γs
δ η

2 dx

+s

∫

Ω

D2fδ(∇uδ)
(

∂γ∇uδ, ∂γuδ ⊗∇Γδ

)

Γs−1
δ η2 dx

= −2

∫

Ω

D2fδ(∇uδ)
(

∂γ∇uδ, ∂γuδ ⊗∇η
)

ηΓs
δ dx .

(8)

In the scalar case N = 1 the second integral on the left-hand side can be neglected on
account of

D2fδ(∇uδ)
(

∂γ∇uδ, ∂γuδ ⊗∇Γδ

)

=
1

2
D2fδ(∇uδ)

(

∇Γδ,∇Γδ

)

≥ 0 a.e.

In the vectorial setting N > 1 we first consider the case s = 0. Then the second term on
the left-hand side trivially vanishes without any additional assumption (compare Remark
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3.3). If s > 0, then (3) is needed: given a weakly differentiable function ψ: Ω → R, and
letting fδ(Z) = gδ(|Z|2) we obtain almost everywhere

D2fδ(∇uδ)
(

∂γ∇uδ, ∂γuδ ⊗∇ψ
)

= 4g′′δ∂αu
i
δ ∂γ∂αu

i
δ ∂βu

j
δ ∂γu

j
δ ∂βψ + 2g′δ ∂γ∂αu

i
δ ∂γu

i
δ ∂αψ

= 2g′′δ ∂γ|∇uδ|2∂βψ∂βu
j
δ ∂γu

j
δ + g′δ ∂α|∇uδ|2∂αψ

= 2g′′δ ∂γΓδ ∂βψ∂γu
j
δ∂βu

j
δ + g′δ ∂αΓδ ∂αψ

=
1

2

∂2fδ

∂zjβ∂z
j
γ

(∇uδ)∂βψ∂γΓδ

=
1

2
D2fδ(∇uδ)

(

ej ⊗∇ψ, ej ⊗∇Γδ

)

.

(9)

Choosing ψ = Γδ we see that in the vectorial setting the second integral on the left-hand
side of (8) is non-negative as well. In any case we obtain for any ε > 0

∫

Ω

D2fδ(∇uδ)
(

∂γ∇uδ, ∂γ∇uδ

)

Γs
δ η

2 dx

≤ c

∫

Ω

[

D2fδ(∇uδ)
(

∂γ∇uδ, ∂γ∇uδ

)

] 1
2
ηΓ

s
2
δ

·
[

D2fδ(∇uδ)
(

∂γuδ ⊗∇η, ∂γuδ ⊗∇η
)

] 1
2
Γ

s
2
δ dx

≤ c

{

ε

∫

Ω

D2fδ(∇uδ)
(

∂γ∇uδ, ∂γ∇uδ

)

Γs
δ η

2 dx

+ε−1

∫

Ω

D2fδ(∇uδ)
(

∂γuδ ⊗∇η, ∂γuδ ⊗∇η
)

Γs
δ dx

}

.

If ε is sufficiently small, then we may absorb the first integal on the right-hand side and
i) is proved.

ad ii): this time we choose ϕ = η2 ∂γuδ max
[

Γδ − k, 0
]

. Moreover, given a measurable
function w: Ω → R and writing w+ = max[w, 0], we recall (see, for instance, [22], Lemma
7.6, p. 152) that for w ∈ W 1

p (Ω)

∇w+ =

{

∇w if w > 0 ,
0 if w ≤ 0 .

Then the same arguments as before prove ϕ to be admissible in (7), thus

∫

A(k,r)

D2fδ(∇uδ)
(

∂γ∇uδ, ∂γ∇uδ

)

(Γδ − k)η2 dx

+

∫

A(k,r)

D2fδ(∇uδ)(∂γ∇uδ, ∂γuδ ⊗∇Γδ

)

η2 dx

= −2

∫

A(k,r)

D2fδ(∇uδ)
(

∂γ∇uδ, ∂γuδ ⊗∇η
)

η (Γδ − k) dx.

(10)
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Here the non-negative first integral on the left-hand side is neglected and the second
integral is estimated as above, i.e.

