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We introduce an order relation on a locally convex cone P which implies the strict separation property for
continuous linear functionals. Using this order we establish representations for P as a cone of extended
real-valued functions and as a cone of convex subsets of a vector space.
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1. Introduction

The theory of locally convex cones, as developed in [1], deals with ordered cones that
are not necessarily embeddable in vector spaces. A topological structure is introduced
using order theoretical concepts. We shall review some of the concepts and refer to [1] for
details and proofs:

An ordered cone is a set P endowed with an addition, a non-negative scalar multiplication
and a partial order such that the following hold: The addition is associative and com-
mutative, and there is a neutral element 0 ∈ P. For the scalar multiplication the usual
associative and distributive properties hold, that is α(βa) = (αβ)a, (α + β)a = αa+ βa,
α(a+ b) = αa+ αb, 1a = a and 0a = 0 for all a, b ∈ P and α, β ≥ 0. The (partial) order
is a reflexive transitive relation ≤ such that a ≤ b implies a+ c ≤ b + c and αa ≤ αb for
all a, b, c ∈ P and α ≥ 0.

A linear functional on a cone P is a mapping µ : P → R = R ∪ {+∞} such that
µ(a+b) = µ(a)+µ(b) and µ(αa) = αµ(a) for all a, b ∈ P and α ≥ 0. In R we consider the
usual algebraic operations, in particular α+∞ = +∞ for all α ∈ R, α · (+∞) = +∞ for
all α > 0 and 0 · (+∞) = 0. Linear functionals can assume only finite values at invertible
elements of P.

A full locally convex cone (P,V) is an ordered cone P that contains an abstract neighbor-
hood system V , that is a subset of positive elements which is directed downward, closed
for addition and multiplication by strictly positive scalars. The elements v of V define
upper resp. lower neighborhoods for the elements of P by

v(a) = { b ∈ P | b ≤ a+ v } resp. (a)v = { b ∈ P | a ≤ b+ v },

creating the upper resp. lower topologies on P. Their common refinement is called the
symmetric topology. All elements of P are supposed to be bounded below, that is for
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every a ∈ P and v ∈ V we have 0 ≤ a + λv for some λ ≥ 0. Finally, a locally convex
cone(P,V) is a subcone of a full locally convex cone not necessarily containing the abstract
neighborhood system V . Every locally convex topological vector space is a locally convex
cone in this sense, as it may be canonically embedded into a full locally convex cone (see
[1], Example I.2.7). Endowed with the neighborhood system W = {ε ∈ R | ε > 0}, R is
a full locally convex cone.

The polar v◦ of a neighborhood v ∈ V consists of all linear functionals µ on a locally
convex cone (P,V) satisfying µ(a) ≤ µ(b)+1, whenever a ≤ b+ v for a, b ∈ P. The union
of all polars of neighborhoods forms the dual cone P∗ of P. The functionals belonging to
P∗ are said to be (uniformly) continuous. Continuity requires that µ is monotone, and for
a full cone P it means just that µ(v) ≤ 1 holds for some v ∈ V in addition. We endow P∗

with the topology w(P∗,P) of pointwise convergence of the elements of P, considered as
functions on P∗ with values in R with its usual topology. The polar v◦ of a neighborhood
v ∈ V is seen to be w(P∗,P)-compact and convex ([1], Theorem II.2.4). Hahn-Banach
type extension and separation theorems for locally convex cones were established in [1]
and [2]. Theorem II.2.9 from [1] (a more general version is Theorem 4.1 from [2]) states
that for a subcone (Q,V) of (P,V) every linear functional in v◦ ⊂ Q∗ extends to an
element of v◦ ⊂ P∗.

While all elements of a locally convex cone are bounded below, they need not be bounded
above. An element a ∈ P is bounded (above) if for every v ∈ V there is λ ≥ 0 such
that a ≤ λv. The set of all bounded elements forms a subcone and even a face in P. All
invertible elements of P are bounded, and continuous linear functionals take only finite
values at bounded elements.

