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1. Introduction

Many variational problems arising from several branches of applied analysis lead to con-
sider minimum problems for functionals of the form

F (u) =

∫

Ω

f(x, u,∇u) dx+

∫

Su

ψ(x, u−, u+, νu) dHn−1, (1)

where Ω is a bounded open subset of Rn with Lipschitz boundary, f : Ω×RN×RnN →
[0,+∞], and ψ : Ω×RN×RN×Sn−1 → [0,+∞] are Borel functions, Sn−1 := {v ∈ Rn :
|v| = 1}, Hn−1 is the (n− 1)-dimensional Hausdorff measure, and the unknown function
u belongs to the space [SBV (Ω)]N of special functions of bounded variation in Ω; ∇u
denotes the approximate gradient of u, Su is the set of essential discontinuity points of u,
νu is the approximate unit normal vector to Su, and u−, u+ the approximate limits of u
on the two sides of Su.

Following a terminology by De Giorgi, variational problems of this form are denoted by
free-discontinuity problems. A typical example is provided by the so-called Mumford-Shah
functional, introduced in [14] in the context of image segmentation, which can be written
as

MS(u) :=

∫

Ω

|∇u|2dx+ αHn−1(Su) + β

∫

Ω

|u− g|2 dx,

where g is a function in [L∞(Ω)]N , and α > 0 and β ≥ 0 are constants.

One of the main features of functionals of the form (1) is that they are in general not
convex; therefore, all conditions which can be obtained by infinitesimal variations are
necessary for minimality, but in general not sufficient.

In [2] Alberti, Bouchitté, Dal Maso have proposed a sufficient condition for minimality,
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based on the calibration method, which leads to many applications (see [2], [6], [11], [12],
[13]). In the form presented in [2], this minimality criterion is limited to scalar functions.

The purpose of this paper is to develop a similar theory for functionals on vector-valued
maps.

In order to describe the basic idea behind the calibration method, let us focus our attention
on Dirichlet minimizers of F , that is minimizers with prescribed boundary values. Given
a candidate u, if we are able to construct a functional G which is invariant on the class
of functions having the same boundary values and satisfies

G(u) = F (u), and G(v) ≤ F (v) for every admissible v, (2)

then u is a Dirichlet minimizer of F . Indeed, if such a functional exists, for every v with
the same boundary values as u we have

F (u) = G(u) = G(v) ≤ F (v).

In [2] the rÝole of G is carried out by the flux of a suitable divergence-free vectorfield
φ : Ω×R → Rn+1 through the complete graph of v, which is defined as the union of the
usual graph of v and of all segments joining (x, v−(x)) and (x, v+(x)) with x ranging in
Sv. Since φ is divergence-free, the flux is clearly invariant with respect to the boundary
values, while suitable further conditions on φ guarantee (2) (see Remark 3.6).

In this paper this theory is generalized to the vectorial case by considering a different kind
of invariant functional: the calibration is no longer a vectorfield, but a pair of functions
(S,S0), where S : Ω×RN → Rn is suitably regular (more precisely, globally Lipschitz and
piecewise C1), while S0 belongs to L1(Ω); the comparison functional for F is given by

−
∫

∂Ω

〈S(x, v), ν∂Ω〉 dHn−1 +

∫

Ω

S0(x) dx, (3)

where ν∂Ω is the inner unit normal to ∂Ω. It is clear that the functional (3) is constant
on the functions having the same values at ∂Ω. Moreover, by the divergence theorem we
can rewrite (3) as

∫

Ω

dµv +

∫

Ω

S0(x) dx,

where µv is the divergence (in the sense of distributions) of the composite function
S(·, v(·)). A generalized version of the chain rule in BV (which is proved in Section 2)
implies that

µv = ([divxS](x, v) + 〈(DyS(x, v))τ ,∇v〉)Ln + 〈S(x, v+)− S(x, v−), νv〉Hn−1bSv,

where [divxS] denotes the divergence of S with respect to the variable x ∈ Ω, and (DyS)τ
the transpose of the Jacobian matrix of S with respect to the variable y ∈ RN . Therefore
the functional (3) turns out to be equal to

∫

Ω

([divxS](x, v) + 〈(DyS(x, v))τ ,∇v〉+ S0(x)) dx+

∫

Sv

〈S(x, v+)− S(x, v−), νv〉 dHn−1.
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By comparing this expression with the functional (1), we find pointwise conditions on S0,
S, and the derivatives of S, which guarantee (2), and then the Dirichlet minimality of a
given u. For a precise statement of these conditions see Lemma 3.2 and Lemma 3.3.

This formulation is related to classical field theory for multiple integrals of the form

F0(u) =

∫

Ω

f(x, u,∇u) dx.

In this framework a sufficient condition for the minimality of a candidate u ∈ [C1(Ω)]N

is obtained by comparing F0 with the integral of a null-lagrangian of divergence type,
which is constructed starting from a suitably defined slope field P, called Weyl field ,
and a function S ∈ [C2(Ω×RN)]n, the eikonal map associated with P (cf., e.g., [9]). In
Section 4 we prove that, under suitable assumptions on f and ψ, whenever a Weyl field
exists for a function u ∈ [C1(Ω)]N (so that u is a Dirichlet minimizer for F0), then there
exists a calibration for u with respect to the functional F (which is given by the eikonal
map S and by S0 ≡ 0), so u is also a Dirichlet minimizer for F among SBV functions.

Some examples and applications are presented in Section 5. In Examples 5.1, 5.3, 5.4,
and 5.5 we deal with minimizers of the Mumford-Shah functional, and we generalize
some results proved in [2] for the scalar case. A purely vectorial example is given by
Example 5.2, where we study the minimality of continuous solutions of the Euler equations
for a functional arising in fracture mechanics, which can be defined only on maps from
Ω ⊂ Rn into Rn.

Finally, we point out that, as mentioned in [2], one could try to generalize the calibration
theory from the scalar case to the vectorial one by replacing divergence-free vectorfields
by closed n-forms on Ω×RN , acting on the graphs of the functions v, viewed as suitably
defined surfaces in Ω×RN . This could lead to the idea that our choice of writing the
calibration in terms of the pair (S,S0) is somehow restrictive. This is not at all the case,
since the existence of a calibration expressed via differential forms implies the existence
of a calibration expressed in terms of a pair (S,S0), as shown in Section 6.

The plan of the paper is the following: in Section 2 we fix the notation and we recall some
basic results from BV functions theory; in Section 3 we present the calibration method
for functionals of the form (1) on vector-valued maps; Section 4 is devoted to the link
between calibration theory and classical field theory; Section 5 contains some examples
and applications; finally, in Section 6 we reformulate the theory of calibrations in terms
of differential forms and show that this formulation does not lead to new results.

2. Notation and preliminary results

In this section we fix the notation and we recall some results from BV functions theory.

Given x, y ∈ Rn, we denote their scalar product by 〈x, y〉, and the euclidean norm of x by
|x|. Given a, b ∈ R, the maximum and the minimum of {a, b} are denoted by a ∨ b and
a ∧ b, respectively.

In the following Ω is a fixed bounded open subset of Rn with Lipschitz boundary, ν∂Ω is
its inner unit normal, while U is a closed subset of Ω×RN . The letter x usually denotes
the variable in Ω (or Rn), while y or z is the variable in RN .
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We say that a function u : Ω → RN has bounded variation in Ω, and we write u ∈
[BV (Ω)]N , if u belongs to [L1(Ω)]N and its distributional derivative Du is a finite Radon
RnN -valued measure in Ω.

Since Ω has Lipschitz boundary, we can speak about the trace of u on ∂Ω, which belongs
to L1(∂Ω,Hn−1) and will be still denoted by u.

The singular set Su of u is defined as the set of all points where u does not admit an
approximate limit; Su is countably (Hn−1, n − 1)-rectifiable, that is, it can be covered,
up to an Hn−1-negligible set, by countably many C1-hypersurfaces. Moreover, at Hn−1-
a.e. x0 ∈ Su there exists a triplet (u+(x0), u

−(x0), νu(x0)) ∈ RN×RN×Sn−1 such that
u+(x0) 6= u−(x0), νu(x0) is normal to Su in an approximate sense, and

lim
r→0+

1

Ln(B±
r (x0))

∫

B±
r (x0)

|u(x)− u±(x0)| dx = 0,

where B±
r (x0) is the intersection of the ball of radius r centred at x0 with the half-

plane {x ∈ Rn : ±〈x − x0, νu(x0)〉 ≥ 0}. The triplet (u+(x0), u
−(x0), νu(x0)) is uniquely

determined up to a permutation of (u+(x0), u
−(x0)) and a change of sign of νu(x0).

The measure Du can be decomposed as

Du = Dau+Dju+Dcu,

where Dau is the absolutely continuous part with respect to Ln, Dju is the jump part
and satisfies Dju = (u+ − u−)⊗ νuHn−1bSu, and finally Dcu is the so-called Cantor part.
The density of Dau with respect to Ln is denoted by ∇u and agrees with the approximate
gradient of u. Moreover, we call Dau+Dcu the diffuse part of the derivative of u and we
denote it by D̃u.

We say that a function u : Ω → RN is a special function of bounded variation, and we
write u ∈ [SBV (Ω)]N , if u ∈ [BV (Ω)]N and Dcu = 0.

Finally, we define as graph of u the set Gu := {(x, ũ(x)) : x ∈ Ω \ Su}, where ũ is the
precise representative of u (which is defined everywhere on Ω \ Su by definition of Su).

For more details on BV functions theory see [4].

We conclude this section with the proof of a generalized chain rule inBV . If u ∈ [BV (Ω)]N

and S is a Lipschitz continuous function from RN into RM , it is known that S ◦u belongs
to [BV (Ω)]M . When in addition S ∈ [C1(RN)]M , the following chain rule formula can be
written:

D̃(S ◦ u) = DS(ũ(x))D̃u(x) on Ω \ Su,

Dj(S ◦ u) = [S(u+)− S(u−)]⊗ νuHn−1bSu,
(4)

(see Theorem 3.96 in [4]). Following an idea by [15], we generalize formula (4) to the case
of a function S, which may depend also on the variable x and is only piecewise C1 in the
sense of the following definition.