1

2

∫

A(k,r)

D2fδ(∇uδ)
(

ej ⊗∇Γδ, ej ⊗∇Γδ

)

η2 dx

≤
∫

A(k,r)

D2fδ(∇uδ)
(

∂γ∇uδ, ∂γuδ ⊗∇Γδ

)

η2 dx .

(11)

According to (9), the right-hand side of (10) satisfies almost everywhere

D2fδ(∇uδ)
(

∂γ∇uδ, ∂γuδ ⊗∇η
)

=
1

2
D2fδ(∇uδ)

(

ej ⊗∇η, ej ⊗∇Γδ

)

. (12)

(10)–(12) imply with the Cauchy-Schwarz inequality

∫

A(k,r)

D2fδ(∇uδ)
(

ej ⊗∇Γδ, ej ⊗∇Γδ

)

η2 dx

≤ c

{

ε

∫

A(k,r)

D2fδ(∇uδ)
(

ej ⊗∇Γδ, ej ⊗∇Γδ

)

η2 dx

+ε−1

∫

A(k,r)

D2fδ(∇uδ)
(

ej ⊗∇η, ej ⊗∇η
)

(Γδ − k)2 dx

}

,

hence ii) is proved by recalling Assumption 2.1 iii) and by choosing ε > 0 sufficiently
small.

4. Higher integrability in the limit case µ = 3

In this section we consider the limit case µ = 3 and prove local uniform integrability of
|∇uδ| log2(1 + |∇uδ|2) by the way establishing Theorem 2.5. Here the discussion of the
vectorial setting does not depend on additional conditions (compare Remark 2.4).

Theorem 4.1. Let Assumptions 1.1 and 2.1 hold in the limit case µ = 3. Then for any
Ω′ b Ω there is a real number c(Ω′) – independent of δ – such that

∫

Ω′
|∇uδ| log2

(

1 + |∇uδ|2
)

dx ≤ c(Ω′) < ∞ .

Proof. This time we have to show that ϕ = uδ ω
2
δ η

2, ωδ = log(Γδ), η ∈ C∞
0 (B2r(x0)),

0 ≤ η ≤ 1, η ≡ 1 on Br(x0), is admissible in the Euler equation (6). Since condition
(3) is dropped in this section, we now refer to the discussion of asymptotically regular
integrands given in [10]; a generalization is proved in [19], Theorem 5.1. As a result, uδ is
seen to be of class W 2

2,loc ∩W 1
∞,loc(Ω;RN) which proves ϕ to be admissible. Alternatively,

we could replace ωδ by a suitable truncation ωδ,M and prove Theorem 4.1 by passing to
the limit M → ∞.
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With the above choice, the Euler equation reads as
∫

B2r(x0)

∇f(∇uδ) : ∇uδω
2
δ η

2 dx+ δ

∫

B2r(x0)

|∇uδ|2ω2
δ η

2 dx

= −
∫

B2r(x0)

∇f(∇uδ) : uδ ⊗
[

∇ω2
δ η

2 +∇η2ω2
δ

]

dx

−δ

∫

B2r(x0)

∇uδ : uδ ⊗
[

∇ω2
δ η

2 +∇η2ω2
δ

]

dx .

(13)

Remark 2.2 i) proves the left-hand side of (13) to be greater than or equal to
∫

B2r(x0)

[

ν4Γ
1
2
δ ω

2
δ η

2 − ν5ω
2
δ η

2
]

dx+ δ

∫

B2r(x0)

|∇uδ|2ω2
δ η

2 dx . (14)

Since |∇f | and |uδ| are bounded, we find an upper bound for the right-hand side of (13)
(using Young’s inequality with ε > 0 fixed)

r.h.s ≤ c

∫

B2r(x0)

η2
[

εΓ
1
2
δ ω

2
δ + ε−1Γ

− 1
2

δ |∇ωδ|2
]

dx

+c(r)

∫

B2r(x0)

ω2
δ dx

+cδ

∫

B2r(x0)

η2
[

ε |∇uδ|2ω2
δ + ε−1 |∇ωδ|2

]

dx

+c(r)δ

∫

B2r(x0)

|∇uδ|ω2
δ dx .