In Section 2 we define and compare several order relations on a locally convex cone. Sec-
tion 3 contains our main separation results, showing that the weak local and global pre-
orders and their induced neighborhoods are determined by continuous linear functionals.
Separation properties of this type are instrumental in the context of approximation theory
in locally convex cones, where duality theory is used in the investigation of sequences of
continuous linear operators (see Chapter IV in[1]). Our Example 2.4 demonstrates that
the given order of a locally convex cone does in general not support these properties. In
Section 4 we establish representations for a locally convex cone as a cone of R-valued
functions and as a cone of convex subsets of a locally convex topological vector space,
respectively.

2. Global and Local Preorders

Throughout the following let (P,V) be a locally convex cone. We define the (global)
preorder ≺ for elements a, b ∈ P by

a ≺ b if a ≤ b+ v for all v ∈ V.

The properties of an order relation on a cone are easily verified, and a ≤ b obviously
implies a ≺ b. The weak (global) preorder 4 is defined by

a 4 b if a ≤ γb+ v

for every v ∈ V and ε > 0 with some 1 ≤ γ ≤ 1 + ε. Obviously a ≺ b implies a 4 b.
It is again straightforward to verify the required properties for an order relation: For
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transitivity, let a 4 b and b 4 c. Given v ∈ V and 0 < ε ≤ 1, there are 1 ≤ γ, γ′ ≤ 1+ ε/3
such that

a ≤ γb+ v/2 and b ≤ γ′c+ v/2,

hence a ≤ γγ′c + (1/2)(1 + γ)v ≤ γγ′c + v. Since 1 ≤ γγ′ ≤ (1 + ε/3)2 ≤ 1 + ε, this
shows a 4 c. Compatibility with the multiplication by positive scalars is obvious. For
compatibility with the addition, let a 4 b and c ∈ P. Given v ∈ V and ε > o, there is
λ ≥ 0 such that 0 ≤ c+ λv, as c is bounded below. There is 1 ≤ γ ≤ 1 +min{ε, 1/(2λ)}
such that a ≤ γb+ v/2. Thus

a+ c ≤ γb+ v/2 + c+ (γ − 1)(c+ λv) ≤ γ(b+ c) + v.

This shows a + c 4 b + c. We may also use these preorders in a full cone containing P,
hence involving the elements of P as well as the neighborhoods.

Lemma 2.1. For a, b ∈ P we have a 4 b if and only if a 4 b+ v for all v ∈ V.

Proof. Assume that a 4 (b + v) for all v ∈ V. Given v ∈ V and 0 < ε ≤ 1, we have
a 4 (b + v/4), hence a ≤ γ(b + v/4) + v/2 for some 1 ≤ γ ≤ 1 + ε. As γ ≤ 2, this shows
a ≤ γb+ v, and indeed a 4 b.

Given a neighborhood v ∈ V we define the corresponding local preorders ≺v and 4v for
elements a, b ∈ P by

a ≺v b if a ≺ b+ εv for all ε > 0.

a 4v b if a 4 b+ εv for all ε > 0.

The required properties for an order relation follow from the corresponding global rela-
tions. Note that the local and global preorders coincide if the neighborhood system V
consists of the multiples of a single element. The local preorders may be directly expressed
using the given order as follows:

Lemma 2.2. For elements a, b ∈ P and v ∈ V
(a) a ≺v b if and only if a ≤ b+ εv for all ε > 0.

(b) a 4v b if and only if a ≤ γb+ εv for every ε > 0 with some 1 ≤ γ ≤ 1 + ε.

Proof. (a) If a ≺v b, then a ≺ (b+εv) holds for all ε > 0, hence a ≤ (b+εv)+εv = b+2εv.
If on the other hand, a ≤ b+ εv holds for all ε > 0, this implies a ≺ b+ εv, hence a ≺v b.
For (b), let a 4v b and 0 < ε ≤ 1. Then a 4

(

b+(ε/4)v
)

, hence a ≤ γ
(

b+(ε/4)v
)

+(ε/2)v
for some 1 ≤ γ ≤ 1 + ε. As γ ≤ 2, this shows a ≤ γb + εv, as claimed. For the converse,
suppose that for every ε > 0 there exists such a γ as stated. Given ε > 0, we shall show
that a 4 (b+εv). For this, let w ∈ V and ε′ > 0. For ε′′ = min{ε, ε′} choose 1 ≤ γ ≤ 1+ε′′

such that a ≤ γb+ ε′′v. Then a ≤ γ(b+ εv) + w. This shows a 4 (b+ εv).

