
Journal of Convex Analysis

Volume 10 (2003), No. 1, 1–19

First Order Conditions for Ideal Minimization
of Matrix-Valued Problems

L. M. Graña Drummond∗

Programa de Engenharia de Sistemas de Computação,
COPPE–UFRJ, CP 68511, Rio de Janeiro, RJ, 21945–970, Brazil

lmgd@cos.ufrj.br

A. N. Iusem†
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The aim of this paper is to study first order optimality conditions for ideal efficient points in the Löwner
partial order, when the data functions of the minimization problem are differentiable and convex with
respect to the cone of symmetric semidefinite matrices. We develop two sets of first order necessary and
sufficient conditions. The first one, formally very similar to the classical Karush-Kuhn-Tucker conditions
for optimization of real-valued functions, requires two constraint qualifications, while the second one holds
just under a Slater-type one. We also develop duality schemes for both sets of optimality conditions.
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1. Introduction

In this paper we discuss first order optimality conditions for Löwner inequality constrained
problems, where both the objective and the constraint mappings are positive semidefinite-
convex (psd-convex, henceforth), i.e. convex with respect to the Löwner order, and the
minimization is carried out in the sense of ideal efficiency. We derive two sets of optimality
conditions, each of which is both sufficient and necessary for optimality, when the data are
psd-convex. One of them, that holds under a Slater-type constraint qualification, gives rise
to multipliers which do not belong to a finite dimensional vector space. The other one,
formally very similar to the classical Karush-Kuhn-Tucker conditions for optimization
of real-valued functions, produces multipliers which do belong to a finite dimensional
space, but requires an additional and stronger constraint qualification, akin to linear
independence of the gradients of the active constraints in the real-vualed case, which, in
particular, implies uniqueness of the dual solution. We develop duality schemes (including
strong duality results) for both sets of optimality conditions.

For vector optimization, i.e. when the underlying partial order is induced by an arbitrary
pointed closed convex cone, the matter of first (and second) order conditions has been
widely studied for the case of Pareto and weak Pareto minimization on finite dimensional
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linear spaces (see [18], [6] and [7]). Existence and uniqueness of Lagrange-Kuhn-Tucker
multipliers for efficient points in Banach spaces are considered in [1] and [19]. For mul-
tiobjective optimization in finite dimensional vector spaces, that is to say, for efficiency
in the componentwise partial order, first order conditions, together with the issue of con-
straint qualifications, are studied in [13] and [14]. For second order optimality conditions
in multicriteria we refer to [4].

The particular case of first order necessary and sufficient conditions for minimization of
real-valued functions under a single symmetric matrix valued-constraint has already been
systematically studied in [16], where existence and uniqueness of Lagrange multipliers for
problems with optimal solutions is established under a transversality assumption, which is
an analogous of the condition of linear independence of the gradients of active constraints
used in classical nonlinear optimization. In [17] the same author shows that a necessary
condition for uniqueness of a matrix of Lagrange multipliers (satisfying optimality condi-
tions) is precisely the transversality condition. In [16] it is shown that for the real-valued
objective case, under a Slater-type constraint qualification, the duality gap between the
primal and the dual problems is zero; second order conditions and a sensitivity analysis of
such problems are also given. We emphasize that neither [16] nor [17] consider the case of
symmetric matrix-valued objectives, i.e. situations where the minimization is performed
with respect to the partial order induced by the positive semidefinite cone of symmetric
matrices (see [9]), which are the main subject of our work.

In [8], the authors also consider the problem of minimizing a real-valued convex function
subject to a single psd-constraint. Their paper is devoted to the issues of welldefinedness
and convergence of the central path associated to the primal-dual pair of problems, and,
as a by product, first order conditions for existence of optimal solutions and compactness
of the optimal set are derived. However, these conditions are unrelated to our current
subject.

2. First formulation of the optimality conditions

Consider Sm, the subspace of Rm×m consisting of all the symmetric matrices, with the in-
ner product given by 〈X, Y 〉 = tr[XY ] =

∑m
i,j=1 XijYij, and let Sm

+ be the cone of positive
semidefinite symmetric matrices of order m. Observe that Sm

+ is a pointed closed convex
cone with nonempty interior, given by the set of positive definite symmetric matrices
Sm
++. Furthermore, we have that (Sm

+ )∗, the positive dual or polar cone of Sm
+ , i.e. the

cone of matrices which form an accute angle with every symmetric positive semidefinite
matrix, coincides with Sm

+ , so that Sm
+ is self-polar; that is to say, X ∈ SM

+ if and only if
tr(XY ) ≥ 0 for all Y ∈ Sm

+ (this result is known as Fejér’s Theorem, see Proposition 2.1
below).

The Löwner partial order is defined in the following way: given X, Y ∈ Sm, we say that
X ¶ Y if and only if Y −X ∈ Sm

+ , i.e. Y −X belongs to the cone Sm
+ of symmetric positive

semidefinite definite matrices in Rm×m. We also say that X ≺ Y if and only if Y −X ∈
int(Sm

+ ), i.e. Y − X belongs to the cone Sm
++ of symmetric positive definite matrices of

order m.

Take now differentiable mappings f : Rn → Sm, gi : Rn → Sri (1 ≤ i ≤ p) and consider
problem (CP ):

min f(x)
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s.t. gi(x) ¶ 0 (1 ≤ i ≤ p) (1)

Let F ⊂ Rn be the feasible set for problem (CP ), i.e. F = {x ∈ Rn : gi(x) ¶ 0 (1 ≤ i ≤
p)}. We will discuss in this paper the case of ideal minimal (or ideal efficient) solutions of
(CP ). In other words, (CP ) consists of finding x∗ ∈ F such that f(x)− f(x∗) is positive
semidefinite for all x ∈ F , or, in compact notation, f(x∗) ¶ f(x) for all x ∈ F .

We recall that a mapping h : Rn → Sm is positive semidefinite-convex (psd-convex) if
h(λx + (1 − λ)y) ¶ λh(x) + (1 − λ)h(y) for all x, y ∈ Rn and all λ ∈ [0, 1]. Clearly, h
is psd-convex iff x 7→ ψZ(x) := tr(Zh(x)) is a convex scalar function for all Z ∈ Sm

+ . In
particular, x∗ is a Löwner ideal minimizer of h in an open set if and only if

∂ψZ

∂xi

(x∗) = 0. (2)

We also recall a couple of well known results on psd-convexity. For a differentiable map-
ping h, psd-convexity can be characterized by a sort of extension of the classical gradient
inequality, namely

dh(x)(y − x) + h(x) ¶ h(y) (3)

for all x, y ∈ Rn, where dh(x)y =
∑n

i=1 yi
∂h
∂xi

(x) , see e.g. Theorem 6.1 of [3].