(15)

Clearly
∫

B2r(x0)
ω2
δ dx and δ

∫

B2r(x0)
|∇uδ|ω2

δ dx are uniformly bounded w.r.t. δ (compare

(5)). Hence (13)–(15) imply after absorbing terms (for ε sufficiently small)

∫

Br(x0)

Γ
1
2
δ ω

2
δ dx ≤ c

[

1 +

∫

B2r(x0)

Γ
− 1

2
δ |∇ωδ|2 η2 dx

+δ

∫

B2r(x0)

|∇ωδ|2 η2 dx
]

.

(16)

Given (16) we observe that a.e.

|∇ωδ|2 ≤ c
1

1 + |∇uδ|2
|D2uδ|2 ,

thus we may use Assumption 2.1 iii) with µ = 3, Lemma 3.2 i) (letting s = 0 and recalling
Remark 3.3) as well as Remark 2.2 iii) and (5) to obtain the final result

∫

Br(x0)

Γ
1
2
δ ω

2
δ dx ≤ c

[

1 + c

∫

B2r(x0)

(

Γ
− 1

2
δ + δ

)

Γ−1
δ |D2uδ|2 η2 dx

]

≤ c

[

1 + c

∫

B2r(x0)

D2fδ(∇uδ)
(

∂γ∇uδ, ∂γ∇uδ

)

η2 dx

]

≤ c

[

1 + c(r)

∫

B2r(x0)

∣

∣D2fδ(∇uδ)
∣

∣ |∇uδ|2 dx
]

≤ c .
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5. Lp-estimates in the case µ < 3

From now on we concentrate on the case µ < 3. Moreover, we impose some additional
structure in the vectorial setting N > 1 (compare Remark 2.4). Then it is possible to
modify the arguments of Section 4 such that the results obtained there may be iterated.
This gives uniform Lp-estimates in the sense of

Theorem 5.1. Suppose that µ < 3, that we have Assumptions 1.1, 2.1 and that (3) is
satisfied. Then for any 1 < p < ∞ and for any Ω′ b Ω there is a constant c(p,Ω′), which
does not depend on δ, such that

‖∇uδ‖Lp(Ω′;RnN ) ≤ c(p,Ω′) < ∞ .

Remark 5.2. As an immediate consequence we can find a generalized minimizer u∗ ∈ M
which is of class W 1

p,loc(Ω;RN) for any 1 < p < ∞.

Proof. Fix a ball Br0(x0) b Ω and assume that there is a real number α0 ≥ 0 such that
(uniformly w.r.t. δ)

∫

Br0 (x0)

Γ
1+α0

2
δ dx+ δ

∫

Br0 (x0)

Γ
1+

α0
2

δ dx ≤ c . (17)

Note that by (5) this assumption is true for α0 = 0. Next define α = α0 + 3 − µ and

choose ϕ = uδ Γ
α
2
δ η2, η ∈ C∞

0 (Br0(x0)), 0 ≤ η ≤ 1, η ≡ 1 on Br0/2(x0), |∇η| ≤ c/r0.
As outlined in the proof of Lemma 3.2, uδ is of class W 2

2,loc ∩W 1
∞,loc(Ω;RN), hence ϕ is

admissible in (6) with the result

∫

Br0 (x0)

∇f(∇uδ) : ∇uδΓ
α
2
δ η2 dx+ δ

∫

Br0 (x0)

|∇uδ|2Γ
α
2
δ η2 dx

≤ c(α)

∫

Br0 (x0)

Γ
α−1
2

δ |D2uδ|η2 dx+ c(α)δ

∫

Br0 (x0)

Γ
α
2
δ |D2uδ|η2 dx

+c

∫

Br0 (x0)

Γ
α
2
δ |∇η2| dx+ cδ

∫

Br0 (x0)

Γ
α+1
2

δ |∇η2| dx .