Definition 2.1. We say that a Lipschitz continuous function S : U → RM is piecewise
C1 if S can be written as

S(x, y) =
∑

α∈A

Sα(x, y)1Uα(x, y), (5)
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where (Uα)α∈A is a finite family of pairwise disjoint Borel sets such that ∪α∈AU
α = U ,

and (Sα)α∈A is a family of Lipschitz continuous functions belonging to [C1(Ω×RN)]M .

Lemma 2.2. Let S : U → RM be a Lipschitz continuous function, piecewise C1 in the
sense of Definition 2.1, and satisfying (5), and let u ∈ [BV (Ω)]N be such that Gu ⊂ U .
Then, v := S(·, u(·)) belongs to [BV (Ω)]M and

D̃v =
∑

α∈A

1Uα(x, ũ)(DxSα(x, ũ)Ln +DySα(x, ũ)D̃u) on Ω \ Su, (6)

Djv = [S(x, u+)− S(x, u−)]⊗ νuHn−1bSu. (7)

Proof. Since the function S can be extended to a Lipschitz function on the whole Ω×RN ,
by Theorem 3.101 in [4] we have that the function v = S(·, u(·)) belongs to [BV (Ω)]M

and formula (7) holds true.

Since Sα is globally Lipschitz and of class C1 on Ω×RN , by Theorem 3.96 in [4] the
function vα := Sα(·, u(·)) belongs to [BV (Ω)]M and the diffuse part of its derivative
satisfies the following equality:

D̃vα = DxSα(x, ũ)Ln +DySα(x, ũ)D̃u. (8)

Consider now the set
Eα := {x ∈ Ω \ Su : ṽ(x) = ṽα(x)}.

Since v and vα are both BV functions and their jump sets are both contained in Su, by
the locality property of the derivative of a BV function (see Remark 3.93 in [4]) it follows
that DvbEα = DvαbEα. Since Eα ⊂ Ω \ Su, the previous equality can be rewritten as

D̃vbEα = D̃vαbEα. (9)

If we define
Pα := {x ∈ Ω \ Su : (x, ũ(x)) ∈ Uα},

since Pα ⊂ Eα, by (9) and (8) we can conclude that

D̃vbPα = D̃vαbPα = DxSα(x, ũ)LnbPα +DySα(x, ũ)D̃ubPα,

which immediately gives formula (6).

3. Calibrations for functionals on vector-valued maps

In this section we develop the theory of calibrations for functionals depending on vector-
valued maps u ∈ [SBV (Ω)]N and of the following form:

F (u) =

∫

Ω

f(x, u,∇u) dx+

∫

Su

ψ(x, u−, u+, νu) dHn−1, (10)

where f : Ω×RN×RnN → [0,+∞], and ψ : Ω×RN×RN×Sn−1 → [0,+∞] are Borel
functions, and ψ satisfies the condition ψ(x, y, z, ν) = ψ(x, z, y,−ν).

In the sequel we will refer to the following definition of minimizers of F .
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Definition 3.1. An absolute minimizer of (10) in Ω is a function u ∈ [SBV (Ω)]N such
that F (u) ≤ F (v) for all v ∈ [SBV (Ω)]N , while a Dirichlet minimizer in Ω is a function
u ∈ [SBV (Ω)]N such that F (u) ≤ F (v) for all v ∈ [SBV (Ω)]N with the same trace on
∂Ω as u. A function u ∈ [SBV (Ω)]N is a U -minimizer if the graph of u is contained in
U and F (u) ≤ F (v) for all v ∈ [SBV (Ω)]N whose graph is contained in U , while u is a
Dirichlet U-minimizer if we add the requirement that the competing functions v have the
same trace on ∂Ω as u.

Before proving the key lemma about calibrations, we fix some further notation.

Given two functions S : U → Rn, and u : Ω → RN , we will denote the divergence of the
composite function S(·, u(·)) by divx[S(x, u(x))], while the divergence of S with respect to
the variable x computed at the point (x, u(x)) by [divxS](x, u(x)). The Jacobian matrix
of S with respect to y will be denoted by DyS and its transpose by (DyS)τ . Note that if
S and u are sufficiently regular,

divx[S(x, u(x))] = [divxS](x, u) + 〈(DyS(x, u))τ ,∇u〉.

We call f ∗ and ∂−
ξ f the convex conjugate and the subdifferential of f with respect to the

last variable. We recall that, if g is a function from RnN into [0,+∞], the subdifferential
of g at the point ξ ∈ RnN is defined as the set of all matrices η ∈ RnN such that
g(ξ) + 〈η, ζ − ξ〉 ≤ g(ζ) for every ζ ∈ RnN . It is well known that 〈ξ, η〉 − g∗(η) ≤ g(ξ)
for every ξ, η ∈ RnN , and the equality holds if and only if η ∈ ∂−

ξ g(ξ). Moreover, if g is

convex and differentiable, then ∂−
ξ g(ξ) = {∂ξg(ξ)}. Using these properties, we can prove

the following lemma.

Lemma 3.2. Let F be the functional defined in (10). Let S ∈ [C1(Ω×RN)]n be Lipschitz
continuous and let S0 ∈ L1(Ω). Assume that the following conditions are satisfied:

(a) [divxS](x, y) + S0(x) ≤ −f ∗(x, y, (DyS(x, y))τ ) for Ln-a.e. x ∈ Ω and for every y
with (x, y) ∈ U ;

(b) 〈S(x, z) − S(x, y), ν〉 ≤ ψ(x, y, z, ν) for Hn−1-a.e. x ∈ Ω, for every ν ∈ Sn−1, and
for every y, z with (x, y) ∈ U, (x, z) ∈ U.

Then for every u ∈ [SBV (Ω)]N such that Gu ⊂ U we have that divx[S(·, u(·))] is a Radon
measure on Ω, which will be denoted as µu, and

F (u) ≥
∫

Ω

dµu +

∫

Ω

S0(x) dx. (11)

Moreover, equality holds in (11) for a given u if and only if

(a’) [divxS](x, u) + S0(x) = −f ∗(x, u, (DyS(x, u))τ ) and (DyS(x, u))τ ∈ ∂−
ξ f(x, u,∇u)

for Ln-a.e. x ∈ Ω;

(b’) 〈S(x, u+)− S(x, u−), νu〉 = ψ(x, u−, u+, νu) for Hn−1-a.e. x ∈ Su,

where u, u±, ∇u, and νu are always computed at x.

Proof. Let u ∈ [SBV (Ω)]N be such that Gu ⊂ U . By Theorem 3.96 in [4] the function
S(·, u(·)) belongs to [SBV (Ω)]n, and therefore, its divergence is a Radon measure on Ω.
Moreover, we have that

Dxi
[Si(x, u)] = ∂xi

Si(x, u)Ln +DySi(x, u)∂xi
uLn + [Si(x, u

+)− Si(x, u
−)](νu)iHn−1bSu,
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so that the measure µu can be written as

µu(x) =
n

∑

i=1

Dxi
[Si(x, u(x))]

= [divxS](x, u)Ln +
∑

i

DySi(x, u)∂xi
uLn +

∑

i

[Si(x, u
+)− Si(x, u

−)](νu)iHn−1bSu

= [divxS](x, u)Ln + 〈(DyS(x, u))τ ,∇u〉 Ln + 〈S(x, u+)− S(x, u−), νu〉Hn−1bSu,

and the functional at the right-hand side of (11) has the following expression

∫

Ω

dµu +

∫

Ω

S0(x) dx =

∫

Ω

([divxS](x, u) + 〈(DyS(x, u))τ ,∇u〉+ S0(x)) dx

+

∫

Su

〈S(x, u+)− S(x, u−), νu〉 dHn−1. (12)

Using assumption (a) we obtain that for Ln-a.e. x ∈ Ω

[divxS](x, u)+ 〈(DyS(x, u))τ,∇u〉+S0(x) ≤ −f ∗(x, u, (DyS(x, u))τ )+〈(DyS(x, u))τ,∇u〉
≤ f(x, u,∇u),

and consequently

∫

Ω

([divxS](x, u) + 〈(DyS(x, u))τ ,∇u〉+ S0(x)) dx ≤
∫

Ω

f(x, u,∇u) dx. (13)

Moreover, equality holds in (13) if and only if (DyS(x, u))τ∈ ∂−
ξ f(x,u,∇u) and [divxS](x,u)

+S0(x) = −f ∗(x, u, (DyS(x, u))τ ), which is condition (a’).

As for the second integral in (12), condition (b) implies that

∫

Su

〈S(x, u+)− S(x, u−), νu〉 dHn−1 ≤
∫

Su

ψ(x, u−, u+, νu) dHn−1. (14)

Moreover, equality holds in (14) if and only if (b’) is satisfied.

The statement follows now from (12), (13), and (14).

The assumption of C1-regularity for S is often too strong for many applications. We prove
now a new version of Lemma 3.2 under weaker regularity assumptions for S.
Lemma 3.3. Let F be the functional defined in (10). Let S : U → Rn be a Lipschitz
continuous function, piecewise C1 in the sense of Definition 2.1, and satisfying (5). Let
S0 ∈ L1(Ω). Assume that the following conditions are satisfied:

(a) [divxSα](x, y)+S0(x) ≤ −f ∗(x, y, (DySα(x, y))τ ) for every α ∈ A, for Ln-a.e. x ∈ Ω,
and for every y ∈ RN with (x, y) ∈ Uα;

(b) 〈S(x, z) − S(x, y), ν〉 ≤ ψ(x, y, z, ν) for Hn−1-a.e. x ∈ Ω, for every ν ∈ Sn−1, and
for every y, z with (x, y) ∈ U, (x, z) ∈ U.
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Then for every u ∈ [SBV (Ω)]N such that Gu ⊂ U we have that divx[S(·, u(·))] is a Radon
measure on Ω, which will be denoted as µu, and

F (u) ≥
∫

Ω

dµu +

∫

Ω

S0(x) dx. (15)

Moreover, equality holds in (11) for a given u if and only if

(a’) [divxSα](x, u)+S0(x) = −f ∗(x, u, (DySα(x, u))τ ) and (DySα(x, u))τ ∈ ∂−
ξ f(x, u,∇u)

for every α ∈ A, for Ln-a.e. x ∈ Ω such that (x, u(x)) ∈ Uα :

(b’) 〈S(x, u+)− S(x, u−), νu〉 = ψ(x, u−, u+, νu) for Hn−1-a.e. x ∈ Su,

where u, u±, ∇u, and νu are always computed at x.