Another important property of differentiable psd-convex mappings is the fact that they are
automatically continuously differentiable. In fact, if h is psd-convex and differentiable,
clearly the real-valued function φu(x) := uth(x)u is convex in the usual sense, so φu

will be continuously differentiable (in general, convex functions are differentiable almost
everywhere). Therefore, h will be continuosly differentiable, since we have the following
identity

h(x)ij = (ei)th(x)ej = (φei(x) + φej(x)− φei−ej(x))/2

where ei stands for the i-th canonical vector.

We will consider two formulations of first order optimality conditions for problem (CP).
When f and all the gi’s are psd-convex, both of them generate sufficient conditions. Re-
garding necessity, and assuming psd-convexity of the gi’s, the second formulation holds
under a standard constraint qualification, namely a Slater’s condition, while the first one
requires an additional and rather strong constraint qualification, akin to linear indepen-
dence of the gradients of the active constraints in the real-valued case, which in particular
implies uniqueness of the dual solution. On the other hand, in the first formulation the
dual variables, or multipliers, belong to a finite dimensional vector space, which is not the
case in the second formulation. Also, the conditions of the first formulation are formally
simpler and have a closer ressemblance to the KKT conditions for the case of real-valued
functions. We will give an example showing that the first formulation does not hold in
the absence of the stronger constraint qualification.

Let L(Sri , Sm) be the set of linear transformations from Sri to Sm. Following the ter-
minology used in [12], p. 81, we say that Z ∈ L(Sri , Sm) is nondecreasing (denoted as
Z · 0) if Z(A) ∈ Sm

+ for all A ∈ Sri
+ .

The first formulation of first order optimality conditions, for x ∈ Rn and Zi ∈ L(Sri , Sm)
(1 ≤ i ≤ p) is given by:

df(x) +

p
∑

i=1

Zidgi(x) = 0 Lagrangian condition, (4)
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gi(x) ¶ 0 (1 ≤ i ≤ p) primal feasibility, (5)

Zi · 0 (1 ≤ i ≤ p) dual feasibility, (6)

Zi(gi(x)) = 0 (1 ≤ i ≤ p) complementarity. (7)

We observe that, under differentiability of f, df(x) is a linear transformation from Rn to
Sm which takes at the point y ∈ Rn the value df(x)y ∈ Sm, defined as the direccional
derivative of f(x) in the direccion y, i.e. [df(x)y]k` = 〈∇f(x)k`, y〉. By the same token,
dgi(x) is a linear tranformation from Rn to Sri . Then, the expression Zidgi(x) in (4) is
understood as the linear transformation from Rn to Sm which takes at a vector y ∈ Rn

the value Zi(dgi(x)y), a matrix in Sm.

We close this section with some elementary results, whose proof will be included to make
the paper somewhat more self-contained. Item (i) in the following proposition is known
as Fejér’s Theorem (cf. [11]).

Proposition 2.1. (i) X belongs to Sm
+ if and only if tr(XY ) ≥ 0 for all Y ∈ Sm

+ .

(ii) If X and Y belong to Sm
+ and tr(XY ) = 0 then XY = 0.

(iii) If g : Sp → Sq is psd-convex and Z∈ L(Sq, Sm) is nondecreasing, then h : Sp → Sm

defined as h(X) = Z(g(X)) is psd-convex.

Proof. (i) We prove first the “if" part. Take any u ∈ Rm and let Y = uut ∈ Sm. Then
Y belongs to Sm

+ and so 0 ≤tr(XY ) = utXu. It follows that X ∈ Sm
+ . For the

“only if" part, we recall that any Y ∈ Sm can be written as Y = U tDU where D
is a diagonal matrix, with the eigenvalues of Y , say λ1, . . . , λm, in its diagonal, and
U is an orthonormal matrix, whose k-th row, say uk, is an eigenvector of Y with
eigenvalue λk. With this notation, it is easy to check that

tr(XY ) =
m
∑

i=1

λi

[

(ui)tXui
]

(8)

for all X ∈ Rm×m. Then for i ∈ {1, . . . ,m}, we get (ui)tXui ≥ 0, because X ∈ Sm
+ ,

and λi ≥ 0, because Y ∈ Sm
+ . It follows from (8) that tr(XY ) ≥ 0.

(ii) Write Y = U tDU , with D and U as above. Since {u1, . . . , um} is a basis of Rm, it
suffices to prove that XY ui = 0 (1 ≤ i ≤ m). This is certainly true if ui ∈ Ker(Y ).
Otherwise, since Y ∈ Sm

+ , we have Y ui = λiu
i with λi > 0. We get from tr(XY ) = 0

and (8) that, for i ∈ {1, . . . ,m}, 0 = λi(u
i)tXui, implying that 0 = (ui)tXui, so

that Xui = 0, because X ∈ Sm
+ , and therefore XY ui = λiXui = 0.

(iii) Since g is psd-convex, we have, for all X, Y ∈ Sm and all λ ∈ [0, 1],

λg(X) + (1− λ)g(Y )− g(λX + (1− λ)Y ) ∈ Sm
+ . (9)

Since Z is nondecreasing and linear, we have

λh(X) + (1− λ)h(Y )− h(λX + (1− λ)Y ) =

λZ(g(X)) + (1− λ)Z(g(Y ))− Z[g(λX + (1− λ)Y )] =

Z[λg(X) + (1− λ)g(Y )− g(λX + (1− λ)Y )] ∈ Sm
+ , (10)

using (9) in the last inequality. Therefore, psd-convexity of h follows immediately
from (10).
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3. Interpretations of the first formulation

We now consider a particular case of problem (CP ), which will furnish a couple of inter-
esting interpretations of conditions (4)-(7). Take m = 1, p = 1 and r1 = r, i.e., we are
considering the problem of minimizing a real-valued function subject to a single positive
semidefinite constraint:

min f(x) (11)

s.t. g(x) ¶ 0 , (12)

where f : Rn → R and g : Rn → Sr. We mention that we have taken p = 1 just for the
sake of a simpler notation; the discussion which follows works equally well with any p.
Indeed, taking p = 1 in (CP ) entails no loss of generality at all: the constraints in (1)
can be replaced by a unique equivalent constraint G(x) ¶ 0, with G : Rn → Sq, where
q =

∑p
i=1 ri. We have kept, in our presentation, several constraints, instead of just one, in

order to make (CP ) look closer to the standard real-valued convex programming problem.

The Wolfe dual problem associated with (CP ) is given by (DP )

max f(x) + tr(Zg(x))

s.t.
∂f

∂xi

(x) + tr

(

Z
∂g

∂xi

(x)

)

= 0 (1 ≤ i ≤ n) ,

where the variables are pairs (x, Z) ∈ Rn × Sr.

