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We consider the nonlinear convex energy forms E(p) on the Koch curve K and we prove that the corre-
sponding domains coincide with the spaces Lipα,Df

(p,∞,K). Then we give a precise interpretation of
the smoothness index α in terms of the structural constants of the fractal.
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1. Introduction

The first fractal examples of nonlinear energy forms

E (p), p > 1

have been recently constructed on the Koch curve in [2], where the properties of the
domains DE(p) of these nonlinear energy forms are studied and it is shown that they can
be considered to be the analogous of the usual Sobolev spaces W 1,p.

In the quadratic case p = 2, constructions of this type are standard and have been done
for various fractals K like the Sierpinski gasket, the Koch curve and more general simple
nested fractals: in these cases, the energy functionals E (2) are Dirichlet forms, whose
domains DE(2) are the fractal analogue of the Sobolev space W 1,2.

Always in the case p = 2, these spaces W 1,2(K) ≡ DE(2)(K) have been put in relation
with the theory of Lipschitz spaces Lipα,Df

(2,∞, K); in particular, in Jonsson [5] first and
later also in Lancia and Vivaldi [9], Paluba [13] and Kumagai [8], for various examples of
fractals K the following characterization has been given

W 1,2(K) = Lipα,Df
(2,∞, K), (1)

where Df is the fractal (Hausdorff) dimension of K and α > 0 is a suitable parameter
depending on K. We note that the spaces Lipα,Df

(2,∞, K) belong to a more general
scale of spaces Lipα,Df

(p,∞, K), where p ≥ 1 is an additional parameter, which will be
defined in Section 2.
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In [9] an intrinsic approach to the Lipschitz spaces has been considered, which has the
advantage of making more explicit the dependence of α on the fractal K. This approach
is based on a change of metric within the fractal K — introduced by Mosco in [10], [11] —

d(x, y) = |x− y|δ, x, y ∈ K,

where

δ =
log(Nρ)

2logl
(2)

here N is the number of similitudes of K, l−1 is the contraction factor of the similitudes
and ρ is the scaling factor of the energy E (2) . By using this intrinsic metric d, in [9] a
one parameter scale of spaces

Lipν(K)

is then constructed in a similar way as the spaces Lipα,Df
(2,∞, K) (see Section 5). Now

the parameter ν is given by

ν =
Df

δ
.

If K is the Koch curve, the following characterizations have been proved

W 1,2(K) = Lipα,Df
(2,∞, K) = Lipν(K),

where now α = log4
log3

, Df = log4
log3

and ν =
Df

δ
= 1 since now δ = log4

log3
. Notice that α = δ:

this provides a characterization of α in terms of the intrinsic metric, hence of the energy
scaling factor ρ. This interpretation of α is conjectured in [9] to hold for more general
classes of fractals K and it follows from the results of [5], [13], [8] concerning the spaces
Lipα,Df

(2,∞, K) and for the various fractals K considered in these papers.

Let us now come back to the nonlinear energy forms E (p), p > 1, on the Koch curve
K, mentioned at the beginning. The aim of the present paper is to extend the results
of [9], where p = 2, to this more general case p > 1. We will first prove the following
characterization

W 1,p(K) = Lipα,Df
(p,∞, K), for every p > 1

where α = log4
log3

as in the case p = 2. We shall then construct the spaces Lip(p)ν (K) for

every p > 1, where ν =
Df

δ
= 1 as in the case p = 2 . We then prove the intrinsic

characterization
W 1,p(K) = Lip(p)1 (K), for every p > 1. (3)

We point out that in the present case the following identity δ = log(Nρp)
p logl

is satisfied for

every p > 1, where ρp = 4p−1 is the scaling factor of E (p) (see Section 4), N = 4 and l = 3.
This shows in particular that δ is independent from p. It would be interesting to check
whether the previous expression of δ in terms of the energy factor ρp keeps true on other
fractals like for example the Sierpinski gasket; however, no forms of the type of E (p) have
been yet constructed in this case.

An additional result of the present paper is the proof that the functions u ∈ W 1,p(K) are
Hölder-continuous on K (with respect to the Euclidean distance) with Hölder exponent
βe = (1− 1

p
) log4
log3

. We point out that the space of Hölder continuous functions on the Koch



R. Capitanelli, M. R. Lancia / Nonlinear Energy Forms and Lipschitz Spaces... 247

curve — with Hölder exponent βe > 1 — does not consist only of constant functions (see
Corollary 4.2 and [6]).