(18)

Here Assumption 1.1 and the boundedness of∇f (compare Assumption 2.1 ii)) are already
used. Analogous to the previous section, the left-hand side of (18) is estimated with the
help of Remark 2.2 i):

l.h.s. ≥ ν4

∫

Br0 (x0)

Γ
1+α
2

δ η2 dx− ν5

∫

Br0 (x0)

Γ
α
2
δ η2 dx

+δ

∫

Br0 (x0)

Γ
1+α

2
δ η2 dx− δ

∫

Br0 (x0)

Γ
α
2
δ η2 dx .
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The right-hand side of (18) is handled via (fix ε > 0 and use Young’s inequality)

r.h.s ≤ c

∫

Br0 (x0)

η2
[

εΓ
1+α
2

δ + ε−1Γ
− 1+α

2
δ Γα−1

δ |D2uδ|2
]

dx

+c

∫

Br0 (x0)

[

εΓ
1+α
2

δ η2 + ε−1Γ
− 1+α

2
δ Γα

δ |∇η|2
]

dx

+cδ

∫

Br0 (x0)

η2
[

εΓ
1+α

2
δ + ε−1Γ

−1−α
2

δ Γα
δ |D2uδ|2

]

dx

+cδ

∫

Br0 (x0)

[

εΓ
1+α

2
δ η2 + ε−1Γ

−1−α
2

δ Γ1+α
δ |∇η|2

]

dx .

Hence, absorbing terms, (18) yields

∫

Br0/2
(x0)

Γ
1+α
2

δ dx+ δ

∫

Br0/2
(x0)

Γ
1+α

2
δ dx

≤ c

[ ∫

Br0 (x0)

η2Γ
α−3
2

δ |D2uδ|2 dx

+

∫

Br0 (x0)

Γ
α−1
2

δ |∇η|2 dx+

∫

Br0 (x0)

Γ
α
2
δ η2 dx

]

+ cδ

[ ∫

Br0 (x0)

η2Γ
α
2 −1

δ |D2uδ|2 dx

+

∫

Br0 (x0)

Γ
α
2
δ |∇η|2 dx+

∫

Br0 (x0)

Γ
α
2
δ η2 dx

]

=: c
3

∑

i=1

Ii + cδ
6

∑

i=4

Ii .

(19)

Starting with I1, we recall that by definition µ + α − 3 = α0 ≥ 0, thus Assumption 2.1
iii) and Lemma 3.2 i) give

I1 =

∫

Br0 (x0)

η2Γ
−µ

2
δ |D2uδ|2Γ

µ+α−3
2

δ dx

≤ c

∫

Br0 (x0)

D2fδ(∇uδ)
(

∂γ∇uδ, ∂γ∇uδ

)

Γ
α0
2
δ η2 dx

≤ c(r0)

∫

Br0 (x0)

[

Γ
− 1

2
δ + δ

]

Γ
1+

α0
2

δ dx ≤ c ,

where the last inequality is due to Assumption (17). An upper bound (not depending on
δ) for I3 is found since we may assume w.l.o.g. that µ ≥ 2. This clearly proves I2 to be
bounded independent of δ as well. Studying I4 let us first assume that α ≤ 2. Then,
again by Lemma 3.2 i)

δ I4 ≤
∫

Br0 (x0)

D2fδ(∇uδ)
(

∂γ∇uδ, ∂γ∇uδ

)

η2 dx

≤ c(r0)

∫

Br0 (x0)

[

Γ
− 1

2
δ + δ

]

Γδ dx ≤ c .
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In the case α > 2, Lemma 3.2 i) gives

δ I4 ≤
∫

Br0 (x0)

D2fδ(∇uδ)
(

∂γ∇uδ, ∂γ∇uδ

)

Γ
α
2 −1

δ η2 dx

≤ c(r0)

∫

Br0 (x0)

[

Γ
− 1

2
δ + δ

]

Γ
1+α

2 −1

δ dx ≤ c ,

where we once more recall (17) and observe that α
2
− 1 = (α0 + 1 − µ)/2 ≤ α0/2. This

condition trivially bounds δI5 and δI6 independent of δ, and we have proved with (19):
suppose that (17) holds for some given r0 > 0 and α0 ≥ 0. Then there is a constant,
independent of δ, such that

∫

Br0/2
(x0)

Γ
1+α0+3−µ

2
δ dx+ δ

∫

Br0/2
(x0)