We shall observe that the preorders ≺ and 4 coincide if P contains sufficiently many
bounded elements. In this vein, a locally convex cone (P,V) is said to be tightly covered
by its bounded elements (see [1], II.2.13) if for all v ∈ V and a, b ∈ P such that a ¢ b+ v
there is a bounded element a′ ∈ P such that a′ ≤ a but a′ ¢ b+ v.
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Proposition 2.3. If the locally convex cone (P,V) is tightly covered by its bounded ele-
ments, then the preorders ≺ and 4 (and therefore also the corresponding local preorders)
coincide.

Proof. Following Lemma 2.1 we only have to show that for a, b ∈ P and v ∈ V the
relations a ≺ b + v and a 4 b + v coincide. Always, a ≺ b + v implies a 4 b + v. For
the converse, let a 4 b + v and assume that contrary to our claim a ¦ b + v, that is
a ¢ b+ v+w for some w ∈ V. By our assumption then there is a bounded element a′ ≤ a
such that a′ ¢ b+ v + w. We have a′ ≤ λw for some λ > 0. There is 1 ≤ γ ≤ 1 + 1/(2λ)
such that a ≤ γ(b + v) + w/2. Thus a′ ≤ γ(b + v) + w/2 and (1/γ)a′ ≤ (b + v) + w/2,
hence

a′ =
1

γ
a′ +

γ − 1

γ
a′ ≤ (b+ v) + w/2 +

γ − 1

γ
λw ≤ (b+ v) + w,

contradicting the above. Thus a ≺ b+ v holds as claimed.

Example 2.4. Let P be the cone whose elements are the real intervals [0, α] for α ≥ 0
and [0, β) for β > 0, endowed with the usual addition of subsets of R, and the set inclusion
as order. Let V = {0}. Then a ≤ b + 0 if and only if a ⊂ b for a, b ∈ P. The orders ≺0

and 40 do not coincide in this example, since we have [0, 1] ⊂ γ[0, 1) for all γ > 1, hence
[0, 1] 40 [0, 1), but not [0, 1] ≺0 [0, 1).

The choice for V = {0} while permissible seems peculiar. However, even in standard
examples a non-zero neighborhood system may act in such a way on certain subcones:
Let P be the cone of all non-empty convex subsets of R2, endowed with the standard
operations and set inclusion as order, and the neighborhood system V consisting of all
non-zero multiples of the Euclidean unit ball. On the subcone Q of P consisting of all
positive multiples of the set {(x, y) ∈ R2 | x2 ≤ y} all neighborhoods act as zero.

3. Separation Properties

We shall show that the weak local and global preorders on a locally convex cone are
determined by the elements of the dual cone.

Theorem 3.1. For elements a, b ∈ P and v ∈ V
(a) a 4v b if and only if µ(a) ≤ µ(b) for all µ ∈ v◦.

(b) a 4 b if and only if µ(a) ≤ µ(b) for all µ ∈ P∗.

Proof. Part (a) is a special case of part (b) if we use the neighborhood system ˜V = {λv |
λ > 0} instead of V . The dual cone then consists of all positive multiples of the functionals
in v◦.