Proof. Let u ∈ [SBV (Ω)]N be such that Gu ⊂ U . By Lemma 2.2 the function S(·, u(·))
belongs to [SBV (Ω)]n, and therefore, its divergence is a Radon measure on Ω. By (6)
and (7) we have that the measure µu can be written as

µu(x) =
∑

α∈A

1Uα(x, u)[divxSα](x, u)Ln +
∑

α∈A

1Uα(x, u)〈(DySα(x, u))τ ,∇u〉 Ln

+ 〈S(x, u+)− S(x, u−), νu〉Hn−1bSu.

The proof of Lemma 3.2 can be now repeated simply replacing [divxS] with
∑

α∈A 1Uα [divxSα], and DyS with
∑

α∈A 1UαDySα.

Definition 3.4. We say that a pair of functions (S,S0) is a calibration for u ∈ [SBV (Ω)]N

on U with respect to the functional (10) if S : U → Rn is a Lipschitz continuous function,
piecewise C1 in the sense of Definition 2.1, S0 ∈ L1(Ω), and they satisfy assumptions (a),
(b), (a’), and (b’) in Lemma 3.3.

We can now prove the main result of this section.

Theorem 3.5. Let u be a function in [SBV (Ω)]N whose graph is contained in U . Assume
that there exists a calibration (S,S0) for u on U with respect to the functional (10).
Then u is a Dirichlet U-minimizer of F . If, in addition, the normal component of S
at ∂U ∩ (∂Ω×RN) does not depend on y, namely for Hn−1-a.e. x ∈ ∂Ω there exists a
constant a(x) ∈ R such that

〈S(x, y), ν∂Ω(x)〉 = a(x) for every y such that (x, y) ∈ U , (16)

then u is also an absolute U-minimizer of F .

Proof. Let v be a function in [SBV (Ω)]N such that v = u on ∂Ω and Gv ⊂ U . Then the
definition of the measure µv and the divergence theorem imply that

∫

Ω

dµv = −
∫

∂Ω

〈S(x, v), ν∂Ω〉 dHn−1.

If v has the same trace on ∂Ω as u, from this identity it follows that

∫

Ω

dµv =

∫

Ω

dµu, (17)
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and by applying Lemma 3.3 we obtain

F (v) ≥
∫

Ω

dµv +

∫

Ω

S0(x) dx =

∫

Ω

dµu +

∫

Ω

S0(x) dx = F (u).

We have thus proved that u is a Dirichlet U -minimizer of F .

If we assume, in addition, that (16) holds true, then
∫

Ω
dµv = −

∫

Ω
a dHn−1 for every

v ∈ [SBV (Ω)]N whose graph is contained in U ; so, the equality (17) is fulfilled even if the
traces of u and v on ∂Ω differ. This proves that u is an absolute U -minimizer of F .

Remark 3.6. It is natural to wonder what is the link in the case N = 1 between our
vectorial theory and the calibration method for the scalar case, developed in [2], which
involves a divergence-free vectorfield φ (see [2, Theorem 3.10]).

Let N = 1. Let us suppose that (S,S0) is a calibration for u and assume furthermore
that S is globally C1. Take the vector field φ = (φx, φy) : U → Rn×R defined by
φx(x, y) := ∂yS(x, y) and φy(x, y) := −[divxS](x, y) − S0(x). Then φ satisfies all the
assumptions of Theorem 3.10 in [2]. Indeed, by Remark 2.3 in [2] φ is approximately
regular on U in the sense of Definition 2.1 in [2]; moreover, φ satisfies all the following
conditions:

(A) φy(x, y) ≥ f ∗(x, y, φx(x, y)) for Ln-a.e. x ∈ Ω and for every y ∈ R with (x, y) ∈ U ;

(A’) φx(x, u) ∈ ∂−
ξ f(x, u,∇u) and φy(x, u) = f ∗(x, u, φx(x, u)) for Ln-a.e. x ∈ Ω;

(B)

∫ y2

y1

〈φx(x, y), ν〉 dy ≤ ψ(x, y1, y2, ν) for Hn−1-a.e. x ∈ Ω, every ν ∈ Sn−1, and every

y1 < y2 such that (x, y1) ∈ U , (x, y2) ∈ U ;

(B’)

∫ u+

u−
〈φx(x, y), νu〉 dy = ψ(x, u−, u+, νu) for Hn−1-a.e. x ∈ Su;

(C) φ is divergence-free in the sense of distributions in U .

Conditions (A) and (A’) directly follow from (a) and (a’), respectively. By definition of φ
we have that

∫ y2

y1

φx(x, y) dy = S(x, y2)− S(x, y1),

so that conditions (b) and (b’) imply (B) and (B’), respectively. If S is C2 and S0 is C1,
then it is trivial that φ is C1 and divφ = 0; in the general case, condition (C) can be
obtained by an approximation argument.

Analogously it is easy to see that, if φ is a bounded Lipschitz C1-vectorfield satisfying
(A), (B), (A’), (B’), and (C), then we can construct a calibration (S,S0). Take indeed

S(x, y) :=
∫ y

τ(x)

φx(x, t) dt and S0(x) := 〈φx(x, τ(x)),∇τ(x)〉 − φy(x, τ(x)),

where τ is any smooth function satisfying (x, τ(x)) ∈ U for every x ∈ Ω.

4. An application related to classical field theory

We recall now some classical results from field theory for multiple integrals of the form

F0(u) =

∫

Ω

f(x, u,∇u) dx, (18)
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where u ∈ [C1(Ω)]N and f ∈ C2(Ω×RN×RnN).

We will call extremals of F0 or f -extremals the solutions u of class C2 of the Euler equations
for the integral F0, i.e.

n
∑

i=1

Dxi
[∂ξijf(x, u(x),∇u(x))]− ∂uj

f(x, u(x),∇u(x)) = 0, 1 ≤ j ≤ N. (19)

In the classical field theory for multiple integrals several sufficient conditions for the
minimality of an f -extremal have been proposed. Among the others, we recall Weyl field
theory, which is strictly related to the calibration theory for vector-valued functionals
and ensures that a given f -extremal u is in fact a minimizer of F0 among all functions of
class C1, with the same boundary values as u and whose graph is contained in a suitable
neighbourhood of the graph of u. It consists in the construction of a suitable slope field
P, called Weyl field, and of a smooth function S, called the eikonal map associated with
the field, satisfying the system of equations (20) – (21). This set of conditions arises from
the comparison of F0 with an invariant functional of divergence type, which is nothing
but the functional

∫

Ω

divx[S(x, v)] dx,

where S is the eikonal map (see, e.g. [9, Chapter 7, Section 4]).

We will show via calibrations that, if a Weyl field exists for an f -extremal u (and then
there exists a neighbourhood U of the graph of u such that u minimizes F0 among C1-
functions with the same boundary values as u and with graph contained in U), then u is
also a Dirichlet U -minimizer of the functional (10) in the sense of Definition 3.1, provided
U is a sufficiently small neighbourhood of Gu and the function ψ satisfies the estimate
(23); moreover, if S is the eikonal map associated with the Weyl field, then the pair (S,S0)
with S0 ≡ 0 is a calibration for u on U .

Definition 4.1. Let U be a closed domain in Ω×RN . A mapping p : U → U×RnN is
called a slope field on U if it is of class C1 and of the form

p(x, y) = (x, y,P(x, y)) for every (x, y) ∈ U ;

we denote P(x, y) = (Pij(x, y)) as the slope function of the field p. We say that a map
u ∈ [C1(Ω)]N fits the slope field p if Gu ⊂ U and

∂xi
uj(x) = Pij(x, u(x)) for every x ∈ Ω.

Finally, a slope field p is said to be a Weyl field if there is a map S ∈ [C2(U)]n such that
{S,P} solves the Weyl equations:

[divxS](x, y) = f(x, y,P(x, y))− 〈P(x, y), ∂ξf(x, y,P(x, y))〉, (20)

∂yjSi(x, y) = ∂ξijf(x, y,P(x, y)). (21)

The function S is called the eikonal map associated with p.

The main results in Weyl field theory can be stated as follows. For a proof we refer to [9].



M. G. Mora / The Calibration Method for Free-Discontinuity Problems ... 11

Theorem 4.2.

(1) Assume that the function f satisfies

f(x, y, ξ)− f(x, y, η)− 〈ξ − η, ∂ξf(x, y, η)〉 ≥ 0

for every (x, y) ∈ U and ξ, η ∈ RnN , and let u ∈ [C2(Ω)]N fit a Weyl field
p : U → U×RnN with the eikonal map S : U → Rn. Then u is a minimizer of
F0 among all v ∈ [C1(Ω)]N such that v|∂Ω = u|∂Ω and Gv ⊂ U ; in particular, u
is an f -extremal. Moreover, if there is a constant µ > 0 such that

∑

i,j,h,k

∂2
ξijξhk

f(x, y, ξ)ζijζhk ≥ µ|ζ|2 ∀(x, y) ∈ Ω×RN , ξ, ζ ∈ RnN , (22)

then u is a strict minimizer of F0 in the same class.

(2) Vice-versa, if f satisfies the strict convexity condition (22), then every f -
extremal fits at least locally a Weyl field and is therefore locally minimizing
F0. In other words, for every x0 ∈ Ω there exist ε > 0 and an open neigh-
bourhood A of x0 such that u minimizes F0 among all v ∈ [C1(A)]N such that
v|∂A = u|∂A and Gv ⊂ {(x, y) ∈ A×RN : |y − u(x0)| ≤ ε}.

Let us now state and prove a similar result for free-discontinuity problems.

Theorem 4.3. Let f : Ω×RN×RnN → [0,+∞] be a function of class C2 satisfying (22)
and let ψ : Ω×RN×RN×Sn−1 → [0,+∞] be a Borel function satisfying

ψ(x, y, z, ν) ≥ c θ(|y − z|), (23)

where c is a positive constant, while θ is such that limt→0+
θ(t)
t

= +∞. Let u be an
f -extremal. Then for every x0 ∈ Ω there exist ε > 0, an open neighbourhood A (with
Lipschitz boundary) of x0, and a pair (S,S0) such that (S,S0) is a calibration for u with
respect to the functional (10) on the set

U := {(x, y) ∈ A×RN : |y − u(x0)| ≤ ε}; (24)

therefore u is a Dirichlet U-minimizer of the functional (10).