Γ
1+

α0+3−µ
2

δ dx ≤ c . (20)

We now claim that for any k ∈ N there is a constant c(k), independent of δ, such that
∫

B
r0/2

k (x0)

Γ
1+k(3−µ)

2
δ dx+ δ

∫

B
r0/2

k (x0)

Γ
1+ k(3−µ)

2
δ dx ≤ c . (21)

In fact, as mentioned above, α0 = 0 is an admissible choice to obtain (21) from (20) in
the case k = 1. Next assume by induction that (21) is true for some k ∈ N. Then we may
take α0 = k(3 − µ) in (17) and (20) establishes (21) with k replaced by k + 1, thus the
claim is proved. Obviously this implies Theorem 5.1.

Remark 5.3. If we omit condition (3) in the vectorial setting, then analogous arguments
prove higher integrability up to a finite number 1 < p(µ).

6. A priori gradient bounds

In this section the De Giorgi-type technique as outlined for example in [6] is modified: on
one hand, given Theorem 5.1, we benefit from Hölder’s inequality. This decreases on the
other hand the exponent β of iteration (see the definition of β given below). Nevertheless
it turns out that Lemma 6.3 still is applicable to obtain

Theorem 6.1. Consider a ball BR0(x0) b Ω. With the assumptions of Theorem 5.1 there
is a local constant c > 0 such that for any δ ∈ (0, 1)

‖∇uδ‖L∞(BR0/2
,RnN ) ≤ c .

Before proving Theorem 6.1 we recall the definition

A(k, r) =
{

x ∈ Br(x0) : Γδ > k
}

, Br(x0) b Ω , k > 0 ,

and establish the following result.

Lemma 6.2. Fix some x0 ∈ Ω and suppose that we are given radii 0 < r < R < R0,
BR0(x0) b Ω. Then there is a real number c, independent of r, R, R0, k and δ, such that

∫

A(k,r)

(

Γδ − k)
n

n−1 dx

≤ c

(R− r)
n

n−1

[ ∫

A(k,R)

(

Γδ − k)2 dx

] 1
2

n
n−1

[ ∫

A(k,R)

Γ
µ
2
δ dx

] 1
2

n
n−1

.

(22)
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Proof of Lemma 6.2. Recalling the notion w+ of Section 3, Sobolev’s inequality yields
with η ∈ C∞

0 (BR(x0)), 0 ≤ η ≤ 1, η ≡ 1 on Br(x0), |∇η| ≤ c/(R− r),

∫

A(k,r)

(

Γδ − k
) n

n−1 dx ≤
∫

BR(x0)

[

η
(

Γδ − k
)+

] n
n−1

dx

≤ c

[ ∫

BR(x0)

∣

∣∇
[

η
(

Γδ − k
)+]∣

∣ dx

] n
n−1

≤ c

[ ∫

A(k,R)

∣

∣∇
[

η
(

Γδ − k
)]∣

∣ dx

] n
n−1

≤ c
[

I
n

n−1
1 + I

n
n−1
2

]

.

(23)

Here we have

I
n

n−1
1 =

[ ∫

A(k,R)

|∇η|
(

Γδ − k
)

dx

] n
n−1

≤
[ ∫

A(k,R)

|∇η|2
(

Γδ − k
)2

dx

] 1
2

n
n−1

[ ∫

A(k,R)

1 dx

] 1
2

n
n−1

≤ c

(R− r)
n

n−1

[ ∫

A(k,R)

(

Γδ − k
)2

dx

] 1
2

n
n−1

[ ∫

A(k,R)

1 dx

] 1
2

n
n−1

,

thus I
n

n−1
1 is seen to be bounded from above by the right-hand side of (22). Estimating

I2, Lemma 3.2 ii) is needed with the result

I
n

n−1
2 =

[ ∫

A(k,R)

η |∇Γδ| dx
] n

n−1

≤
[ ∫

A(k,R)

η2 |∇Γδ|2Γ
−µ

2
δ dx

] 1
2

n
n−1

[ ∫

A(k,R)

Γ
µ
2
δ dx

] 1
2

n
n−1

≤ c

[ ∫

A(k,R)

D2fδ(∇uδ)
(

ej ⊗∇η, ej ⊗∇η
)(

Γδ − k
)2
] 1

2
n

n−1

×
[ ∫

A(k,R)

Γ
µ
2
δ dx

] 1
2

n
n−1

≤ c

(R− r)
n

n−1

[ ∫

A(k,R)

(

Γδ − k
)2

dx

] 1
2

n
n−1

[ ∫

A(k,R)

Γ
µ
2
δ dx

] 1
2

n
n−1

,

hence (23) proves the lemma.