In this paper we deduce the Hölder continuity following two different approaches. One is
abstract and is based on the use of the embedding theorems in the Besov spaces (see [7]).
The other one relies on the Hölderianity results of the spaces W 1,p(K) — as a Morrey
embedding — proved in [3] and on the intrinsic characterization (3).

2. The Lipschitz spaces Lipα,Df
(p, q,K)

In this section we recall the definition of the Lipschitz spaces introduced by Jonsson in
[5].

Let Be(x, r) denote the closed Euclidean ball with center x ∈ RD and radius r. According
to [7], we first recall the definition of Df -set.

Definition 2.1. A closed non empty subset F ⊂ RD is a Df -set (0 < Df ≤ D) if there
exists a Borel measure µ in RD with suppµ = F , such that for some positive constants
c1 = c1(F ) and c2 = c2(F ):

c1r
Df ≤ µ(Be(x, r)) ≤ c2r

Df for x ∈ F, 0 < r ≤ 1. (4)

Such a µ is called a Df -measure on F.

If F is a Df -set, then the restriction to F of the Df -dimensional Hausdorff measure of
RD is a Df -measure on F and thus the Hausdorff dimension of F is Df . For details and
proofs see [7].

Let F ⊂ RD be a Df -set, 0 < Df ≤ D, let µ be the Df -measure on F .

Definition 2.2. Let c0 > 0, α > 0, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, Lipα,Df
(p, q, F ) is the space

of those functions f such that

f ∈ Lp(F, µ) : ‖{ah}‖lq =

(

∞
∑

h=0

aqh

)1/q

< ∞ (5)

where for each h ∈ N

ah =

(

3hαp+hDf

∫ ∫

|x−y|<c03−h

|f(x)− f(y)|pdµ(x)dµ(y)
)1/p

. (6)

The norm in Lipα,Df
(p, q, F ) is defined as

‖|f‖| := ‖f‖p,µ + ‖{ah}‖lq (7)

where ‖f‖p,µ denotes the norm of f in Lp(F, µ).

In Jonsson’s notations these spaces are denoted by Lip(α, p, q, F ); we modified this nota-
tion in Lipα,Df

(p, q, F ) to put in evidence also the dependence on the fractal dimension.
Moreover, the constant 3 in Jonsson’s definition is replaced by the constant 2 : this clearly
gives equivalent spaces with equivalent norms.

By Proposition 1 in [5] and Proposition 5 page 213 in [7], the following proposition is
proved.
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Proposition 2.3.The space Lipα,Df
(p, q,F ) is continuously embedded in Lipγ,Df

(∞,∞,F ),
where γ = α−Df/p.

Note that the functions f of Lipγ,Df
(∞,∞, F ) are bounded functions on F such that

there exists c > 0 : |f(x)− f(y)| ≤ c|x− y|γ, x, y ∈ F. (8)

We will denote the continuous functions on F satisfying (8) by C0,γ(F, | · |) where | · |
denotes the Euclidean distance.

3. The nonlinear energy form on the Koch curve

In this section we introduce the nonlinear energy form on the Koch curve, whose construc-
tion has been developed by one of the authors in [2]. We start by recalling the construction
of the unit Koch curve K. Let us denote by A and B the points (0, 0) and (1, 0). Let
Ψ = {ψi, i = 1, ..., 4} denote the set of the N = 4 contractive similitudes ψi : C → C,
with contraction factor l−1 = 1

3
given by ψ1 = z

3
, ψ2 = z

3
ei

π
3 + 1

3
, ψ3 = z

3
e−iπ3 + 1

2
+ i

√
3
6
,

ψ4 =
z+2
3
.

Let V0 = {A,B}, we define, for arbitrary m-tuples of indices i1, ..., im ∈ {1, ..., 4},
ψi1...im := ψi1 ◦ ... ◦ ψim , Vi1...im := ψi1...im(V0) and

Vm =
4
⋃

i1,...,im=1

Vi1...im .

Let V? = ∪m≥0Vm, K = V̄? the closure in R2. By #(Vm) we denote the number of points
in Vm (it can be checked that #(Vm) = 4m + 1).