Proof. Let u be an f -extremal. By the second part of Theorem 4.2 for every x0 ∈ Ω
there exist ε > 0 and an open neighbourhood A (with Lipschitz boundary) of x0 such
that u fits a Weyl fiel in the set (24). Denote the Weyl field by p(x, y) = (x, y,P(x, y))
and the eikonal map associated with p by S.
We claim that, if we take S0(x) := 0 for every x ∈ Ω, then the pair (S,S0) is a calibration
for u on U with respect to the functional F defined in (10), provided ε is sufficiently small.
Let us prove it. Since f is convex, for every η ∈ RnN we have that

f(x, y, η)− 〈η, ∂ξf(x, y, η)〉 = −f ∗(x, y, ∂ξf(x, y, η));

this fact, jointly with (20), implies that

[divxS](x, y) = −f ∗(x, y, ∂ξf(x, y,P(x, y)))

= −f ∗(x, y, (DyS(x, y))τ ), (25)



12 M. G. Mora / The Calibration Method for Free-Discontinuity Problems ...

where the second equality follows from (21). Therefore, condition (a) is satisfied.

Condition (a’) follows from (25) and (21), using the fact that u fits the field P, hence
P(x, u(x)) = ∇u(x) for every x ∈ Ω.

If we call L the L∞-norm of the Jacobian matrix of S on U , then we have that

〈S(x, z)− S(x, y), ν〉 ≤ L |z − y| (26)

for every x ∈ Ω, y, z ∈ RN such that (x, y) ∈ U , (x, z) ∈ U , and ν ∈ Sn−1. By the
assumption on the function θ there exists δ > 0 such that θ(t) ≥ Lt/c for every t ∈ (0, δ);
then from (23) it follows that

ψ(x, y, z, ν) ≥ L|y − z| for |y − z| < δ. (27)

Taking ε < δ/2, from (26) and (27) we have that condition (b) is satisfied.

Since Su = ∅, condition (b’) is trivial.

The conclusion follows now from Theorem 3.5.

As made precise in the next proposition, when the function f depends only on the variables
x, ξ, we are able to prove the minimality of an f -extremal u on the whole domain Ω and
to give an estimate of the width ε of the neighbourhood of Gu where the minimality holds.

Proposition 4.4. In addition to the assumptions of Theorem 4.3, suppose that f =
f(x, ξ). Let u be an f -extremal. For every (x, y) ∈ Ω×RN define

S(x, y) := [∂ξf(x,∇u(x))]τ (y − u(x)) + σ(x), (28)

where σ : Ω → Rn is a solution of the equation divσ = f(x,∇u). Then the pair (S,S0)
with S0 ≡ 0 is a calibration for u with respect to the functional (10) on the set

U := {(x, y) ∈ Ω×RN : |y − u(x)| ≤ ε(x)}, (29)

where

ε(x) <
1

2
inf

{

t > 0 : c
θ(t)

t
< |∂ξf(x,∇u(x))|

}

, (30)

and c, θ are the quantities appearing in (23). Therefore u is a Dirichlet U-minimizer of
the functional (10).

Proof. Note that by the assumption on θ, the infimum in (30) is strictly positive for
every x ∈ Ω.

Let us prove that (S,S0) satisfies all the conditions in Lemma 3.2.

By direct computations we have thatDyS(x, y) = [∂ξf(x,∇u)]τ ; using the Euler equations
(19), the definition of σ, and the convexity of f , we find out that

[divxS](x, y) =
∑

ij

Dxi
(∂ξjif(x,∇u))(yj − uj)− 〈[∂ξf(x,∇u)]τ ,∇u〉+ divσ

= −〈[∂ξf(x,∇u)]τ ,∇u〉+ f(x,∇u)

= −f ∗(x, [∂ξf(x,∇u)]τ ).
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Conditions (a) and (a’) are therefore satisfied.

By the definition of S we obtain

|S(x, z)− S(x, y)| ≤ |∂ξf(x,∇u(x))| · |z − y|;

since |z − y| ≤ 2ε(x), (30) implies that

|∂ξf(x,∇u(x))| · |z − y| ≤ c θ(|z − y|);

so condition (b) follows now from (23).

Condition (b’) is trivial since Su is empty. This concludes the proof.

We notice that the thesis can be proved also in the following way: if we define P(x, y) :=
∇u(x) for every (x, y) ∈ Ω×RN , it is easy to see that the field p(x, y) := (x, y,P(x, y)) is
a Weyl field, S is the eikonal map associated with p, and u fits p. Then we can follow the
proof of Theorem 4.3: the check of condition (a), (a’), (b’) remains the same, while the
estimate on the size of ε(x) is given by a more careful proof of condition (b).

Remark 4.5. When the functional (10) satisfies some special further conditions, it is
enough to prove the Dirichlet minimality of a given u on a neighbourhood of its graph
to conclude that u is in fact a Dirichlet minimizer on the whole cylinder Ω×R, reducing
the domain Ω if needed. For istance, in addition to the assumptions of Proposition 4.4,
suppose that the two following conditions are satisfied:

(1) f(x, ξ) ≥ f(x, (I − ej⊗ej) ξ) for every x ∈ Ω, ξ ∈ RnN , j = 1, . . . , N , where
{e1, . . . , eN} is the canonical basis of RN ;

(2) ψ(x, y, z, ν) ≥ ψ(x, T b
a(y), T

b
a(z), ν) for every (x, y) ∈ Ω×RN , ξ ∈ RnN , ν ∈

Sn−1, a, b ∈ RN , where we have set

T b
a : RN → RN , (T b

a)j(y) := (yj ∧ aj) ∨ bj.

If u is an f -extremal, then by Proposition 4.4 we know that u is a Dirichlet U -minimizer
of F , where U is the set (29). We want to show that for every x0 ∈ Ω there exists an open
neighbourhood A (with Lipschitz boundary) of x0 such that u is a Dirichlet minimizer of
F in A.

First of all, we can find an open neighbourhood A (with Lipschitz boundary) of x0 and
two vectors m,M ∈ RN such that |M −m| < ε(x) for every x ∈ A and

mj ≤ uj(x) ≤ Mj ∀x ∈ A, 1 ≤ j ≤ N. (31)

Let v be a function in [SBV (A)]N with the same trace on ∂A as u and define Ýv := TM
m (v),

which still belongs to [SBV (A)]N . Note that ∇Ývj = 1{mj<vj<Mj}∇vj for every j, so that,
if we call J0(x) the set of all indexes j such that vj(x) 6∈ (mj,Mj), the matrix ∇Ýv(x) can
be written as

∇Ýv(x) = ∇v(x)−
∑

j∈J0

(ej⊗ej)∇v(x).

By using iteratively condition (1), we obtain that f(x,∇Ýv) ≤ f(x,∇v), which implies

∫

A

f(x,∇Ýv) dx ≤
∫

A

f(x,∇v) dx. (32)
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Since SÝv ⊂ Sv, and Ýv− = TM
m (v−), Ýv+ = TM

m (v+) on SÝv, by condition (2) we obtain
∫

SÝv∩A
ψ(x, Ýv−, Ýv+, νÝv) dHn−1 ≤

∫

Sv∩A
ψ(x, v−, v+, νv) dHn−1. (33)

On the other hand, by (31) the function Ýv has the same trace on ∂A as u, and its graph
is contained in the set

{(x, y) ∈ A×RN : |y − u(x)| ≤ ε(x)}.

Since u is a Dirichlet minimizer on this set, we have that
∫

A

f(x,∇u) dx ≤
∫

A

f(x,∇Ýv) dx+

∫

SÝv

ψ(x, Ýv−, Ýv+, νÝv) dHn−1. (34)

Therefore by (32), (33), and (34), u is a Dirichlet minimizer of F in A.

The same result can be achieved by calibration: indeed, we can extend the function S
in (28) to the whole Ω×RN simply by taking ÝS(x, y) := S(x, TM

m (y)); it is easy to see
that assumptions (1) – (2) guarantee that the pair ( ÝS,S0) provides a calibration for u on
A×RN .

We conclude the remark with some comments on conditions (1) – (2). Condition (1)
ensures that the functional decreases when any row of the matrix ∇u is annihilated,
which is what occurs when a component of u is truncated. For istance, (1) is fulfilled for
f(ξ) =

∑

ij ϕij(ξij) where ϕij are convex and positive, and ϕij(0) = 0. As for condition
(2), note that it is satisfied whenever ψ depends on y, z only through the distance |z− y|.

5. Some further applications

In this section we present some examples and applications. In Examples 5.1, 5.3, 5.4,
and 5.5 we deal with minimizers of the Mumford-Shah functional, and we generalize some
results proved in [2] for the scalar case. Example 5.2 is a purely vectorial example, since
it involves a functional arising in fracture mechanics which can be defined only on maps
from Ω ⊂ Rn into Rn.

Example 5.1. Let u : Ω → RN be a harmonic function. It is well known that u is
an extremal of the functional

∫

Ω
|∇u|2, and a Dirichlet minimizer of it. We can prove

via calibrations that u is a Dirichlet minimizer also of the homogeneous Mumford-Shah
functional

MS0(u) =

∫

Ω

|∇u|2dx+ αHn−1(Su), (35)

if the following condition is satisfied:

osc
Ω

u · sup
Ω

|∇u| ≤ α, (36)

where osc u denotes the modulus of the vector inRN whose components are the oscillations
of the components of u. When (36) is not fulfilled, u is still a Dirichlet U -minimizer of
the functional MS0, where

U :=

{

(x, y) ∈ Ω×RN : |y − u(x)| ≤ α

4|∇u(x)|

}

. (37)
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This second result directly follows from Proposition 4.4, where f(ξ) = |ξ|2 and ψ ≡ α.
Moreover, a calibration is given by (S,S0) with S0 ≡ 0 and

S(x, y) = 2[∇u(x)]τ (y − u(x)) + σ(x),

where σ : Ω → Rn is a solution of the equation divσ = |∇u|2. Since u is harmonic in Ω,
it is easy to see that we can take σ(x) := [∇u(x)]τu(x), so that

S(x, y) = 2[∇u(x)]τ
(

y − u(x)

2

)

. (38)

As for the Dirichlet minimality of u, we can show that, under the assumption (36), the
calibration (S,S0) can be extended to the whole Ω×RN , applying a similar argument to
the one used in Remark 4.5.