We now come to the

Proof of Theorem 6.1. Consider the left-hand side of (22): for any real number s > 1
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Hölder’s inequality implies

∫

A(k,r)

(

Γδ − k
)2

dx =

∫

A(k,r)

(

Γδ − k
) n

n−1
1
s
(

Γδ − k
)2− n

n−1
1
s dx

≤
[ ∫

A(k,r)

(

Γδ − k
) n

n−1 dx

] 1
s

×
[ ∫

A(k,r)

(

Γδ − k
)(2− n

n−1
1
s)

s
s−1

] s−1
s

.

Hence, on account of Theorem 5.1 there is a real number c1(s, n,BR0(x0)), independent
of δ,

c1(s, n,BR0(x0)) := sup
δ>0

[ ∫

BR0 (x0)

Γ
1

s−1(2s−
n

n−1)
δ dx

] s−1
s

< ∞ ,

such that

∫

A(k,r)

(

Γδ − k
)2

dx ≤ c1(s, n,BR0(x0))

[ ∫

A(k,r)

(

Γδ − k
) n

n−1 dx

] 1
s

. (24)

Studying the right-hand side of (22), we fix a second real number t > 1 and applying
Hölder’s inequality once more it is seen that

∫

A(k,R)

Γ
µ
2
δ dx ≤

∣

∣A(k,R)
∣

∣

1
t

[ ∫

A(k,R)

Γ
µ
2

t
t−1

δ dx

] t−1
t

.

Let

c2(t, µ, BR0(x0)) := sup
δ>0

[ ∫

BR0 (x0)

Γ
µ
2

t
t−1

δ dx

] t−1
t

< ∞ .

Then we have
∫

A(k,R)

Γ
µ
2
δ dx ≤ c2(t, µ, BR0(x0))

∣

∣A(k,R)
∣

∣

1
t . (25)

Summarizing the results we arrive at

∫

A(k,r)

(

Γδ − k
)2

dx
(24)

≤ c

[ ∫

A(k,r)

(

Γδ − k
) n

n−1 dx

] 1
s

(22)

≤ c

(R− r)
n

n−1
1
s

[ ∫

A(k,R)

(

Γδ − k
)2

dx

] 1
2

n
n−1

1
s

×
[ ∫

A(k,R)

Γ
µ
2
δ dx

] 1
2

n
n−1

1
s

(25)

≤ c

(R− r)
n

n−1
1
s

[ ∫

A(k,R)

(

Γδ − k
)2

dx

] 1
2

n
n−1

1
s

×
∣

∣A(k,R)
∣

∣

1
2

n
n−1

1
s
1
t .

(26)
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As the next step we define for k and r < R as above the following quantities:

τ(k, r) :=

∫

A(k,r)

(

Γδ − k
)2

dx ,

a(k, r) :=
∣

∣A(k, r)
∣

∣ .

With this notation (26) can be rewritten as

τ(k, r) ≤ c

(R− r)
n

n−1
1
s

[

τ(k,R)
] 1

2
n

n−1
1
s
[

a(k,R)
] 1

2
n

n−1
1
s
1
t . (27)

Given two real numbers h > k > 0, we now observe

a(h,R) =

∫

A(h,R)

dx ≤
∫

A(h,R)

(

Γδ − k
)2
(h− k)−2 dx ,

thus we get for h > k > 0

a(h,R) ≤ 1

(h− k)2
τ(k,R) . (28)

With (27) and (28) it is proved that for h > k > 0 we have the estimate

τ(h, r) ≤ c

(R− r)
n

n−1
1
s

[

τ(h,R)
] 1

2
n

n−1
1
s

1

(h− k)
n

n−1
1
s
1
t

[

τ(k,R)
] 1

2
n

n−1
1
s
1
t

≤ c

(R− r)
n

n−1
1
s

1

(h− k)
n

n−1
1
s
1
t

[

τ(k,R)
] 1

2
n

n−1
1
s(1+

1
t ) .