Let K0 denote the unit segment whose endpoints are A,B, Ki1...im := ψi1...im(K0) and
V (Ki1...im) := Vi1...im . For n > 0, we denote

Fn := {Ki1...in , i1, ..., in = 1, ..., 4}. (9)

Fixed i1, ..., im = 1, ..., 4 and n ∈ N, we define the sets

K̃
(n)
i1...im

:= {Ki1...imj1...jn : j1, ..., jn = 1, ..., 4}

and
K̃i1...im := ψi1...im(K).

On the Koch curve K there exists an invariant measure µ (see [4]) which is given, after
normalization, by the restriction to K of the Df– dimensional Hausdorff measure of R2

normalized, that is
µ = (HDf (K))−1HDf (·)∠K, (10)

where Df = log4
log3

.

The measure µ has the property that there exists two positive constants c1, c2 such that

c1r
Df ≤ µ(Be(x, r)) ≤ c2r

Df , ∀x ∈ K,

that is to say that the Koch curve is a Df -set (see Definition 2.1).
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In the following we will consider the sequence of measures µm defined as

µm =
∑

M∈Fm

∑

s∈V (M)

δ(s)

2 · 4m
, (11)

where δ(s) is the Dirac measure at the point s.

In [9] it is proved the following lemma.

Lemma 3.1. The sequence µm converges weakly to µ, for m → ∞, where µ is the measure
defined in (10).

For f : V? → R, we define for p > 1

E (p)
m (f, f) =

1

p
4(p−1)m

∑

M∈Fm

∑

r,s∈V (M)

|f(r)− f(s)|p. (12)

It is shown in [2] that the sequence E (p)
m (f, f) is non-decreasing, and by defining for

f : V? → R
E (p)(f, f) = lim

m→∞
E (p)
m (f, f), (13)

the set
D(p)

? = {f : V? → R : E (p)(f, f) < ∞} (14)

does not degenerate to a space containing only constant functions. As proved in [2], each

f ∈ D
(p)
? can be uniquely extended in C(K). We denote this extension on K still by f

and by
DE(p) = {f ∈ C(K) : E (p)(f, f) < ∞}, (15)

where E (p)(f, f) := E (p)(f |V ? , f |V ?). HenceDE(p) ⊂ C(K)⊂ Lp(K,µ). Moreover, (E (p),DE(p))
is a non-negative energy functional in Lp(K,µ) and the following result holds (see [2]).

Theorem 3.2.

i) DE(p) is complete in the norm (‖f‖pp,µ + E (p)(f, f))1/p.

ii) DE(p) is dense in Lp(K,µ).

iii) DE(q) ⊂ DE(p) , for 1 < p ≤ q < ∞.

In analogy with the classical case, and for a better understanding, from now on we denote
by W 1,p(K) the domain DE(p) of the nonlinear energy functional E (p), or simply of the
energy form E (p).

We note that the form E (p)
m (f, f) in (12) can be also written as

E (p)
m (f, f) =

1

p

4
∑

i1,...,im=1

∑

ξ,η∈Vo

|f(ψi1...im(ξ))− f(ψi1...im(η))|p

4−mp
4−m. (16)

4. The main result

The main result of this paper is the following Theorem 4.1. Since, as mentioned above,
the Koch curve K in R2 is a Df−set with Df = log4

log3
> 1, the space Lipα,Df

(p, q,K) is
well-defined.
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Throughout the paper by the same letter c we will denote different constants.

Theorem 4.1. Let p > 1. Let K denote the Koch curve, W 1,p(K) the domain of the
associated nonlinear energy form E (p) then

W 1,p(K) = Lipδ,Df
(p,∞, K), (17)

where δ = log4
log3

(δ = Df ), with equivalent norms.

We note that the smoothness index δ does not depend on p.

Proof. We start by proving the embedding of W 1,p(K) in Lipδ,Df
(p,∞, K). For every

fixed h ∈ N, consider the set Fh as defined in (9). Fixed the h-tuple i1, ..., ih = 1, ..., 4
consider the element Ki1...ih in Fh. We set for brevity M := Ki1...ih , V (M) := V (Ki1...ih),

M̃ := K̃i1...ih and, for every fixed n ∈ N, M̃ (n) := K̃
(n)
i1...ih

. By M? we denote the set whose
elements are M and all those segments from Fh that have a point in common with M ,
that is M? := {M1,M2,M3} where M3 := M ; moreover, we set M̃? := {M̃1, M̃2, M̃3}.
Let us choose c0 in (6) so small that if x ∈ M̃,M ∈ Fh, y ∈ K with |x− y| < c03

−h then
y ∈ M̃?.