We recall that, in the case of the functional (35), conditions (a), (a’), (b), and (b’) in
Lemma 3.3 become

(a) [divxSγ](x, y) + S0(x) ≤ −1
4
|DySγ(x, y)|2 for every γ ∈ A, for Ln-a.e. x ∈ Ω,

and for every y ∈ RN with (x, y) ∈ Uγ;

(a’) [divxSγ](x, u) + S0(x) = −|∇u(x)|2 and (DySγ(x, u))τ = 2∇u(x) for every
γ ∈ A, and for Ln-a.e. x ∈ Ω such that (x, u(x)) ∈ Uγ;

(b) |S(x, z)−S(x, y)| ≤ α for Hn−1-a.e. x ∈ Ω and for every y, z ∈ RN such that
(x, y) ∈ U , (x, z) ∈ U ;

(b’) S(x, u+)− S(x, u−) = ανu for Hn−1-a.e. x ∈ Su,

where S(x, y) =
∑

γ∈A Sγ(x, y)1Uγ (x, y).

Let mj and Mj be the infimum and the supremum of uj in Ω, respectively (then osc uj =
Mj −mj). Let T be the function from RN into RN defined as Tj(y) = (yj ∨mj/2)∧Mj/2.
Define

ÝS(x, y) := 2[∇u(x)]τ T

(

y − u(x)

2

)

.

It is easy to see that ( ÝS,S0) satisfies conditions (a) and (a’). Condition (b’) is trivial.
Finally, for every y, z ∈ RN we have

| ÝS(x, z)− ÝS(x, y)| ≤ 2|∇u(x)| · |T (z − u/2)− T (y − u/2)|. (39)

Since Tj(z−u/2) and Tj(y−u/2) belong to the interval [mj/2,Mj/2] for every 1 ≤ j ≤ N ,
we deduce that |T (z − u/2) − T (y − u/2)| ≤ |M −m|/2; so, condition (b) follows from
(39) and (36).

These two minimality results generalize those obtained in [1] for scalar harmonic functions.
Note that the minimality of u can be proved by applying the scalar argument to each
component uj, but this provides a more restrictive condition on the size of the domains
where the minimality holds. Indeed, by the scalar result in [1], since uj is harmonic for
every j, if

osc
Ω

uj · sup
Ω

|∇uj| ≤
α

N
1 ≤ j ≤ N, (40)

then
∫

Ω

|∇uj|2dx ≤
∫

Ω

|∇vj|2dx+
α

N
Hn−1(Svj)
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for every vj ∈ SBV (Ω) with the same boundary values as uj; summing over j, we obtain
the Dirichlet minimality of u in Ω. On the other hand, it is easy to see that condition
(40) is stronger than (36). Analogous remarks hold for the Dirichlet minimality of u in a
neighbourhood of its graph.

Example 5.2. In this example we consider a functional related to Griffith and Barenblatt
theories of fracture mechanics of the form

H(u) := µ

∫

Ω

|e(u)|2dx+
λ

2

∫

Ω

(divu)2 dx+

∫

Su

θ(|u+ − u−|) dHn−1

where u is a function from Ω ⊂ Rn into Rn, e(u) denotes the symmetrized gradient of u, θ
is a positive function satisfying limt→0+ θ(t)/t = +∞, and µ, λ are real parameters. In the
context of fracture mechanics, Ω is a reference configuration of an elastic body, possibly
subject to fracture, and u parameterizes its displacement; the bulk term represents the
energy relative to the elastic deformation outside the fracture, while the surface integral
is the energy needed to produce the crack.

The functional H is clearly of the form (10) with f(ξ) = µ |(ξτ + ξ)/2|2 + λ
2
(tr ξ)2 and

ψ(y, z) = θ(|z − y|). However, since the bulk term in H involves only the symmetric
part of the matrix ∇u, the appropriate setting for the minimum problem for H is not
exactly the space [SBV (Ω)]n, but the space SBD(Ω) of special functions with bounded
deformation (for a complete overview on the properties of this space see [3]). Even if the
calibration method has been developed only for SBV functions, we can actually prove
by calibration that, if u is an f-extremal, i.e. u ∈ [C1(Ω)]n ∩ [C2(Ω)]n and u solves the
equation

µ∆u+ (µ+ λ)∇(divu) = 0 on Ω, (41)

then u minimizes H among all functions v ∈ SBD(Ω) with the same trace on ∂Ω as u,
and whose graph is contained in the set

U := {(x, y) ∈ Ω×Rn : |y − u(x)| ≤ ε(x)},

where

ε(x) <
1

2
inf

{

t > 0 :
θ(t)

t
< |2µe(u)(x) + λdivu(x)I|

}

.

Indeed, since ∂ξijf(ξ) = µ(ξji+ξij)+λ(tr ξ)δij, Proposition 4.4 implies that u is a Dirichlet
U -minimizer of H in the class [SBV (Ω)]n and a calibration is given by (S,S0) with S0 ≡ 0
and

S(x, y) = [2µe(u)(x) + λdivu(x)I]

(

y − u(x)

2

)

; (42)

this last fact follows from formula (28) where we have taken σ(x) := [µe(u)(x)+
λ
2
divu(x)I]u(x), which is a solution of divσ = f(∇u) thanks to (41).

On the other hand, we can show that the pair (S,S0) provides a calibration also in the
space SBD(Ω) in the following sense: consider the functional

H1(v) := −
∫

∂Ω

〈S(x, v), ν∂Ω〉 dHn−1,
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which is the same used as comparison functional in the proof of Theorem 3.5; then, H1

is well defined on SBD(Ω), is invariant on SBD functions having the same trace on
∂Ω, and satisfies the equality H1(u) = H(u) and the inequality H1(v) ≤ H(v) for every
v ∈ SBD(Ω). This implies that u is a Dirichlet minimizer of the functional H in the class
of SBD functions.

Let us prove the properties of H1 stated above. If we set for simplicity of notation
A(x) := 2µe(u)(x) + λdivu(x)I, by (42) the functional H1 can be rewritten as

H1(v) = −1

2

∫

∂Ω

〈A(2v − u), ν∂Ω〉 dHn−1,

whence it is clear that it is well defined on SBD(Ω) and invariant on the class of functions
in SBD(Ω) having the same trace on ∂Ω. By the generalized Green’s formula in SBD(Ω)
we have that

−1

2

∫

∂Ω

〈A(2v−u), ν∂Ω〉dHn−1 =
1

2

∫

Ω

〈2v − u, divA〉 dx+
1

2

∫

Ω

Ad(2Ev − Eu)

=
1

2

∫

Ω

〈A, 2e(v)− e(u)〉dx+

∫

Sv

〈A(v+−v−), νv〉dHn−1, (43)

where the last equality follows by the fact that divA = 0, by the decomposition theorem
for the measures Ev,Eu and by the remark that Su = ∅. Using the definition of the
matrix A and (43) it is easy to see that

H1(u) =
1

2

∫

Ω

〈A, e(u)〉 dx = H(u), (44)

while, using also the elementary inequality 2(ξ, η) ≤ |ξ|2 + |η|2 for every ξ, η ∈ Rn2
, we

obtain

∫

Ω

〈A, e(v)〉 dx = 2µ

∫

Ω

〈e(u), e(v)〉 dx+ λ

∫

Ω

divu divv dx

≤ µ

∫

Ω

|e(v)|2dx+
λ

2

∫

Ω

(divv)2dx+H(u). (45)

Since the graph of v is contained in U , we have that 〈A(v+ − v−), νv〉 ≤ θ(|v+ − v−|)
Hn−1-a.e. on Sv, so that

∫

Sv

〈A(v+ − v−), νv〉 dHn−1 ≤
∫

Sv

θ(|v+ − v−|) dHn−1. (46)

By (43), (44), (45), and (46), we deduce that H1(v) ≤ H(v) for every v ∈ SBD(Ω) whose
graph is contained in U .

We conclude this example by noticing that the existence of a weak solution in [W 1,2(Ω)]n

for the Dirichlet boundary value problem associated with the equation (41) is guaranteed
if µ > 0 and 2µ + 3λ > 0; moreover, the additional requirements of regularity for u are
always satisfied in any open subset Ω′ ⊂⊂ Ω (see [5]).
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Example 5.3. Let Ω be a product of the form (0, a)×V , where V is a regular domain in
Rn−1, and let u be the step function defined as u(x) := 0 for 0 < x1 < c, and u(x) = h
for c < x1 < a, where c ∈ (0, a) and h ∈ RN , h 6= 0. Then, u is a Dirichlet minimizer of
the Mumford-Shah functional (35) in Ω if |h|2 ≥ aα.

This result generalizes Example 4.12 in [1], where u is a scalar step function.

We prove the statement by calibration. Let {e1, . . . , en} be the canonical basis of Rn. A
calibration for u is given by the pair (S,S0) with S0 ≡ 0 and

S(x, y) :=















0 if 〈y, h
|h|〉 ≤

λ
2
〈x, e1〉,

2λ
(

〈y, h
|h|〉 −

λ
2
〈x, e1〉

)

e1 if λ
2
〈x, e1〉 ≤ 〈y, h

|h|〉 ≤
λ
2
〈x, e1〉+ λ

2
a,

aλ2e1 if 〈y, h
|h|〉 ≥

λ
2
〈x, e1〉+ λ

2
a,

(47)

where λ :=
√

α/a. Some direct computations show that

|DyS(x, y)|2 =

{

4λ2 if λ
2
〈x, e1〉 ≤ 〈y, h

|h|〉 ≤
λ
2
〈x, e1〉+ λ

2
a,

0 otherwise,

divS(x, y) =

{

−λ2 if λ
2
〈x, e1〉 ≤ 〈y, h

|h|〉 ≤
λ
2
〈x, e1〉+ λ

2
a,

0 otherwise,

so that condition (a) is trivially satisfied, while condition (a’) is true if |h| ≥ λ
2
x1 +

λ
2
a for

every x1 ∈ [c, a), which is guaranteed by the assumption |h|2 ≥ aα.