Let us now see how conditions (4)-(7) do look in this particular case. First of all, observe
that, since S1 = R, we have that L(Sr, S1) is the dual space of Sr, so that the multiplier
Z is a linear form and, therefore, there exists a symmetric r-matrix, wich we will also call
Z, such that Z(X) = tr(ZX). Moreover, the nondecreasing condition for Z simply means
that tr(ZX) ≥ 0 for all X ∈ Sr

+, or, in view of Proposition 2.1(i), that Z belongs to Sr
+.

Finally, note that, from the fact that Z and −g(x) are positive semidefinite, condition (7)
is equivalent, by Proposition 2.1(ii), to Zg(x) = 0. Therefore, conditions (4)-(7) become

∂f

∂xi

(x) + tr

[

Z
∂g

∂xi

(x)

]

= 0 (1 ≤ i ≤ n), (13)

g(x) ¶ 0, (14)

Z · 0, (15)

Zg(x) = 0. (16)

A weak duality result for the pair of primal-dual problems (CP ) and (DP ) has been
presented in Proposition 1 in [8]. It implies that for all pair (x, Z) that satisfies conditions
(13)-(14) it holds that x is optimal for (CP ) and (x, Z) is optimal for (DP ).

In order to obtain another interpretation for the multiplier Z, observe now that problem
(CP ) can be written as the following equivalent scalar-valued problem (SP )

min f(x)

s.t. λi(g(x)) ≤ 0 (1 ≤ i ≤ r) , (17)

where λi(g(x)) stands for the i-th eigenvalue of g(x).
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Next we will see how the multiplier Z is related to problem (SP ). Actually, we will see
that the eigenvalues of Z are precisely the Karush-Kuhn-Tucker multipliers of problem
(SP ).

Proposition 3.1. For the problem given by (11)-(12), conditions (4)–(7) are precisely the
KKT conditions for problem (SP ), with the i-th eigenvalue λi(Z) of Z given by (13)–(16)
as multiplier of the i-th constraint in (17).

Proof. As we already observed, conditions (4)–(7) reduce, in this particular case, to
conditions (13)–(16). We observe now that conditions (14) and (15) can respectively be
written as

λi(g(x)) ≤ 0 (1 ≤ i ≤ r) , (18)

and

λi(Z) ≥ 0 (1 ≤ i ≤ r) , (19)

where λi(Z) and λi(g(x) are the i-th eigenvalues of Z and g(x), respectively.

Let us now take a closer look at the complementarity condition (16); transposing on both
sides of the equation yields, in view of the symmetry of Z and g(x), g(x)Z = 0. Hence,
Z and g(x) commute, and, therefore, they are simultaneously diagonizable, which means
that there exists an orthogonal matrix P (x) of order r, such that Z = P t(x)DZP (x) and
g(x) = P t(x)Dg(x)P (x), where DZ and Dg(x) are diagonal matrices, with the eigenvalues
of Z and g(x) in their diagonals, respectively. In view of this, condition (16) can be
written as

λi(Z)λi(g(x)) = 0 (1 ≤ i ≤ r) . (20)

Finally, let us focuse our attention on the Lagrangian condition (13). We claim that

tr

[

Z
∂g

∂xi

(x)

]

=
r

∑

j=1

(

P (x)
∂g

∂xi

(x)P t(x)

)

jj

λj(Z). (21)

Indeed, we know that for three arbitrary square matrices A, B and C we have tr[ABC] =
tr[BtAtCt]; so, taking A = ∂g

∂xi
(x), B = P t(x) and C = DZP (x), and using the fact that

Z = P t(x)DZP (x), we obtain (21).

For simplicity, from now on we will drop the variable x in our formulae, so we have that
g = P tDgP , or, equivalently, Dg = PgP t. Hence,

∂(PgP t)jj
∂xi

=
∂λj(g)

∂xi

.

So, we have

∂λj(g)

∂xi

=
∂(
∑

k,l Pjl glkPjk)

∂xi

=
∑

k,l

[(

∂Pjl

∂xi

glk + Pjl
∂glk
∂xi

)

Pjk + Pjl glk
∂Pjk

∂xi

]

=

(

∂P

∂xi

gP t

)

jj

+

(

P
∂g

∂xi

P t

)

jj

+

(

P g
∂P t

∂xi

)

jj

. (22)
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Since P tP = I and P gP t = Dg, we get from (22)

(

P
∂g

∂xi

P t

)

jj

=
∂λj(g)

∂xi

−
(

∂P

∂xi

P tDg

)

jj

−
(

DgP
∂P t

∂xi

)

jj

. (23)

Observe now that PP t = I implies that ∂P
∂xi

P t = −P ∂P t

∂xi
. Then, in a similar way, we

obtain from (23)
(

P
∂g

∂xi

P t

)

jj

=
∂λj(g)

∂xi

, (24)

using ( ∂P
∂xi

P tDg)jj = (DgP
∂P t

∂xi
)jj, which is a consequence of the fact that Dg is a diagonal

matrix. Therefore, combining (21) and (24), we get the following expression for the
Lagrangian condition (13):

tr

[

Z
∂g

∂xi

(x)

]

+
r

∑

j=1

∂λj(g(x))

∂xi

λj(Z) = 0 (1 ≤ i ≤ n). (25)

Whence from (18), (19), (20) and (25), we have that conditions (4)–(7) (or equivalently
(13)–(16)) are equivalent to

tr

[

Z
∂g

∂xi

(x)

]

+
r

∑

j=1

∂λj(g(x))

∂xi

λj(Z) = 0 (1 ≤ i ≤ n),

λi(g(x)) ≤ 0 (1 ≤ i ≤ r),

λi(Z) ≥ 0 (1 ≤ i ≤ r),

λi(Z)λi(g(x)) = 0 (1 ≤ i ≤ r),

which are preciselyly the Karush-Kuhn-Tucker conditions for problem (SP ) with λi(Z)
as the KKT multiplier associated with the i-th constraint in (17).

4. Second formulation of the optimality conditions

We present next the second formulation of first order optimality conditions for problem
(CP ), in which case the multipliers are mappings from Rm to Sm, nonlinear in general.
The result on necessity (under a Slater’s conditions) and sufficiency of these conditions in
the psd-convex case, presented in the following theorem, will be used later on to establish
necessity of (4)–(7), under an additional and much stronger constraint qualification.

Theorem 4.1. Assume that

i) Both f and the gi’s are psd-convex and differentiable.

ii) (Slater’s condition) There exists Ýx ∈ Rn such that gi(Ýx) ≺ 0, (1 ≤ i ≤ p).