We set

Ih = 3phδ+hDf

∫ ∫

|x−y|<c03−h

|f(x)− f(y)|pdµm(x)dµm(y); (18)

we will prove that for m ≥ h

Ih ≤ cE (p)(f, f)

and then letting m → ∞ one can pass to the limit in (18) (see Theorem 7.7.10 in [1])
thus obtaining W 1,p(K) ⊂ Lipδ,Df

(p,∞, K) where δ = log4/log3. Let us consider Ih. It
turns out that

Ih ≤ 3phδ+hDf

∑

M∈Fh

∫

x∈M̃

∫

y∈M̃?

|f(x)− f(y)|pdµm(x)dµm(y) =

= 3phδ+hDf

∑

M∈Fh

1

4 · 42m
∑

x∈M̃∩Vm

∑

y∈M̃?∩Vm

|f(x)− f(y)|p. (19)

If x ∈ M̃ and y ∈ M̃i, i = 1, 2, 3, we have that

|f(x)− f(y)|p ≤ 2p−1|f(x)− f(x0)|p + 2p−1|f(x0)− f(y)|p

where x0 is the common vertex of M and M̃i if i = 1, 2, otherwise x0 coincides with
anyone of the two endpoints of M . Therefore

∑

x∈M̃∩Vm

∑

y∈M̃?∩Vm

|f(x)− f(y)|p ≤

≤ 2p−1
3

∑

i=1

#(Vm−h){
∑

y∈M̃i∩Vm

|f(y)− f(x0)|p +
∑

x∈M̃∩Vm

|f(x)− f(x0)|p}
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so that (19) becomes

Ih ≤ c 3phδ+hDf

∑

M∈Fh

#(Vm−h)

4 · 42m





∑

x∈M̃∩Vm

∑

x0∈V (M)

|f(x)− f(x0)|p


 . (20)

Let M ∈ Fh. Every x ∈ M̃ ∩ Vm can be written as

x = ψi1...ihih+1...im(ξ)

for some ξ in V0 and every x0 ∈ V (M) can be written as

x0 = ψi1...ih(η)

for some η in V0.

We now construct a chain of points pj with j = h, ...,m+ 1 such that

pj =







x0, if j = h

ψi1...ihih+1...ij(ξ) ∈ M̃ ∩ Vj, ξ ∈ V0, if j = h+ 1, ...,m
x, if j = m+ 1.

Note that pj and pj−1 belong to Vj for j = h+1, ...,m+1; it can occurr that pj and pj−1

are not the two endpoints of a same segment belonging to Fj. In the worst case, for each
pair (pj, pj−1), we introduce two more points pj,3 and pj,2, belonging to Vj, in order to
obtain a chain pj−1 = pj,4, pj,3, pj,2, pj,1 = pj such that the pair (pj,i, pj,i−1) for i = 2, 3, 4
are the two endpoints of a segment belonging to Fj. Once we fix the point x0 and we let
x ∈ M̃ ∩Vm, the pair (pj,i, pj,i−1), i = 1, 2, 3, 4, j = h, ...,m+1 can occur at most 3 · 4m−j

times. Recall that the number of the segments of Fm generated by a segment Mj ∈ Fj is
4m−j. By the inequalities

|f(pj)− f(pj−1)|p ≤ (21)

≤ 2p−1|f(pj,1)− f(pj,2)|p + 4p−1|f(pj,2)− f(pj,3)|p + 4p−1|f(pj,3)− f(pj,4)|p

and

|f(x)− f(x0)|p ≤
m+1
∑

j=h+1

(2p−1)j−h−γj |f(pj)− f(pj−1)|p

where γj = 1 if j = m+ 1 or γj = 0 else, the term in the brackets in the right-hand side
of (20) becomes

∑

x∈M̃∩Vm

∑

x0∈V (M)

|f(x)− f(x0)|p ≤ c
m
∑

j=h+1

∑

Mj∈M̃(j−h)

(2p−1)j−h4m−j
∑

r,s∈V (Mj)

|f(r)− f(s)|p.