For (b), let a 4 b and let µ ∈ P∗, that is µ ∈ v◦ for some v ∈ V. Given ε > 0 there is
1 ≤ γ ≤ 1+ε such that a ≤ γb+εv, hence µ(a) ≤ γµ(b)+ε. This shows µ(a) ≤ µ(b.) The
proof of the converse implication will however require some Hahn-Banach type arguments
that had been established in [2]. For a given element b ∈ P and β ∈ R consider the
sublinear functional p on P defined as p(x) = λβ if x = λb, and p(x) = +∞ else, together
with the superlinear functional q(0) = 0 and q(x) = −∞ for x 6= 0. Following Theorem 3.1
in [2] there is a linear functional µ ∈ P∗ such that q ≤ µ ≤ p if and only if we can find a
neighborhood v ∈ V such that q(x) ≤ p(x)+ 1 whenever x ≤ y+ v for x, y ∈ P; that is in
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our particular case 0 ≤ λβ + 1 whenever 0 ≤ λb + v. If 0 ≺ b, then there are arbitrarily
large such λ ≥ 0, so we have to require that β ≥ 0. Otherwise, for any β ∈ R we can find
such a neighborhood. We shall use Theorem 5.1 from [2], which describes the range of all
linear functionals µ ∈ P∗ such that q ≤ µ ≤ p on a fixed element a ∈ P. If there is at
least one such µ, then

sup
µ∈P∗

q≤µ≤p

µ(a) = sup
v∈V

inf {p(x)− q(y) | x, y ∈ P, q(y) ∈ R, a+ y ≤ x+ v}.

With the particular insertions for p and q from above we obtain

sup
µ∈P∗

q≤µ≤p

µ(a) = sup
v∈V

inf {λβ | λ ≥ 0, a ≤ λb+ v}.

Now let us assume that µ(a) ≤ µ(b) holds for all µ ∈ P∗. As q ≤ µ ≤ p implies that
µ(b) ≤ β, this yields

sup
v∈V

inf {λβ | λ ≥ 0, a ≤ λb+ v} ≤ β

for all admissible values of β. We shall derive a 4 b from this. Let v ∈ V and ε > 0. We
choose β = 1 in the above and observe that there is λ ≥ 0 such that

a ≤ λb+
ε

2
v and λ ≤ 1 + ε.

If 1 ≤ λ, this settles our claim. Otherwise we proceed distinguishing 2 cases. If 0 ≺ b,
then 0 ≤ b+ (ε/2)v. Thus a ≤ λb+ (ε/2)v + (1− λ)

(

b+ (ε/2)v
)

≤ b+ εv, satisfying our
requirement. If 0 ¦ b, then we may use the above inequality for β = −1 as well. There is
ρ > 0 such that 0 ≤ b+ ρv. We find λ′ ≥ 0 such that

a ≤ λ′b+
ε

2
v and − λ′ ≤ −1 +

ε

2ρ
,

that is λ′ ≥ 1 − ε/(2ρ). Next we choose 0 ≤ α ≤ 1 such that 1 − ε/(2ρ) ≤ λ′′ < 1
holds for λ′′ = αλ + (1 − α)λ′. (Recall that we are considering the case that λ < 1,
therefore such a choice of α is possible.) Then a ≤ λ′′b+(ε/2)v holds as well. This shows
a ≤ λ′′b+ (ε/2)v + (1− λ′′)

(

b+ ρv
)

≤ b+ εv, again satisfying our requirement.

Theorem 3.2. For elements a, b ∈ P and v ∈ V we have a 4 b + v if and only if
µ(a) ≤ µ(b) + 1 for all µ ∈ v◦.

Proof. We shall use Theorem 3.1(a) in a full cone containing P and V . If a 4 (b+v), then
µ(a) ≤ µ(b+ v) = µ(b) +µ(v) ≤ µ(b) + 1 for all µ ∈ v◦ by Theorem 3.1 (a). On the other
hand, if a 64 (b+v), following 3.1(b) there is µ ∈ P∗ such that µ(a) > µ(b+v) = µ(b)+µ(v).
This shows µ(v) < +∞ in particular. If µ(v) = 0, then λµ ∈ v◦ for all λ ≥ 0, and we
may choose λ such that (λµ)(a) > (λµ)(b) + 1. If µ(v) > 0, we set λ = 1/µ(v) and have
λµ ∈ v◦, and again (λµ)(a) > (λµ)(b) + 1.