Then x∗ ∈ Rn solves (CP ) if and only if there exist mappings Zi : Rm → Sri (1 ≤ i ≤ p)
such that, for all u ∈ Rm,

utdf(x∗)u+

p
∑

i=1

tr[Zi(u)dgi(x
∗)] = 0 Lagrangian condition, (26)
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gi(x
∗) ¶ 0 (1 ≤ i ≤ p) primal feasibility, (27)

Zi(u) · 0 (1 ≤ i ≤ p) dual feasibility, (28)

tr[Zi(u)gi(x
∗)] = 0 (1 ≤ i ≤ p) complementarity. (29)

Proof. (⇒) Observe that utdf(x∗)u is a linear functional defined on Rn which takes
at the point y ∈ Rn the real value ut[df(x∗)y]u. Alternatively, through the canonical
identification of Rn with its dual, we can look at utdf(x∗)u as the vector in Rn whose j-th

component is given by
∑m

k=1

∑m
`=1 uku`

∂f(x∗)k`
∂xj

. By the same token, tr[Zi(u)dgi(x
∗)] can

be seen as the linear functional defined in Rn which sends y ∈ Rn to tr[Zi(u)dgi(x
∗)y] =

∑ri
k=1

∑ri
`=1Z

i
k`(u)〈∇gi(x

∗)k`, y〉, or as the vector in Rnwhose j-th component is
∑ri

k=1

∑ri
`=1

Zi
k`(u)

∂gi(x∗)k`
∂xj

= tr[Zi(u) ∂gi
∂xj

(x∗)].

Given matrices Aij ∈ Sri (1 ≤ i ≤ p, 1 ≤ j ≤ n) define h : Sr1 × · · · × Srp → Rn and
C ⊂ Sr1 × · · · × Srp as

h(Z1, . . . , Zp)j = −
p

∑

i=1

tr[ZiAij], (30)

C = {(Z1, . . . , Zp) ∈ Sr1
+ × · · · × S

rp
+ : tr[Zigi(x

∗)] = 0 (1 ≤ i ≤ p)}. (31)

Observe that C is a closed and convex cone by linearity of the trace, and h is a linear
trasformation between finite dimensional spaces, so that h(C) is also a closed and convex
cone. Consider now h as in (30), with Aij = ∂gi

∂xj
(x∗), i.e.,

Aij
k` =

∂gi(x
∗)k`

∂xj

.

Assume that utdf(x∗)u /∈ h(C) for some u ∈ Rm. Then, by the Convex Separation
Theorem, there exists w ∈ Rn such that

ut[df(x∗)w]u = 〈utdf(x∗)u,w〉 < 0, (32)

−
p

∑

i=1

tr[Zidgi(x
∗)w] = 〈h(Z1, . . . , Zp), w〉 ≥ 0, (33)

for all (Z1, . . . , Zp) ∈ C (the fact that h(C) is a cone ensures that the scalar σ of the
separating hyperplane 〈w, x〉 = σ vanishes). Let

θ = −ut[df(x∗)w]u. (34)

By (32), θ > 0. Take β > 0 such that

β|ut[df(x∗)(Ýx− x∗)]u| ≤ θ

2
, (35)

where Ýx is the Slater’s point whose existence is assumed in (ii), and define

Ýw = w + β(Ýx− x∗). (36)
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We claim that there exists ᾱ such that gi(x
∗ + α Ýw) ¶ 0 for all α ∈ [0, ᾱ] and all i ∈

{1, . . . , p}. Otherwise there exist {αk} ⊂ R++, {i(k)} ⊂ {1, . . . , p} and vk ∈ Rri(k) and
such that limk→∞ αk = 0, ||vk|| = 1 for all k and

(vk)tgi(k)(x
∗ + αk Ýw)v

k > 0 (37)

for all k. Clearly some index, say `, repeats infinitely often in the sequence {i(k)}. Since
the sequence {vk} is bounded, we may assume, without loss of generality, that i(k) = `
for all k and that that limk→∞ vk = v̄ ∈ Rr` . Taking limits as k goes to ∞ in (37), we get
v̄tg`(x

∗)v̄ ≥ 0. Since v̄tg`(x
∗)v̄ ≤ 0 because x∗ ∈ F , we conclude that

v̄tg`(x
∗)v̄ = 0. (38)

Let γ = v̄tg`(Ýx)v̄. Since ||v̄|| = 1, γ < 0 by assumption (ii). Then, using (3) for the
psd-convex mapping g`, we have

0 > γ = v̄tg`(Ýx)v̄ ≥ v̄tg`(x
∗)v̄ + v̄t[dg`(x

∗)(Ýx− x∗)]v̄ = v̄t[dg`(x
∗)(Ýx− x∗)]v̄, (39)

using (38) in the last equality. Take now Zi = 0 ∈ Rri×ri for i 6= ` and Z` = v̄v̄t. Clearly,
Zi ∈ Sri

+ for 1 ≤ i ≤ p. By (38), (Z1, . . . , Zp) ∈ C, as given by (31) and it follows from
(33) that

0 ≥
p

∑

i=1

tr[Zidgi(x
∗)w] = v̄t[dg`(x

∗)w]v̄. (40)

Multiplying (39) by β and adding (40), we get in view of (36)

0 > βγ ≥ v̄t[dg`(x
∗)(w + β(Ýx− x∗))]v̄ = v̄t[dg`(x

∗) Ýw]v̄. (41)

By (41) and continuity of dg` (see our comments at the beginning of this section), there
exists ε > 0 such that, for all v ∈ B(v̄, ε) and all α ∈ [0, ε],

vt[dg`(x
∗ + α Ýw) Ýw]v ≤ βγ

2
< 0. (42)

Note that

vtg`(x
∗ + α Ýw)v = vtg`(x

∗)v + α

∫ 1

0

vt[dg`(x
∗ + tα Ýw) Ýw]vdt. (43)

Since vtg`(x
∗)v ≤ 0 for all v ∈ Rr` because x∗ ∈ F , it follows from (42) and (43) that

vtg`(x
∗ + α Ýw)v ≤ αβγ

2
< 0 (44)

for all v ∈ B(v̄, ε) and all α ∈ (0, ε]. But, for large enough k, vk ∈ B(v̄, ε) and αk ∈ (0, ε],
so that (44) contradicts (37). The claim holds, and thus there exists ᾱ > 0 such that
x∗ + α Ýw ∈ F for all α ∈ [0, ᾱ].

Now, the directional derivative of utf(·)u at x∗ in the direction Ýw is

ut[df(x∗) Ýw]u = ut[df(x∗)w]u+ βut[df(x∗)(Ýx− x∗)]u =

−θ + βut[df(x∗)(Ýx− x∗)]u ≤ −θ +
θ

2
= −θ

2
< 0, (45)
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using (36) in the first equality, (34) in the second one and (35) in the inequality. It follows
from (45) that there exists Ýα ∈ [0, ᾱ] such that

0 > utf(x∗ + Ýα Ýw)u− utf(x∗)u = ut[f(x∗ + Ýα Ýw)− f(x∗)]u. (46)

On the other hand, since x∗ solves (CP ) and x∗+Ýα Ýw ∈ F because Ýα ∈ [0, ᾱ], we get f(x∗+
Ýα Ýw)−f(x∗) · 0, in contradiction with (46). This contradiction arises from the assumption
that utdf(x∗)u /∈ h(C) for some u ∈ Rm. It follows that utdf(x∗)u ∈ h(C) for all u ∈ Rm,
i.e., there exists (Z1(u), . . . , Zp(u)) ∈ C such that utdf(x∗)u+

∑p
i=1 tr[Z

i(u)dgi(x
∗)] = 0,

which gives (26). Condition (27) holds because x∗, being a solution of (CP ), belongs to
F . Condition (28) and (29) follow from (31).