Thus (20) becomes

Ih ≤ c 3phδ+hDf

∑

M∈Fh

#(Vm−h)

4 · 42m
·





m
∑

j=h+1

∑

Mj∈M̃(j−h)

(2p−1)j−h4m−j
∑

r,s∈V (Mj)

|f(r)− f(s)|p


 ,

(22)
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taking into account that E (p)
j (f, f) is a non-decreasing sequence we obtain

∑

Mj∈M̃(j−h)

∑

r,s∈V (Mj)

|f(r)− f(s)|p ≤ (4p−1)−jE (p)(f, f)

so that we have the following estimate

Ih ≤ c 3phδ+hDf
42m−h

4 · 42m
·

m
∑

j=h+1

(2p−1)j−h−2j2−2jE (p)(f, f) ≤

≤ c 3phδ+hDf4−h(2p−1)−h2−(p+1)hE (p)(f, f) ≤
≤ c 3phδ+hDf2−2(p+1)hE (p)(f, f); (23)

by plugging the value of δ = log4/log3 and Df = log4/log3 we get 32pδ+hDf2−2(p+1)h = 1
(it could be any other constant), therefore we have that

Ih ≤ c E (p)(f, f)

and this proves the first inclusion.

We now have to prove that Lipδ,Df
(p,∞, K) ⊂ W 1,p(K).

We will assume that f ∈ Lipδ,Df
(p,∞, K) and we will estimate, for every fixed m ∈ N,

E (p)
m (f, f) =

1

p
(4p−1)m

∑

M∈Fm

∑

r,s∈V (M)

|f(r)− f(s)|p. (24)

By integrating the inequality |f(r)− f(s)|p ≤ 2p−1|f(r)− f(x)|p+2p−1|f(x)− f(s)|p over
x ∈ M , we obtain

|f(r)− f(s)|p ≤ 2p−1

µ(M)

(∫

M

|f(r)− f(x)|pdµ(x) +
∫

M

|f(x)− f(s)|pdµ(x)
)

, (25)

by substituting (25) in (24) and taking into account that #(V (M)) = 2 it follows

E (p)
m (f, f) ≤ 1

p
(4p−1)m · 2 · 2p−1

∑

M∈Fm

∑

r∈V (M)

1

µ(M)

∫

M

|f(r)− f(x)|pdµ(x). (26)

Let M ∈ Fm and r ∈ V (M), we denote by Mm = M and by Mj with j > m the segment
Mj ∈ M̃ (j−m) in Fj such that has r as an endpoint. We set Si = Mm+i, i ≥ 0. Take
xi ∈ Si ∩K, i = 0, 1, ..., then we have with h ≥ 1 to be chosen later:

|f(r)− f(x0)|p ≤ 2p−1|f(r)− f(xh)|p + 2p−1|f(xh)− f(x0)|p ≤ (27)

≤ 2p−1|f(r)− f(xh)|p + 2p−1
h

∑

i=1

(2p−1)i|f(xi)− f(xi−1)|p.
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By integrating over Πh
i=0Si with respect to the product-measure and dividing by Πh

i=0µ(Si)
we obtain

1

µ(S0)

∫

S0

|f(r)− f(x0)|pdµ(x0) ≤ (28)

≤ 2p−1

µ(Sh)

∫

Sh

|f(r)− f(xh)|pdµ(xh) +

+2p−1
h

∑

i=1

(2p−1)i
1

µ(Si)µ(Si−1)

∫

Si

∫

Si−1

|f(xi)− f(xi−1)|pdµ(xi−1)dµ(xi).

If xi ∈ Si and xi−1 ∈ Si−1, then |xi − xi−1| ≤ 3−(m+(i−1)) = 3 · 3−(m+i). It follows
that the integration domain of the double integral, the set Si×Si−1, is a subset of the set
{(xi, xi−1) : xi ∈ Si, |xi−xi−1| ≤ 3 ·3−(m+i)}. Thus, for every fixed i, we have the following
upper estimate for the sum of the double integrals over all r ∈ V (M) and M ∈ Fm:

∫ ∫

|xi−xi−1|≤3·3−(m+i)

|f(xi)− f(xi−1)|pdµ(xi−1)dµ(xi). (29)

The integral in (29), taking into account that f ∈ Lipδ,Df
(p,∞, K), can be estimated by

3−(m+i)(pδ+Df )|‖f‖|pc1, where c1 is a constant depending on c0.