The statement of Theorem 3.2, if it applies to the preorder ≺ as well, is called the strict
separation property for (P,V) (see [1], II.2.12).



306 W. Roth / Separation Properties for Locally Convex Cones

Corollary 3.3. A locally convex cone (P,V) has the strict separation property if and only
if the preorders ≺ and 4 coincide.

Proof. If the preorders ≺ and 4 coincide, then our claim follows from Theorem 3.2. If
on the other hand P has the strict separation property and if a 4 b+ v for a, b ∈ P and
v ∈ V, then µ(a) ≤ µ(b) + 1 for all µ ∈ v◦, hence a ≺ b + v as well. Lemma 2.1 will
complete our argument.

If we replace the given order of (P,V) with the preorder ≺ or the weak preorder 4,
respectively, then (P,V) becomes again a locally convex cone. The dual cone P∗ of P
and the polars of neighborhoods remain unchanged. Theorem 3.2 demonstrates that 4 is
in fact the coarsest order on (P,V) that generates this duality.

4. Representations for Locally Convex Cones

We shall establish a representation for a locally convex cone (P,V) as a cone of continuous
R-valued functions on some topological space X. Using the preceding separation results,
this representation is straightforward. Let X = P∗, endowed with the topology w(P∗,P),

and let ˜P denote the cone of all continuous R-valued functions on X, endowed with the
pointwise order and algebraic operations. Corresponding to the neighborhoods v ∈ V we
define neighborhoods ṽ for functions f, g ∈ ˜P by

f ≤ g + ṽ if f(x) ≤ g(x) + 1 for all x ∈ v◦.

Then w(P∗,P)-compactness of the sets v◦ ⊂ X guarantees that the continuous functions

f ∈ ˜P are bounded below on v◦, hence 0 ≤ f+λṽ for some λ ≥ 0. With the neighborhood
system ˜V =

{ ∑n
i=1 λiṽi | λi > 0, vi ∈ V, n ∈ N

}

, thus ( ˜P, ˜V) becomes a locally convex
cone. We consider the canonical embedding

a 7→ fa : P → ˜P,

where fa(x) = x(a) for all x ∈ X. This embedding is linear and preserves the weak global
preorder by Theorem 3.1(b), that is a 4 b for a, b ∈ P if and only if fa ≤ fb. It also
preserves the neighborhoods with respect to this order, that is a 4 b+v holds for a, b ∈ P
and v ∈ V if and only if fa ≤ fb + ṽ. The latter is a consequence of Theorem 3.2.

We may use the same procedure to represent (P,V) as a cone of convex subsets of a

locally convex topological vector space. Let ˜P and ˜V be as above, and let E be the vector
space of all continuous real-valued functions on X. A neighborhood basis for 0 ∈ E is
given by the convex sets V = {f ∈ E | |f(x)| ≤ 1 for all x ∈ v◦} corresponding to
the neighborhoods v ∈ V. Now let P be the cone of all non-empty convex subset of E,
endowed with the usual addition and multiplication by scalars and the set inclusion as
order. With the neighborhood system V =

{ ∑n
i=1 λiVi | λi > 0, vi ∈ V

}

, then (P,V) is
a full locally convex cone. We consider the embedding

a 7→ A : P → P,

where A = {f ∈ E | f ≤ fa}. This embedding is linear (a consequence of the Riesz
decomposition property for functions in E), and preserves the weak global preorder, as
a 4 b + v means that fa ≤ fb + ṽ which in turn holds if and only if A ⊂ B + V. We
summarize:
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Theorem 4.1. Every locally convex cone (P,V) may be embedded into

(i) a locally convex cone of continuous R-valued functions on some topological space
X, endowed with the pointwise order and operations and the topology of uniform
convergence on a family of compact subsets of X.

(ii) a locally convex cone of convex subsets of a locally convex topological vector space,
endowed with the usual addition and multiplication by scalars, the set inclusion as
order and the neighborhoods inherited from the vector space.

These embeddings are linear and preserve the weak global preorder and the neighborhoods.
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