(⇐) Assume that (26)–(29) hold. By (3) and psd-convexity of f , we have, for all x ∈ F ,

f(x) · f(x∗) + df(x∗)(x− x∗). (47)

Take any u ∈ Rm. By (47) and (26)

utf(x)u ≥ utf(x∗)u+ ut[df(x∗)(x− x∗)]u = utf(x∗)u−
p

∑

i=1

tr[Zi(u)(dgi(x
∗)(x− x∗))] =

utf(x∗)u+

p
∑

i=1

tr[Zi(u)(gi(x)− gi(x
∗)− dgi(x

∗)(x− x∗) + gi(x
∗)− gi(x))] = utf(x∗)u+

p
∑

i=1

tr[Zi(u)(gi(x)− gi(x
∗)−dgi(x

∗)(x−x∗))]+

p
∑

i=1

tr[Zi(u)gi(x
∗)]+

p
∑

i=1

tr[Zi(u)(−gi(x))].

(48)
Since all the gi’s are psd-convex, gi(x) − gi(x

∗) − dgi(x
∗)(x − x∗) ∈ Sri

+ , by (3). Since
x ∈ F , −gi(x) ∈ Sri

+ . By (28) and Proposition 2.1(i), both the second and the fourth
term in the right hand side of (48) are nonnegative. The third term vanishes by (29). It
follows that utf(x)u ≥ utf(x∗)u for all u ∈ Rm and all x ∈ F , so that f(x) · f(x∗) for
all x ∈ F . Since x∗ belongs to F by (27), we conclude that x∗ solves (CP ).

Note that, as could be expected, psd-convexity of f is not needed for establishing neces-
sity of (26)–(29). If we want a similar result without psd-convexity of the gi’s, we should
replace Slater’s condition by a stronger constraint qualification. Natural candidates are
h(C) = G(x∗, F ) (where G(x∗, F ) is the cone of feasible directions at x∗, i.e. the intersec-
tion of all cones containing F−{x∗}), or perhaps the weaker condition h(C)∗ = G(x∗, F )∗,
i.e., the equality of the positive duals of both cones (see, e.g., [2]). Nevertheless, we found
some technical obstacles when trying to establish necessity of (26)–(29) under these as-
sumptions, so it’s possible that the appropriate constraint qualification for this problem
should in fact be stronger than those just mentioned. Of course, psd-convexity of f and
of all the gi’s is essential for sufficiency of (26)–(29).

5. Duality scheme for the second formulation

Now we develop a duality scheme for problem (CP ). For each u ∈ Rm, consider φu :
Rn → R, Lu : Rn × Sr1 × · · · × Srp → R and ψu : Sr1 × · · · × Srp → R ∪ {−∞} as

φu(x) = utf(x)u, (49)
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Lu(x, Z) = Lu(x, Z
1, . . . , Zp) = φu(x) +

p
∑

i=1

tr[Zigi(x)], (50)

ψu(Z) = infx∈RnLu(x, Z). (51)

Then for each u ∈ Rm we have a dual problem (Du) defined as

maxψu(Z)

s.t. Z · 0,

where Z · 0 means Z1 · 0, . . . , Zp · 0. We present next our duality theorem.

Theorem 5.1. Consider problem (CP ) with f and all the gi’s psd-convex.

i) (weak duality) For all u ∈ Rm, all Z ∈ Sr1
+ × · · · × S

rp
+ and all x ∈ F , it holds that

ψu(Z) ≤ φu(x).

ii) If there exist Z∗(u) ∈ Sr1
+ × · · · × S

rp
+ and x∗ ∈ F such that ψu(Z

∗(u)) = φu(x
∗) for all

u ∈ Rm then x∗ solves (CP ) and Z∗(u) solves (Du).

iii) (strong duality) Assume that f and all the gi’s are continuously differentiable and that
Slater’s condition (assumption (b) in Theorem 4.1) holds. Then, if x∗ solves (CP ) there
exists Z∗(u) ∈ Sr1 × · · · × Srp, such that, for all u ∈ Rm, ψu(Z

∗(u)) = φu(x
∗) and Z∗(u)

solves (Du).

Proof. i) By (50), (51),

ψu(Z) = infy∈RnLu(y, Z) ≤ Lu(x, Z) = φu(x)−
p

∑

i=1

tr[Zi(−gi(x))] ≤ φu(x),

where the second inequality follows from Proposition 2.1(i) and the facts that x ∈ F ,
Z · 0.

ii) Immediate from (i), noting that, in view of (49), x∗ solves (CP ) if and only if it is a
solution of min φu(x) subject to x ∈ F for all u ∈ Rm.

iii) Under the assumptions of this item, Theorem 4.1 holds, and therefore there exist
Zi(u) ∈ Sri (1 ≤ i ≤ p) such that (26)–(29) hold. Take Z∗(u) = (Z1(u), . . . , Zp(u)). By
(29), tr[Zi(u)gi(x

∗)] = 0, so that

Lu(x
∗, Z∗(u)) = φu(x

∗). (52)

By (50) and (26),

∇xLu(x
∗, Z∗(u)) = utdf(x∗)u+

p
∑

i=1

tr[Zi(u)dgi(x
∗)] = 0. (53)

Note that (50) can be rewritten as Lu(x, Z) = tr[Uf(x) +
∑p

i=1 Zigi(x)] with U = uut ∈
Sm
+ . Observe that, for V ∈ Sm

+ , the linear transformation V: Sm → S1 given by V(X) =
tr(V X) is nondecreasing. Since Z1(u) · 0, . . . Zp(u) · 0 by (28), we get from Proposi-
tion 2.1(iii) that Lu(·, Z∗(u)) is convex, and then it follows from (53) that x∗ minimizes
Lu(·, Z∗(u)), i.e.,

ψu(Z
∗(u)) = Lu(x

∗, Z∗(u)). (54)

By (52) and (54), ψu(Z
∗(u)) = φu(x

∗), and thus Z∗(u) solves (Du) by (ii).
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6. Analysis of the first formulation

Before establishing sufficiency and necessity of (4)–(7), we present an example for which
(26)–(29) hold, but (4)–(7) do not hold, showing that an additional constraint qualification
is indeed needed.