Hence, by substituting (29) in (28) and then in (26) and taking into account that µ(Si) =
4−(m+i), we get

E (p)
m (f, f) ≤

≤ 1

p
(4p−1)m · 2p

∑

M∈Fm

∑

r∈V (M)

2p−1

µ(Sh)

∫

Sh

|f(r)− f(xh)|pdµ(xh) +

+
1

p
· (4p−1)m2p2p−1

h
∑

i=1

(2p−1)i42(m+i)3−(m+i)(pδ+Df )‖|f‖|pc1. (30)

After some straightforward calculations and taking into account that 3Df = 4 and 3pδ = 4p,
the second term in the right-hand side of (30) can be written as

1

p
·(4p−1)m2p2p−1

h
∑

i=1

(2p−1)i42(m+i)3−(m+i)(pδ+Df )‖|f‖|pc1 ≤ c
h

∑

i=1

(2−p+1)i‖|f‖|pc1 ≤ c‖|f‖|p

(31)
Now we have to estimate the first term in the right-hand side of (30).

We can now apply the result of Proposition 2.3 to our case. The estimate (8) ensures that
if xh ∈ Sh then

|f(r)− f(xh)| ≤ c‖|f‖| · |r − xh|Df (1−1/p) ≤ c|‖f‖|3−(m+h)Df (1−1/p).

Therefore the last estimate together with #(Fm) = 4m and 3−Df = 4−1 yield the following
estimate for the first term:

1

p
(4p−1)m · 2p

∑

M∈Fm

∑

p∈V (M)

2p−1

µ(Sh)

∫

Sh

|f(r)− f(xh)|pdµ(xh) ≤

≤ c4m
1

4h(p−1)
|‖f |‖p ≤ c|‖f |‖p, (32)
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where the last estimate can be obtained by choosing h = [m/(p− 1)] + 1. This completes
the proof of the theorem. £

Corollary 4.2. Let K be the Koch curve and δ = ln4
ln3

then the space Lipδ,Df
(p,∞, K)

does not consist only of constant functions. If 1 ≤ q ≤ ∞, the space Lipα,Df
(p, q,K)

degenerates to a space containing constant functions only if α > δ or α = δ and q < ∞.

Proof. From Theorem 4.1 and the results in Capitanelli [2] concerning the spaceW 1,p(K),
we find that for α = δ and q = ∞ the space does not degenerate. On the other hand, by
proceeding as in [5], we can prove that for α = δ and q < ∞ or α > δ and arbitrary q the
space contains only constant functions.

Corollary 4.3. If δ = log4
log3

and p > 1, the space Lipδ,Df
(p,∞, K) is dense in Lp(K,µ).

Proof. The result follows from the density of W 1,p(K) in Lp(K,µ) (see Theorem 3.2)
and Theorem 4.1.

Remark 4.4. We note that for general Df -sets it can be an hard task to prove that these
spaces are not trivial by explicitly constructing examples of functions belonging to these
spaces. In fact in [6] when δ = log4

log3
, it is given an example of a non constant function

belonging to a particular subspace of Lipδ,Df
(p,∞, K), without, however, characterizing

all the functions in this space in terms of the space of functions of finite energy as those
in W 1,p(K).

Corollary 4.5. Let K and W 1,p(K) be as in Theorem 4.1. Then

W 1,p(K) ⊂ C0,βe(K, | · |),

where βe = Df (1− 1/p).

Proof. As in the quadratic case p = 2, it follows from Theorem 4.1 and Proposition
2.3.

5. The intrinsic Lipschitz Spaces Lip(p)ν (K)

In analogy with the quadratic case [9], we now introduce the intrinsic Lipschitz spaces
which will allow us to give a precise interpretation of the smoothness index α in terms of
the structural constants of the fractal.

In this section, following [10], [11], [12], we introduce an effective intrinsic quasi-distance
of the type d(x, y) = |x − y|δ, for x, y ∈ K. We first remark that the energy functional
E (p) inherits from its construction a self-similar invariance with respect to the mappings
ψi, i = 1, ..., 4. More precisely, there exists a real constant ρp = 4p−1 such that for every
u ∈ W 1,p(K) we have

E (p)(u, u) =
4

∑

i=1

ρpE (p)(u ◦ ψi, u ◦ ψi). (33)

The general criterion to select the value of the parameter δ is to further require that dp

obeys the same scaling on K as E (p), that is,

dp(x, y) =
4

∑

i=1

ρpd
p(ψi(x), ψi(y))
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for x, y ∈ K, where ρp is the same constant occurring in (33). This determines the
constant δ as the unique solution of the identity

4ρp = lpδ. (34)

A simple computation shows that δ = log4/log3. Note that δ = Df and that δ does not
depend on p; we point out that this value of δ is the same which appears in Theorem 4.1.