Now s and t are chosen sufficiently close to 1 (depending on n) such that

1

2

n

n− 1

1

s

[

1 +
1

t

]

=: β > 1 .

With this choice of s and t we additionally let

α :=
n

n− 1

1

s

1

t
> 0 , γ :=

n

n− 1

1

s
> 0 ,

hence the following lemma, stated for example in [32], Lemma 5.1, p.219, may be applied.

Lemma 6.3. Assume that ϕ(h, ρ) is a non-negative real valued function defined for h >
k0 and ρ < R0. Suppose further that for fixed ρ the function is non-increasing in h and
that it is non-decreasing in ρ if h is fixed. Then

ϕ(h, ρ) ≤ C

(h− k)α (R− ρ)γ
[

ϕ(k,R)
]β

, h > k > k0 , ρ < R < R0 ,

with some positive constants C, α, β > 1, γ, implies for all 0 < σ < 1

ϕ
(

k0 + d,R0 − σR0

)

= 0 ,
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where the quantity d is given by

dα =
2(α+β)β/(β−1)C

[

ϕ(k0, R0)
]β−1

σγRγ
0

.

This lemma yields

τ(d,R0/2) =

∫

A(d,R0/2)

(

Γδ − d
)2

dx = 0 ,

and, as a consequence,
Γδ ≤ d on BR0/2(x0) . (29)

Here the quantity d is uniformly bounded w.r.t. δ if and only if there is a constant
(independent of δ) such that

τ(0, R0) =

∫

BR0 (x0)

Γ2
δ dx ≤ c .

This fact is proved in Theorem 5.1 and the a priori estimate Theorem 6.1 follows from
(29).

7. Proof of Theorem 2.7

Once Theorem 6.1 is established, Theorem 2.7 follows exactly as outlined in [6]. Let
us first sketch the main arguments to obtain local C1,α-regularity for weak {uδ}-cluster
points u∗: recall Corollary 2.6 which implies the Euler equation

∫

Ω

∇f(∇u∗) : ∇ϕdx = 0 for all ϕ ∈ C1
0

(

Ω;RN
)

.

In the scalar case N = 1 we argue with the standard difference quotient technique and,
since u∗ is Lipschitz, it follows that u∗ is of class W 2

2,loc(Ω;RN). Then, letting v = ∂γu
∗,

one arrives at
∫

Ω

D2f(∇u∗)
(

∇v,∇ϕ
)

dx = 0 for all ϕ ∈ C1
0

(

Ω;RN
)

(compare (7)), where the coefficients ∂2f
∂zα∂zβ

(∇u∗) are uniformly elliptic on Ω′ b Ω. The-

orem 8.22 of [22] finally proves Hölder continuity of v.

In the vector-valued case an auxiliary integrand f̃ is constructed following the lines of
[26]. As a result, Theorem 3.1 of [19] may be applied since we also have imposed the
Hölder condition (4). Thus, C1,α-regularity is proved in the vectorial setting as well.

Next we consider the dual solution σ. As it is proved in [4] or [6], the duality relation

σ = ∇f(∇u∗) for a.a. x ∈ Ω

holds true for any weak cluster point u∗ of the sequence {uδ}. Since these cluster points
are known to have (locally) Hölder continuous first derivatives, σ ∈ C0,α(Ω;RnN) is im-
mediate.
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Uniqueness of generalized minimizers up to a constant is shown in Section 5 of [6] —
the idea is due to [31]: a suitable variation of σ is seen to be admissible on account of
σ ∈ C0,α(Ω;RnN). This, together with the uniqueness of σ, yields

∇u = ∇f ∗(σ)

for any generalized minimizer u ∈ M, and Theorem 2.7 is proved. £
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