Example 6.1. Take n = 3, m = 2, p = 4 and ri = 1 (1 ≤ i ≤ 4). Define f : R3 → S2 as

f(x) =

(

x1 x2

x2 x3

)

(55)

and gi : R3 → R (1 ≤ i ≤ 4) as

g1(x) = −x1 − x2 + 1, (56)

g2(x) = −x2 − x3 + 1, (57)

g3(x) = −x1 + x2 + 1, (58)

g4(x) = x2 − x3 + 1. (59)

We claim that x∗ = (1, 0, 1)t is a solution of problem (CP ) with these data. Note that

gi(x
∗) = 0 (1 ≤ i ≤ 4), (60)

so that x∗ is feasible, and that the constraints associated with (56) and (58) are equivalent
to |x2| ≤ x1− 1, while those associated with (57) and (59) are equivalent to |x2| ≤ x3− 1.
It follows that x1 − 1 ≥ 0, x3 − 1 ≥ 0, (x1 − 1)(x3 − 1) ≥ x2

2, and therefore, for all feasible
x ∈ R3, it holds that

0 ¶
(

x1 − 1 x2

x2 x3 − 1

)

=

(

x1 x2

x2 x3

)

− I = f(x)− f(x∗),

establishing optimality of x∗. Observe also that Ýx = (2, 0, 2)t satisfies the Slater condition
gi(Ýx) ≺ 0 (1 ≤ i ≤ 4). We check next that (26)–(29) hold at x∗. Conditions (27) and (29)
hold trivially because of (60), independently of the choice of Zi(u). Before presenting the
appropriate Zi(u)’s, note that, for all x ∈ R3, u ∈ R2,

utdf(x∗)u = (u2
1, 2u1u2, u

2
2), (61)

and that for all x ∈ R3,
∇g1(x) = (−1,−1, 0)t, (62)

∇g2(x) = (0,−1,−1)t, (63)

∇g3(x) = (−1, 1, 0)t, (64)

∇g4(x) = (0, 1,−1)t. (65)

It follows from (61)–(65) that in this case (26), written component-wise, becomes

u2
1 = Z1(u) + Z3(u), (66)

2u1u2 = Z1(u) + Z2(u)− Z3(u)− Z4(u), (67)

u2
2 = Z2(u) + Z4(u), (68)
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with Zi(u) ∈ R (1 ≤ i ≤ 4), since all the ri’s are equal to 1. If we take now

(

Z1(u), Z2(u), Z3(u), Z4(u)
)

=

{
(

1
2
(u1 + u2)

2 − u2
2, u

2
2,

1
2
(u1 − u2)

2, 0
)

if
√
2|u2| ≤ |u1 + u2|

(

0, 1
2
(u1 + u2)

2, u2
1, u

2
2 − 1

2
(u1 + u2)

2
)

if
√
2|u2| > |u1 + u2|,

(69)

it is easy to check that x∗ and these Zi(u)’s satisfy (66)–(68) and (28).

On the other hand, we show next that there exist no Z1, . . . ,Z4 such that (4)–(7) hold. In
particular, the system given by (4) and (6) has no solution. Indeed, note first that with
ri = 1, we can identify L(Sri , Sm) with Sm, associating Z ∈ L(S1, Sm) with Z = Z(1) ∈
Sm. In this case, Z · 0 if and only if Z · 0, i.e. Z is positive semidefinite in Rm×m.
Writing (4) component-wise (i.e. taking the partial derivatives with respect to x1, x2 and
x3), we get

(

1 0
0 0

)

= Z1 + Z3, (70)

(

0 1
1 0

)

= Z1 + Z2 − Z3 − Z4, (71)

(

0 0
0 1

)

= Z2 + Z4. (72)

Conditions (70)–(72) can be rewritten, after partial elimination, as

Z1 =
1

2

(

1 1
1 −1

)

+ Z4, (73)

Z2 =

(

0 0
0 1

)

− Z4, (74)

Z3 =
1

2

(

1 −1
−1 1

)

− Z4. (75)

Condition (74), together with Z2 · 0, Z4 · 0, implies that Z4 =

(

0 0
0 λ

)

with λ ∈ [0, 1].

Replacing this expression of Z4 in (73), Z1 · 0 implies that λ = 1, i.e. Z4 =

(

0 0
0 1

)

.

Replacing this value of Z4 in (75) we get Z3 = 1
2

(

1 −1
−1 −1

)

, in contradiction with

Z3 · 0. Thus (4) and (6) make an infeasible system.

We introduce next the constraint qualification required for necessity of (4)–(7). Take h
as in (30), i.e. h : Sr1 × · · · × Srp → Rn defined as

h(Z1, . . . , Zp) = −
p

∑

i=1

tr[Zidgi(x
∗)] = −

p
∑

i=1

ri
∑

k=1

ri
∑

`=1

Zi
k`∇gi(x

∗)k`, (76)
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and define the subspace V ⊂ Sr1 × · · · × Srp as

V = {(Z1, . . . , Zp) ∈ Sr1 × · · · × Srp : tr[Zigi(x
∗)] = 0 (1 ≤ i ≤ p)}. (77)

Our constraint qualification is

CQ) Ker(h) ∩ V = {0}.

We establish next that (CQ) holds if the gradients of all the gi(.)k`’s with ` ≥ k at x = x∗

are linearly independent.

Proposition 6.2. If the set {∇gi(x
∗)k` : 1 ≤ i ≤ p, 1 ≤ k ≤ ri, k ≤ ` ≤ ri} is linearly

independent then Ker(h) = {0}, and thus (CQ) holds.

Proof. Take (Z1, . . . , Zp) ∈ Ker(h). By (76) and the fact that both the Zi’s and the
gi(x)’s are symmetric, we have

0 = h(Z1, . . . , Zp) = 2

p
∑

i=1

ri
∑

k=1

ri
∑

`=k

Zi
k`∇gi(x

∗)k`. (78)

In view of the linear independence of the ∇gi(x
∗)k`’s, we conclude from (78) that Zi

k` = 0
for all i ∈ {1, . . . , p}, all k ∈ {1, . . . , ri} and all ` ∈ {k, . . . , ri}. It follows that all the Zi’s
vanish, i.e. Ker(h) = {0}, implying that Ker(h) ∩ V = {0}.

Looking at (77) and Proposition 6.2, it is clear that (CQ) is the natural extension to the
matrix-valued case of the requirement of linear independence of the gradients of the active
constraints in the real-valued case. Note that the assumption of Proposition 6.2, much
stronger that (CQ), requires n ≥ 1

2

∑p
i=1 ri(ri + 1).

In order to prove necessity of (4)–(7) under Slater’s condition and (CQ), we need the
following lemma.

Lemma 6.3. Under the hypothesis of Theorem 4.1, if x∗ solves (CP ) and the matri-
ces Zi(u) satisfying (26)–(29) can be chosen so that they are component-wise quadratic
functions of u, then (4)–(7) hold.