From now on, we set
d(x, y) = |x− y|Df . (35)

We denote the quasi-balls associated with d by B(x, r), that is

B(x, r) := {y ∈ K : d(x, y) ≤ r}, x ∈ K, r > 0. (36)

Remark 5.1. It can be proved (see [10]) that the measure µ of the intrinsic balls, where
µ is the measure defined in (10), satisfies the following property:

there exist two positive constant c, c̄, such that

crν ≤ µ(B(x, r)) ≤ c̄rν , for x ∈ K, 0 < r ≤ 1 (37)

where B(x, r) are the quasi-balls defined in (36) with ν = 1.

This suggests to generalize the notion of Df−sets given for Euclidean subsets of RD

to subsets of RD endowed with the quasi-distance d such that (37) holds for a suitable
constant ν. In this sense, the Koch curve, with its invariant metric d, becomes a ν−set
and the Hausdorff measure µ, defined in (10), becomes a ν−measure. We note that in the
intrinsic distance the contraction factor of the mappings ψi is now Ýl−1 := l−δ, l−1 being
the contraction factor in the Euclidean metric.

This allows us to introduce the intrinsic Lipschitz spaces Lip(p)ν (K).

Definition 5.2. Let c0 > 0, 1 ≤ p ≤ ∞. Let K denote the Koch curve with intrinsic
contraction factor Ýl−1, ν = 1. Let µ denote the ν-measure defined on K, we call Lip(p)ν (K)
the space of those functions defined as

f ∈ Lp(K,µ) : ‖{ah}‖l∞ < ∞

where for each h ∈ N

ah =

(

Ýlph+hν

∫ ∫

d(x,y)<c0Ýl−h

|f(x)− f(y)|pdµ(x)dµ(y)
)1/p

.

The norm of f in Lip(p)ν (K) is

|f |L := ‖f‖p,µ + ‖{ah}‖l∞

where ‖f‖p,µ denotes the norm of f in Lp(K,µ).

Note that different values of the constants c0 and Ýl give equivalent spaces for c0 and Ýl > 1.

In this new setting the results of the previous section take a simpler form and Theorem
4.1 can be reformulated as in the following theorem.
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Theorem 5.3. Let K denote the Koch curve and W 1,p(K), p > 1, the domain of the
corresponding nonlinear energy form E (p) then

W 1,p(K) = Lip(p)ν (K), (38)

where ν = 1, with equivalent norms.

As shown in [3], a Morrey-type embedding holds for functions having finite p-energy (i.e.
belonging to W 1,p(K)) provided that ν is strictly less than p, that is the case of the Koch
curve. More precisely, by setting for β > 0, c > 0

C0,β(K, d) = {f : K → R, fcontinuous on K : |f(x)− f(y)| ≤ c dβ(x, y)}

we can prove the next corollary.

Corollary 5.4. Assume the above notations (hence ν < p), then

W 1,p(K) ⊂ C0,β(K, d) (39)

where β = 1− ν
p
.

Proof. Theorem 4.1 yields the identification W 1,p(K) = Lip(p)ν (K); on the other hand

Proposition 2.3 gives the inclusion Lip(p)ν (K) ⊂ C0,β(K, d) thus concluding the proof.

We point out that the intrinsic setting allows to interpret the exponent β in Corollary 5.4
as the Morrey exponent associated to the nonlinear energy form. This interpretation fails
if one considers the Euclidean Hölder exponent βe obtained directly by the embedding
theorem of Proposition 2.3.

Remark 5.5. For the quadratic case (p = 2), the characterization (1) has been proved
for the Koch curve and for a large class of nested fractals by Kumagai and Paluba who
obtained α = dw/2, where dw is the walk dimension (see [13], [8]). Always in the quadratic
case in [9] the parameter α is shown to coincide with the exponent δ of the intrinsic
distance d for the Koch curve. As a consequence of the result of the present paper, in
particular of Theorem 4.1 and Formula 34, the identity α = δ remains true also in the
nonlinear case for all values of p.
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