One easily checks that the vector S(x, z) − S(x, y) can always be written as µe1 with
|µ| ≤ α (µ depending on x, y, z), so that condition (b) is fulfilled. As for condition (b’),
since |h| ≥ λ

2
(c + a) by the assumption |h|2 ≥ aα, we have that S(x, h) − S(x, 0) =

aλ2e1 − 0 = αe1 for every x ∈ Su.

We notice that the minimality of u can be proved by applying the scalar result to one
component of u. Take, indeed, j ∈ {1, . . . , N} such that hj 6= 0; we know that if h2

j ≥ aα,
then

αHn−1(Suj
) ≤

∫

Ω

|∇vj|2dx+ αHn−1(Svj),

for every v ∈ SBV (Ω) with the same boundary values as u. Now, the left-hand side
coincides with MS0(u), while the right-hand side is less than or equal to MS0(v), since
Svj ⊂ Sv. So, the Dirichlet minimality of u is shown, but under the stronger condition
h2
j ≥ aα.

Actually, since the Mumford-Shah functional is invariant by rotation (and then u is a
Dirichlet minimizer if and only if R ◦ u is a Dirichlet minimizer, where R is any rotation
in RN), the scalar result can be exploited in a more efficient way. Let R be a rotation in
RN transforming the vector h/|h| in e1 and let Ýu := R ◦ u. Applying the argument above
to the first component of Ýu, we have that Ýu is a Dirichlet minimizer of MS0 if |h|2 ≥ aα,
which is the same condition we have found via vectorial calibrations theory. We also note
that the calibration (47) can be obtained starting from the vectorfield which calibrates Ýu1

simply replacing the one-dimensional vertical variable by the component of the vector y
along h/|h| and following the instructions of Remark 3.6.
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Example 5.4. Let Ω := B(0, r) be the open ball in R2 centred at the origin with radius
r, and let (A1, A2, A3) be the partition of Ω defined as follows:

Ai :=

{

x = (ρ cos θ, ρ sin θ) : 0 ≤ ρ < r,
2

3
π(i− 1) ≤ θ <

2

3
πi

}

.

Let u ∈ [SBV (Ω)]N be the function defined as u := ai in each Ai, where a1, a2, a3 are
three distinct vectors in RN . In [2, Example 4.14] it is proved that, when N = 1, u is a
Dirichlet minimizer of the Mumford-Shah functional (35) if the values ai are sufficiently
far apart, more precisely if

min{|a1 − a2|, |a2 − a3|, |a3 − a1|} ≥
√
2αr. (48)

This result can be generalized to the vectorial case N > 1, where beside condition (48)
we require that

max{|a1 − a2|, |a2 − a3|, |a3 − a1|} ≥
√

(2 +
√
3)αr. (49)

Note that when N = 1 condition (49) is implied by (48): indeed, without loss of generality
we can assume that a1 ≤ a2 ≤ a3, so that the maximum in (49) is a3 − a1; then by (48)
we obtain

a3 − a1 = (a3 − a2) + (a2 − a1) ≥ 2
√
2αr >

√

(2 +
√
3)αr.

We prove the statement by calibration. For every i, j we call Sij the interface between Ai

and Aj, which is oriented by the normal νij pointing from Ai to Aj and we suppose that
the maximum in (49) is given by |a1 − a2|. Let S0 ≡ 0 and

S(x, y) := [σ1(x, y) ∨ 0] ν31 + [σ2(x, y) ∨ 0] ν32,

where

σ1(x, y) := α− |y − a1|2

r − 〈ν31, x〉
, σ2(x, y) := α− |y − a2|2

r − 〈ν32, x〉
.

For any r′ < r the function S is Lipschitz in B(0, r′)×RN . By direct computations we
have that

|DyS(x, y)|2 = 4
|y − a1|2

(r − 〈ν31, x〉)2
1{σ1>0} + 4

|y − a2|2

(r − 〈ν32, x〉)2
1{σ2>0}

+ 4
〈y − a1, y − a2〉

(r − 〈ν31, x〉)(r − 〈ν32, x〉)
1{σ1>0, σ2>0}, (50)

while

[divxS](x, y) = − |y − a1|2

(r − 〈ν31, x〉)2
1{σ1>0} −

|y − a2|2

(r − 〈ν32, x〉)2
1{σ2>0}. (51)

Condition (a) is therefore fulfilled if and only if 〈y − a1, y − a2〉 ≤ 0 for every y such
that there exists x ∈ B(0, r′) so that σ1(x, y) > 0 and σ2(x, y) > 0. Taking into account
the definition of σ1, σ2, this is equivalent to require the following: if y belongs to the
intersection of the ball centred at a1 with radius (r − 〈ν31, x〉) and the ball centred at a2
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with radius (r − 〈ν32, x〉), then the angle spanned by the two vectors y − a1 and y − a2
is greater or equal to π/2. Some elementary geometric considerations show that this is
guaranteed if

|a1 − a2|2 ≥ α(2r − 〈ν31, x〉 − 〈ν32, x〉) ∀x ∈ B(0, r′),

which is implied by condition (49).

From (48) it follows that σ2(x, a1) ≤ 0, so that by (50) and (51) we have |DyS(x, a1)|2 = 0
and [divxS](x, a1) = 0. Since (48) implies analogously that σ1(x, a2) ≤ 0, and σ1(x, a3) ≤
0, σ2(x, a3) ≤ 0, we deduce that condition (a’) is satisfied.

Let (x, y), (x, z) ∈ B(0, r′)×RN . If neither (x, y) nor (x, z) belongs to {σ1 > 0, σ2 > 0},
then it is easy to check that the vector S(x, z) − S(x, y) can be written as a linear
combination λ1ν31 − λ2ν32 with either λ1, λ2 ∈ [0, α] or λ1, λ2 ∈ [−α, 0] (depending on
x, y, z); since ν31 and −ν32 span an angle equal to 2π/3, the modulus of S(x, z)−S(x, y)
is in this case less than or equal to α. If (x, y) ∈ {σ1 > 0, σ2 > 0}, only two cases can
occur: either S(x, z)−S(x, y) is a linear combination of ν31 and −ν32 of the same kind as
before (so, the same conclusion holds), or S(x, z)−S(x, y) can be written as µ1ν31+µ2ν32
with µi ∈ [0, σi(x, y)] (depending on x, y, z). In this second case, we obtain

|S(x, z)− S(x, y)|2 ≤ σ2
1(x, y) + σ2

2(x, y) + σ1(x, y)σ2(x, y) ≤ (σ1(x, y) + σ2(x, y))
2.

It is easy to see that, under condition (49), σ1(x, y)+σ2(x, y) ≤ α for every (x, y) ∈ {σ1 >
0, σ2 > 0}, so that (b) is always satisfied.

Finally, using (48) we have that S(x, a2)−S(x, a1) = αν32−αν31 = αν12 for every x ∈ S12,
S(x, a3) − S(x, a2) = −ν32 = ν23 for every x ∈ S23, while S(x, a1) − S(x, a3) = ν31 for
every x ∈ S31; so, we can conclude that (b’) holds true for every x ∈ Su.

We have thus proved that under conditions (48) – (49), u is a Dirichlet minimizer of MS0

in B(0, r′) for every r′ < r. By an approximation argument this implies the Dirichlet
minimality of u in the whole B(0, r).

As in the previous example, the minimality of u can be proved by using the scalar result in
[2]: indeed, even if Suj

is strictly contained in Su for every j, one can always find a rotation
R in RN tranforming the range of u in a set of three vectors which differ each other for
the same component and apply the scalar result to this component. This procedure leads
to the following condition: u is a Dirichlet minimizer if

max
v∈RN ,|v|=1

min {|〈a1 − a2, v〉|, |〈a2 − a3, v〉|, |〈a3 − a1, v〉|} ≥
√
2αr,

which is always more restrictive than (48) – (49), except when the vectors ai − aj are
collinear.

Example 5.5. In this example we deal with the complete Mumford-Shah functional

MS(u) :=

∫

Ω

|∇u|2dx+ αHn−1(Su) + β

∫

Ω

|u− g|2 dx (52)

where Ω ⊂ R2, g is a given function in [L∞(Ω)]N , and α, β are positive parameters.
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Let {Γi}i∈I be a finite family of simple and connected curves of class C2 such that for
every i Γi is either a closed curve contained in Ω or it orthogonally meets ∂Ω. Suppose
also that Γi ∩ Γh = ∅ if i 6= h. If g is a piecewise constant function, whose discontinuity
set coincides with ∪i∈IΓi, then for large values of β the function g itself is an absolute
minimizer of (52).

We prove the statement by calibration. We recall that conditions (a), (a’), (b), and (b’)
in Lemma 3.3 read for the functional (52) as

(a) [divxSγ](x, y) + S0(x) ≤ −1
4
|DySγ(x, y)|2 + β|y − g(x)|2 for every γ ∈ A, for

L2-a.e. x ∈ Ω, and for every y ∈ RN with (x, y) ∈ Uγ;

(a’) [divxSγ](x, u) + S0(x) = −|∇u(x)|2 + β|u− g|2 and (DySγ(x, u))τ = 2∇u(x)
for every γ ∈ A, and for L2-a.e. x ∈ Ω such that (x, u(x)) ∈ Uγ;

(b) |S(x, z) − S(x, y)| ≤ α for H1-a.e. x ∈ Ω and for every y, z ∈ RN such that
(x, y), (x, z) ∈ U ;

(b’) S(x, u+)− S(x, u−) = ανu for H1-a.e. x ∈ Su,

where S(x, y) =
∑

γ∈A Sγ(x, y)1Uγ (x, y).

Let {Ej}j∈J be the partition of Ω generated by the family of curves {Γi}i∈I . Then the
function g can be written as

g(x) =
∑

j∈J

aj1Ej
(x),

where aj ∈ RN and aj 6= ak if j 6= k. For j < k we call Sjk the interface between Ej and
Ek, oriented by the normal νjk pointing from Ej to Ek (in other words, Sjk is the set of
all x ∈ Sg such that g−(x) = aj and g+(x) = ak). In this way we have simply relabelled
the curves Γi.