Proof. The assumption of this lemma means that there exist matrices M ik` ∈ Rm×m

(1 ≤ i ≤ p, 1 ≤ k ≤ ri, 1 ≤ ` ≤ ri) such that

Zi(u)k` = utM ik`u. (79)

Define Zi ∈ L(Sri , Sm) (1 ≤ i ≤ p) as

[Zi(A)]qs =

ri
∑

k=1

ri
∑

`=1

M ik`
qs Ak` (1 ≤ q, s ≤ m). (80)

We check first that the Zi’s defined by (80) satisfy (6). We must verify that for all A · 0,
it holds that Zi(A) · 0, i.e. that yt[Zi(A)]y ≥ 0 for all y ∈ Rm. Note that

yt[Zi(A)]y =
m
∑

q=1

m
∑

s=1

yqys[Z
i(A)]qs =

m
∑

q=1

m
∑

s=1

yqys

ri
∑

k=1

ri
∑

`=1

M ik`
qs Ak` =
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ri
∑

k=1

ri
∑

`=1

Ak`

m
∑

q=1

m
∑

s=1

M ik`
qs yqys =

ri
∑

k=1

ri
∑

`=1

Ak`Z
i(y)k` = tr[Zi(y)A] ≥ 0,

using (80) in the second equality, (79) in the fourth one, and (28) and Proposition 2.1(i)
in the inequality. Thus (6) holds for Zi as defined by (80).

Now we look at the Lagrangian condition (4). Replacing (79) and (80) in (26), we get
easily

ut

[

df(x∗) +

p
∑

i=1

Zidgi(x
∗)

]

u = utdf(x∗)u+ ut

[ p
∑

i=1

Zidgi(x
∗)

]

u = 0 (81)

for all u ∈ Rm. Let {e1, . . . , em} be the canonical basis of Rm. Substracting (81) with
u = eq − es from the same equation with u = eq + es, we get

4

[

df(x∗) +

p
∑

i=1

Zidgi(x
∗)

]

qs

= 0,

which, after dividing by 4, gives the component-wise expression of (4). Replacing now
(79) and (80) in (29), and substracting the resulting equation with u = eq − es from the
same equation with u = eq + es, we get (7). Condition (5) holds because x∗, being a
solution of (CP ), belongs to F .

Now we present our proof of necessity and sufficience of (4)–(7) under Slater’s condition
and (CQ) above.

Theorem 6.4. Assume that

i) Both f and the gi’s are psd-convex and differentiable.

ii) (Slater’s condition) There exists Ýx ∈ Rn such that gi(Ýx) ≺ 0, (1 ≤ i ≤ p).

iii) (CQ) Ker(h) ∩ V = {0}, with h and V as given by (76) and (77).

Then x∗ ∈ Rn solves (CP ) if and only if there exist Zi ∈ L(Sri , Sm) (1 ≤ i ≤ p) such that
(4)–(7) hold for x = x∗.

Proof. (⇒) Since we are within the hypotheses of Theorem 4.1, we know that there exist
Zi(u) (1 ≤ i ≤ p) such that x∗, Z1(u), . . . , Zp(u) satisfy (26)–(29). In view of Lemma 6.3,
it suffices to show that these Zi(u)’s can be chosen so that they are quadratic functions
of u component-wise. We proceed to do so.

Consider the restriction h/V of h to V . Under (CQ), h/V is one-to-one, and thus it has a
left inverse h−1

/V : Im(h) → Sr1 × · · · × Srp . It follows that the system of linear equations

in Zi(u) given by (26) and (29) has a unique solution given by

(Z̄1(u), . . . , Z̄p(u)) = h−1
/V (u

tdf(x∗)u). (82)

By Theorem 4.1, this unique solution satisfies (28) and (29). By linearity of h−1
/V there

exist bik`j ∈ R (1 ≤ i ≤ p, 1 ≤ k, ` ≤ ri, 1 ≤ j ≤ n) such that, for all x ∈ Rn,

[h−1
/V (x)]

i
k` =

∑n
j=1 b

i
k`jxj. In view of (82), we have

Z̄i(u)k` = [h−1
/V (u

tdf(x∗)u)]ik` =
n

∑

j=1

bik`j[u
tdf(x∗)u]j =



16 L. M. Graña Drummond, A. N. Iusem / First Order Conditions for Ideal ...

n
∑

j=1

bik`j

m
∑

q=1

m
∑

s=1

uqus
∂f(x∗)qs

∂xj

=
m
∑

q=1

m
∑

s=1

uqus

n
∑

j=1

bik`j
∂f(x∗)qs

∂xj

. (83)

Consider now the matrices M ik` ∈ Sm with entries

M ik`
qs =

n
∑

j=1

bik`j
∂f(x∗)qs

∂xj

. (84)

It follows from (83) and (84) that Z̄i(u)k` = utM ik`u, i.e. each entry of each Z̄i(u) is a
quadratic function of u. The result follows from Lemma 6.3.

(⇐) Assume that (4)–(7) hold. By (3) and psd-convexity of f , we have, for all x ∈ F ,

f(x) · f(x∗) + df(x∗)(x− x∗). (85)

Take any u ∈ Rm. By (85) and (4)

f(x) · f(x∗) + df(x∗)(x− x∗) = f(x∗)−
p

∑

i=1

Zi[dgi(x
∗)(x− x∗)] =

f(x∗) +

p
∑

i=1

Zi[gi(x)− gi(x
∗)− dgi(x

∗)(x− x∗) + gi(x
∗)− gi(x)] =

f(x∗) +

p
∑

i=1

Zi[gi(x)− gi(x
∗)− dgi(x

∗)(x− x∗)] +

p
∑

i=1

Zi[gi(x
∗)] +

p
∑

i=1

Zi[−gi(x)]. (86)

Since all the gi’s are psd-convex, gi(x) − gi(x
∗) − dgi(x

∗)(x − x∗) ∈ Sri
+ by (3). Since

x ∈ F , we have that −gi(x) ∈ Sri
+ . By (6) and the definition of nonnegativity for elements

of L(Sri , Sm), both the second and the fourth term in the right hand side of (86) are
nonnegative. The third term vanishes by (7). It follows that f(x) · f(x∗) for all x ∈ F .
Since x∗ belongs to F by (5), we conclude that x∗ solves (CP ).

We remark that (CQ) implies that the dual solution (Z1, . . . ,Zp) of (4)–(7) is unique, as
the following result shows.

Proposition 6.5. Under the hypotheses of Theorem 4.1, if (CQ) holds and (CP ) has
optimal solutions, then there exist unique Z1, . . . , Zp ∈ L(Sr1 , Sm) × · · · × L(Srp , Sm)
which satisfy (4)–(7).