For every j < k we can construct a C1-vectorfield ψjk : Ω → Rn such that it agrees with
νjk on Sjk, is supported on a neighbourhood of Sjk, is tangent to the boundary of Ω,
and |ψjk| ≤ 1 everywhere. Since the curves Sjk are disjoint, the functions ψjk can be
constructed in such a way that their supports are still disjoint; moreover, if Sjk is a closed
curve, we can also assume that the support of ψjk is relatively compact in Ω. Finally, for
every j < k we define the functions λjk : RN → R as

λjk(y) := σ

(

〈y − aj, ak − aj〉
|ak − aj|2

)

,

where σ : R → [0, α] is a non decreasing function of class C2 such that σ(t) := 1
3
αt3

for t ∈ [0, 1/8], σ(t) := α + 1
3
α(t − 1)3 for t ∈ [7/8, 1], σ′(t) ∈ [0, 2α] for every t, and

|σ′′(t)| ≤ 16α for every t.

Now we set

S(x, y) :=
∑

(j,k):j<k

λjk(y)ψjk(x), S0(x) := −α
∑

(j,k):j<k

divψjk(x)1Ek
(x),

and we claim that the pair (S,S0) is a calibration for g when β is large enough.

First of all, independently of the choice of σ, the function S has vanishing normal com-
ponent on ∂Ω because of the choice of ψjk, so that condition (16) of Theorem 3.5 is
satisfied.
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Using the fact that the supports of the functions ψjk are disjoint, and that |ψjk| ≤ 1,
while λjk takes values only on [0, α], it is easy to see that condition (b) is fulfilled.

Since Sg is the union of the disjoint curves {Sjk}j<k, for every x ∈ Sg there exists one and
only one pair (j, k) with j < k such that x ∈ Sjk, so that

S(x, g+(x))− S(x, g−(x)) = (λjk(ak)− λjk(aj))ψjk(x) = (σ(1)− σ(0)) νjk(x) = ανg(x).

Therefore, also condition (b’) is satisfied.

By direct computations we obtain that

[divxS](x, y) =
∑

(j,k):j<k

λjk(y) divψjk(x),

while

DyS(x, y) =
∑

(j,k):j<k

σ′
(

〈y − aj, ak − aj〉
|ak − aj|2

)

ψjk(x)⊗
ak − aj
|ak − aj|2

.

If x ∈ Eh for any h ∈ J , then

[divxS](x, g(x)) = [divxS](x, ah) =
∑

j<h

λjh(ah) divψjh(x) +
∑

k>h

λhk(ah) divψhk(x)

= α
∑

j<h

divψjh(x),

where the last equality follows from the fact that λjh(ah) = σ(1) = α, while λhk(ah) =
σ(0) = 0. Arguing analogously, since σ′(0) = σ′(1) = 0, we have that DyS(x, g(x)) = 0,
so that, taking into account the definition of S0, condition (a’) is satisfied.

It remains to prove condition (a). Let (x, y) ∈ Ω×RN . If x does not belong to any of the
supports of the functions ψjk, then [divxS](x, y) = 0, S0(x) = 0, and DyS(x, y) = 0, so
(a) is trivially satisfied. If x belongs to the support of ψjk for any j < k, then

[divxS](x, y) = λjk(y) divψjk(x), S0(x) = −α divψjk(x)1Ek
(x),

DyS(x, y) = σ′
(

〈y − aj, ak − aj〉
|ak − aj|2

)

ψjk(x)⊗
ak − aj
|ak − aj|2

;

if we write the vector y − aj as the sum v + t(ak − aj) where v ∈ RN is orthogonal to
ak − aj, and t ∈ R, condition (a) turns to be equivalent to

divψjk(x)(σ(t)− α1Ek
(x)) ≤ −1

4
|ψjk(x)|2|σ′(t)|2 + β|v + t(ak − aj) + aj − g(x)|2. (53)

Since we are assuming that x is in the support of ψjk, x belongs either to Ej or to Ek.
When x ∈ Ej, inequality (53) reduces to

divψjk(x)σ(t) ≤ −1

4
|ψjk(x)|2|σ′(t)|2 + β|v|2 + β|ak − aj|2t2,
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which is implied by

divψjk(x)σ(t) ≤ −1

4
|ψjk(x)|2|σ′(t)|2 + β|ak − aj|2t2. (54)

So, let us prove (54) for every t ∈ R and x ∈ Ej. Since in (54) the equality holds for
t = 0, it is enough to show the following inequality

divψjk(x)σ
′(t) < −1

4
|ψjk(x)|22σ′(t)σ′′(t) + 2β|ak − aj|2t for t > 0, (55)

and the opposite inequality for t < 0. Since σ′ ≡ 0 for t > 1, inequality (55) is trivially
satisfied for t > 1. For 0 < t ≤ 1, (55) follows immediately from

−‖divψjk‖∞σ′(t) >
1

2
σ′(t)|σ′′(t)| − 2β|ak − aj|2t,

which is satisfied (taking into account the structure of the function σ) for

β|ak − aj|2 > 8α‖divψjk‖∞ + 64α2.

The same condition implies also the opposite inequality for t < 0. Moreover, the same
argument can be applied in the case x ∈ Ek.

In conclusion, condition (a) is fulfilled for β > β0, where β0 is defined by

β0 := max
(j,k):j<k

1

|ak − aj|2
(

8α‖divψjk‖∞ + 64α2
)

. (56)

We conclude this example by noticing that this result generalizes Example 5.5 in [2],
where g is the characteristic function of a regular set. As in the previous examples, the
vectorial statement can be proved by applying the scalar result to one suitable component
of g, but this leads to a worse estimate on β0.

6. Calibrations in terms of closed differential forms

In this section we develop the theory of calibrations in terms of differential forms. The
scalar method presented in [2] involves a divergence-free vectorfield on Ω×R (and its flux
through the complete graph of the maps u), which is now replaced by a closed n-form
on Ω×RN , acting on the graphs of the maps u, viewed as suitably defined n-surfaces in
Ω×RN .

As we will see, this formulation is indeed not preferable to the one described in Section 3,
since it leads to the same kind of conditions, requiring a greater technical effort.

For simplicity we restrict our discussion to piecewise smooth functions u ∈ [SBV (Ω)]N in
the sense of the following definition.

Definition 6.1. We say that a function u ∈ [SBV (Ω)]N is piecewise smooth, and we
write u ∈ A(Ω), if the following conditions are satisfied: up to an Hn−1-negligible set, Su

is a finite union of pairwise disjoint (n−1)-dimensional boundaryless C1-manifolds of Rn;
u is C1 on Ω \ Su up to Su, that is u ∈ [C1(Ω \ Su)]

N and there exist the limits of u and
∇u on both sides of (the regular part of) Su.



24 M. G. Mora / The Calibration Method for Free-Discontinuity Problems ...

For u ∈ A(Ω) we define the n-surfaces

Σu := {(x, y) ∈ Ω×RN : x ∈ Su and ∃ t ∈ [0, 1] such that y = tu+(x) + (1− t)u−(x)},

Γu := Gu ∪ Σu,

where Gu is the graph of u on Ω \Su. Using notation from [10], let us consider an n-form

ω : Ω×RN → ∧nRn+N ,

ω(x, y) =
∑

|α|+|β|=n

ωαβ(x, y) dx
α ∧ dyβ,

whose coefficients ωαβ are of class C1, and for u ∈ A(Ω) the following functional

∫

Γu

ω, (57)

where the orientation of Γu will be defined later in a precise way.

If ω is a closed form, then the functional (57) is constant on the functions u which take
the same values on ∂Ω. Moreover, if F is the functional (10), and if

∫

Γv

ω ≤ F (v) for every v ∈ A(Ω),

and
∫

Γu

ω = F (u) for a given u ∈ A(Ω),

(58)

then u is a Dirichlet minimizer of F in the class A(Ω).

Let us now look for pointwise conditions on the coefficients of the form ω which guarantee
(58).

By definition we have that
∫

Γu

ω =

∫

Gu

ω +

∫

Σu

ω. (59)

On Gu we consider the natural orientation given by the parameterization x ∈ Ω \ Su 7→
(x, u(x)), so that

∫

Gu

ω =
∑

|α|+|β|=n

∫

Ω

ωαβ(x, u(x))µαβ(x) dx, (60)

where

µαβ(x) := ε(α) det

(

∂uβ

∂xÝα
(x)

)

.

In the previous formula Ýα denotes the increasing complement of α in {1, . . . , n}, ε(α) is
the sign of permutation of (1, . . . , n) into (α, Ýα), and

∂uβ

∂xÝα
is the |β|×|β| matrix

∂uβi

∂xÝαj
.

On Σu we consider the orientation given by the following parameterization: since u ∈
A(Ω), without loss of generality, we may assume that Su is an (n − 1)-dimensional C1-
manifold of Rn without boundary and that Su can be covered by just one parameter patch
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γ : S → Su, where S is an (n − 1)-dimensional domain (the general case can be easily
obtained by summing over the C1-pieces). Assume that γ yields νu as orientation, that
is the vector

η(γ(σ)) :=
n

∑

i=1

(−1)n−i det

(

dγÝı
dσ

(σ)

)

ei

(where {e1, . . . , en} is the canonical basis of Rn) satisfies

η(γ(σ))

|η(γ(σ))|
= νu(γ(σ)) ∀σ ∈ S.