Proof. Fix u ∈ Rm. By Theorem 4.1, if (CP ) has optimal solutions, then there exist
x∗ ∈ Rn, Z1(u), . . . , Zp(u) ∈ Sr1 × · · · × Srp which satisfy (26)–(29). Under (CQ), the
system of linear equations in Z1(u), . . . , Zp(u) given by (26) and (29) has a unique solution
Z̄1(u), . . . , Z̄p(u). By Theorem 6.4, there exist (Z1, . . . ,Zp) ∈ L(Sr1 , Sm)×· · ·×L(Srp , Sm)
such that (4)–(7) are satisfied with x = x∗. Since Zi is linear there exist ziqsk` ∈ R
(1 ≤ k, ` ≤ ri, 1 ≤ q, s ≤ m) such that

[Zi(A)]qs =

ri
∑

k=1

ri
∑

`=1

ziqsk`Ak`. (87)
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Pre and postmultiplying (4) and (7) by u, it is easy to check that the matrices ÝZi(u) with
entries

ÝZi(u)k` =
m
∑

q=1

m
∑

s=1

ziqsk`uqus (88)

also satisfy (26) and (29). We conclude that ÝZi(u) = Z̄i(u) for all i ∈ {1, . . . , p}, i.e., in
view of (88),

m
∑

q=1

m
∑

s=1

ziqsk`uqus = Z̄i(u)k`. (89)

Substracting (89) with u = eq − es from the same equation with u = eq + es, where
{e1, . . . , em} is the canonical basis of Rm, we obtain that

ziqsk` =
1

4

[

Z̄i(eq + es)k` − Z̄i(eq − es)k`
]

. (90)

Since the Z̄i(u) are unique, we get from (90) that the ziqsk`’s are uniquely determined, and
then it follows from (87) that the Zi’s are also uniquely determined, i.e. that the system
of linear equations in Z1, . . . ,Zp given by (4) and (7) has a unique solution. A fortiori,
the full system (4)–(7) also has a unique solution.

In connection with Theorem 6.4, we mention that the problem in Example 6.1 above does
not satisfy (CQ). In fact, it holds that Ker(h) ∩ V = Ker(h) = {(t,−t,−t, t) : t ∈ R} 6=
{0}. Regarding Lemma 6.3, note that the Zi(u)’s given by (69) are piece-wise quadratic,
but not quadratic in u.

We present next an example for which both Slater’s condition and (CQ) hold, and thus the
multipliers exist both for the first formulation, (4)–(7), and for the second one, (26)–(29).

Example 6.6. Take n = 3, m = 2, p = 3, r1 = r2 = r3 = 1. We consider f as in (55) of

Example 6.1, i.e. f(x) =

(

x1 x2

x2 x3

)

, and

g1(x) = −x1 − x2 + 2, g2(x) = −x1 + x2, g3(x) = x1 − x3.

Slater’s condition is satisfied, e.g., by Ýx = (2, 1, 3)t, and (CQ) holds by virtue of Proposi-
tion 6.2, because the gradients of the gi’s, namely (−1,−1, 0)t, (−1, 1, 0)t, (1, 0,−1)t, are
linearly independent. The optimality conditions (4)–(7) hold with x∗ = (1, 1, 1)t, Z1 =

1
2

(

1 1
1 1

)

, Z2 = 1
2

(

1 −1
−1 1

)

and Z3 =

(

0 0
0 1

)

, identifying as before L(S1, S2)

with S2. Thus x∗ solves (CP ). Regarding the second formulation of the optimality con-
ditions, (26)–(29) hold with the same x∗ and Z1(u) = 1

2
(u1 + u2)

2, Z2(u) = 1
2
(u1 − u2)

2

and Z3(u) = u2
2, which are all nonnegative and quadratic in u.

7. Duality scheme for the first formulation

We present next the duality scheme corresponding to the first formulation of the optimality
conditions. Define ÝL : Rn × L(Sr1 , Sm)× · · · × L(Srp , Sm) → Sm as

ÝL
(

x,Z1, . . . ,Zp
)

= f(x) +

p
∑

i=1

Zi
(

gi(x)
)

. (91)
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Observe that when f and all the gi’s are psd-convex, ÝL
(

·,Z1, . . . ,Zp
)

is also psd-convex
for all Z1 · 0, . . . ,Zp · 0, by Proposition 2.1(iii).

For those Z1, . . . ,Zp such that minx∈Rn ÝL
(

x,Z1, . . . ,Zp
)

, in the partial order ¶ of Sm,
exists, we define

Ψ
(

Z1, . . . ,Zp
)

= minx∈Rn ÝL
(

x,Z1, . . . ,Zp
)

. (92)

The duality theorem for this formulation is

Theorem 7.1. Consider problem (CP ) with f and all the gi’s psd-convex.

i) (weak duality) For all
(

Z1, . . . ,Zp
)

∈ dom(Ψ) satisfying Z1 · 0, . . . ,Zp · 0, and all
x ∈ F , it holds that Ψ

(

Z1, . . . ,Zp
)

¶ f(x).

ii) If there exist Z∗ ∈ L(Sr1 , Sm)× · · · ×L(Srp , Sm) and x∗ ∈ F such that Ψ(Z∗) = f(x∗)
then x∗ solves (CP ) and Z∗ solves min Ψ(Z) subject to Z · 0.

iii) (strong duality) Assume that f and all the gi’s are continuously differentiable and both
Slater’s condition and (CQ) hold.

In these conditions, if x∗ solves (CP ) then there exists Z∗ ∈ L(Sr1 , Sm)×· · ·×L(Srp , Sm)
such that Ψ(Z∗) = f(x∗) and Z∗ solves max Ψ(Z) subject to Z · 0.

Proof. i) By (91), (92),

Ψ
(

Z1, . . . ,Zp
)

= miny∈Rn ÝLu

(

y,Z1, . . . ,Zp
)

¶ ÝLu

(

x,Z1, . . . ,Zp
)

= f(x)−
p

∑

i=1

Zi(−gi(x)) ¶ f(x),

where the second inequality follows from the facts that x ∈ F , so that −gi(x) · 0, and
Z1 · 0, . . . ,Zp · 0.

ii) Immediate from (i).

iii) Under the assumptions of this item Theorem 6.4 holds, and therefore there exist
Zi ∈ L(Sri , Sm) (1 ≤ i ≤ p) such that (4)–(7) hold. Take Z∗ =

(

Z1, . . . ,Zp
)

. By (7),
Zi
(

gi(x
∗)
)

= 0, so that

ÝL(x∗,Z∗) = f(x∗). (93)

By (91) and (4),

dx ÝLu(x
∗,Z∗) = df(x∗) +

p
∑

i=1

Zidgi(x
∗) = 0. (94)

Since ÝLu(·,Z∗) is psd-convex, as we have already observed, because Zi · 0 by (6), it
follows from (2) and (94) that X∗ minimizes ÝLu(·,Z∗), i.e. Z∗ ∈ dom(Ψ) and

Ψ(Z∗) = ÝLu(x
∗,Z∗). (95)

By (93) and (95), Ψ(Z∗) = f(x∗), and thus Z∗ solves max Ψ(Z) subject to Z · 0 by
(ii).
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