We consider as parameterization of Σu the function ϕ = (ϕx, ϕy) : S×[0, 1] → Ω×RN

defined as ϕx(σ, t) := γ(σ), ϕy(σ, t) := tu+(γ(σ)) + (1 − t)u−(γ(σ)) for every (σ, t) ∈
S×[0, 1], so that the second integral in (59) is given by

∫

Σu

ω =
∑

|α|+|β|=n

∫ 1

0

∫

S

ωαβ(ϕ(σ, t)) det

(

∂ϕαβ

∂(σ, t)
(σ, t)

)

dσdt, (61)

where ϕαβ = (ϕx
α1
, . . . , ϕx

αp
, ϕy

β1
, . . . , ϕy

βq
) for |α| = p and |β| = q = n − p. By direct

computations one can find that

det

(

∂ϕÝ00

∂(σ, t)

)

= 0,

while for every 1 ≤ i ≤ n, 1 ≤ j ≤ N

det

(

∂ϕÝıj

∂(σ, t)

)

= (u+
j − u−

j ) det

(

dγÝı
dσ

)

= (−1)n−i(u+
j − u−

j )(νu)i|η|,

where all the functions at the right-hand side are computed at γ(σ). Finally, by straight-
forward computations, if we set a := Ýα, for |a| = |β| = q ≥ 2 it results that

det

(

∂ϕαβ

∂(σ, t)

)

=

=

q
∑

m,k=1

ε(α,a
̂k)(−1)n−q+m−ak(u+

βm
− u−

βm
) det

(

∂(tu+ + (1− t)u−)βm̂

∂xa
̂k

)

(νu)ak |η|,

where βm̂, âk are the increasing complement of βm in {β1, . . . , βq} and of ak in {a1, . . . , aq},
respectively, while ε(α, a

̂k) is the sign of permutation of (α, a
̂k) in âk; again all the functions

at the right-hand side are computed at γ(σ). Set wt := tu+ +(1− t)u− and substitute all
the above expressions in formula (61); since |η| dσ is the area element of the manifold Su

parameterized by γ, we obtain
∫

Σu

ω =
∑

i,j

∫ 1

0

∫

Su

(−1)n−iωÝıj(x,w
t)(u+

j − u−
j )(νu)i dHn−1dt

+
∑

|a|=|β|=q
q≥2

∫ 1

0

∫

Su

ωÝaβ(x,w
t)

q
∑

m,k=1

ε(α, a
̂k)(−1)n−q+m−ak(u+

βm
− u−

βm
)det

(

∂wt
βm̂

∂xa
̂k

)

(νu)ak dHn−1dt

=:

∫

Su

gω(x, u
−, u+,∇u−,∇u+, νu) dHn−1, (62)
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where the last equality follows from changing the order of integration and calling gω
the integrand with respect to Hn−1. Now we wonder what kind of conditions on ωαβ

guarantees that

gω(x, u
−, u+,∇u−,∇u+, νu) ≤ ψ(x, u−, u+, νu) on Su (63)

for every admissible u. The answer is given by the following proposition.

Proposition 6.2. Inequality (63) holds true for every u ∈ A(Ω) if and only if the fol-
lowing conditions are satisfied:

(b0) ωαβ ≡ 0 for every α, β such that |β| ≥ 2, |α|+ |β| = n;

(b1)
∑

i,j

∫ 1

0

(−1)n−iωÝıj(x, tz+(1−t)y)(zj−yj)νi dt ≤ ψ(x, y, z, ν) for every x ∈ Ω,

for every y, z ∈ RN , and for every ν ∈ Sn−1.

Moreover, the equality holds for a given u if and only if

(b2)
∑

i,j

∫ 1

0

(−1)n−iωÝıj(x, tu
+ + (1− t)u−)(u+

j − u−
j )(νu)i dt = ψ(x, u−, u+, νu) for

every x ∈ Su.

Proof. Let (x, y) ∈ Ω×RN , and let us prove that ωαβ(x, y) = 0 for |Ýα| = |β| = 2. By
renumbering the coordinates of x and y, we may suppose that β = (1, 2) and a = Ýα =
(1, 2). Given C ∈ R, we can construct u ∈ A(Ω) such that x ∈ Su, ∇u−(x) = ∇u+(x)
(hence ∇wt(x) = ∇u−(x) for every t ∈ [0, 1]), and ∂xi

wt
j(x) = 0 for every (i, j) 6= (1, 1)

and ∂x1w
t
1(x) = C. With this choice we have that

gω(x, u
−, u+,∇u−,∇u+, νu) =

∑

i,j

∫ 1

0

(−1)n−iωÝıj(x,w
t)(u+

j − u−
j )(νu)i dt

+ C
∑

i6=1,j 6=1

∫ 1

0

(−1)iω(̂1,i)(1,j)(x,w
t)(u+

j − u−
j )(νu)i dt.

Since the value of C is arbitrary and independent of u−(x), u+(x), νu(x), inequality (63)
implies that

∑

i6=1,j 6=1

∫ 1

0

(−1)iω(̂1,i)(1,j)(x,w
t)(u+

j − u−
j )(νu)i dt = 0 (64)

whatever are the values of u−(x), u+(x), νu(x). Choosing νu(x) such that (νu(x))i = 0 for
every i 6= 2, (νu(x))2 = 1, we have that (64) is equivalent to

∑

j 6=1

∫ 1

0

ω(̂1,2)(1,j)(x,w
t)(u+

j − u−
j ) dt = 0 (65)

whatever are the values of u−(x), u+(x). Choosing u−(x) = y, while u+
j (x) = yj for every

j 6= 2, u+
2 (x) = y2 + c with c 6= 0, we obtain that (65) is equivalent to

c

∫ 1

0

ω(̂1,2)(1,2)(x, y1, y2 + ct, y3, . . . , yN) dt = 0 (66)
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for every c 6= 0. By a change of variables, (66) can be rewritten as
∫ y2+c

y2

ω(̂1,2)(1,2)(x, y1, s, y3, . . . , yN) ds = 0. (67)

Since (67) has to be true for every c 6= 0, this implies that ω(̂1,2)(1,2)(x, y) = 0.

Using the fact that the coefficients ωαβ ≡ 0 for every |β| = 2, we can repeat the same
proof to show that ωαβ ≡ 0 for every |Ýα| = |β| = 3, and so on.

We have thus proved that (63) implies condition (b0). At this point, it is trivial that (63)
implies also condition (b1), and that the equality holds in (63) for a given u if and only
if also (b2) is satisfied.

Summarizing, if conditions (b0) and (b1) hold true, by Proposition 6.2 inequality (63) is
satisfied, hence by (62) we have that

∫

Σu

ω ≤
∫

Su

ψ(x, u−, u+, νu) dHn−1 (68)

for every u ∈ A(Ω), while the equality holds in (68) for a given u if and only if also (b2)
is verified.

Assuming that ω satisfies condition (b0), formula (60) reduces to

∫

Gu

ω =

∫

Ω

(

ωÝ00(x, u(x)) +
∑

i,j

(−1)n−iωÝıj(x, u(x))∂xi
uj(x)

)

dx

=

∫

Ω

(ωÝ00(x, u(x)) + 〈Aω(x, u(x)),∇u(x)〉) dx,

where in the last equality (Aω(x, y))ji := (−1)n−iωÝıj(x, y). It is easy to see that, if we
require the following condition:

(a1) ωÝ00(x, y) ≤ −f ∗(x, y, Aω(x, y)) for Ln-a.e. x ∈ Ω and every y ∈ RN ,

then
∫

Gu

ω ≤
∫

Ω

f(x, u,∇u) dx

for every u ∈ A(Ω); moreover, the equality holds for a given u if and only if

(a2) (Aω)ij(x, u(x)) ∈ ∂ξijf(x, u(x),∇u(x)) and ωÝ00(x, u(x)) = −f ∗(x, u(x),
Aω(x, u(x))) for Ln-a.e. x ∈ Ω.

Therefore by (59) we can conclude that (58) is guaranteed if conditions (a1), (a2), (b0),
(b1), and (b2) are satisfied. In other words, we have proved the following theorem.

Theorem 6.3. Let u be a function in A(Ω). Assume that there exists a closed n-
differential form ω : Ω×RN → ∧nRn+N with coefficient of class C1 and satisfying con-
dition (a1), (a2), (b0), (b1), and (b2). Then u is a Dirichlet minimizer of the functional
(10) in the class A(Ω).

We conclude this section by proving that, if u ∈ A(Ω) and there exists a differential form
ω which calibrates u in the sense of Theorem 6.3, then there exists a calibration (S,S0)
for u in the sense of Definition 3.4.
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Proposition 6.4. Let u be a function in A(Ω) and let ω : Ω×RN → ∧nRn+N be a closed
n-differential form satisfying all the assumptions of Theorem 6.3. Then there exists a
calibration (S,S0) for u, with S ∈ [C2(Ω×RN)]n and S0 ∈ C1(Ω).

Proof. First of all, we notice that from condition (b0) it follows that

ω(x, y) = ωÝ00(x, y) dx+
∑

i,j

ωÝıj(x, y) dx
Ýı ∧ dyj.

Since ω is a closed form, by computing explicitly the exterior derivative of ω, we obtain
that the coefficients ωÝ00, ωÝıj satisfy the two following equations:

n
∑

i=1

(−1)n−i∂ωÝıj
∂xi

(x, y)− ∂ωÝ00

∂yj
(x, y) = 0 1 ≤ j ≤ N, (69)

(−1)n−i∂ωÝıj
∂yk

(x, y) = (−1)n−i∂ωÝık
∂yj

(x, y) 1 ≤ i ≤ n, 1 ≤ j, k ≤ N. (70)

The last condition is equivalent to require that for every i thevector((−1)n−iωÝıj(x,y))j=1,...,N

is the gradient with respect to y of a function of class C2; more precisely, there exists a
function S ∈ [C2(Ω×RN)]n such that

∂yjSi(x, y) = (−1)n−iωÝıj(x, y) 1 ≤ i ≤ n, 1 ≤ j ≤ N. (71)

Equation (69) can be therefore rewritten as

0 =
n

∑

i=1

∂2Si

∂xi∂yj
(x, y)− ∂ωÝ00

∂yj
(x, y) = ∂yj

[

n
∑

i=1

∂xi
Si(x, y)− ωÝ00(x, y)

]

1 ≤ j ≤ N,

and then there exists a function S0 : Ω→ R of class C1 such that ωÝ00(x, y) = [divxS](x, y)+
S0(x). By substituting this equality and (71) in conditions (a1) and (a2), we directly obtain
that the pair (S,S0) satisfies conditions (a) and (a’) of Lemma 3.2. Since the left-hand
side in (b1) can be rewritten as

∑

i,j

∫ 1

0

(−1)n+iωÝıj(x, tz + (1− t)y)(zj − yj)νi dt

=
∑

i,j

∫ 1

0

∂yjSi(x, tu
+ + (1− t)u−)(u+

j − u−
j )(νu)i dt

=
n

∑

i=1

∫ 1

0

d

dt
[Si(x, tu

+ + (1− t)u−)](νu)i dt

=
n

∑

i=1

[Si(x, u
+)− Si(x, u

−)](νu)i

= 〈S(x, u+)− S(x, u−), νu〉,

condition (b1) implies that the function S satisfies condition (b) of Lemma 3.2, and in
the same way (b2) implies (b’).
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